O'REILLY"

in a Nutshell

THE DEFINITIVE REFERENCE

Joseph Albahari & Ben Albahari

C#7.0

in a Nutshell

Joseph Albahari and Ben Albahari

C# 7.0 in a Nutshell

by Joseph Albahari and Ben Albahari

Copyright © 2018 Joseph Albahari, Ben Albahari. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com/safari). For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate(@oreilly.com.

Editors: Rachel Roumeliotis Indexer: Judith McConville
Production Editor: Colleen Cole Interior Designer: David Futato
Copyeditor: Jasmine Kwityn Cover Designer: Karen Montgomery

Proofreader: Kim Cofer Illustrator: Rebecca Demarest

m October 2017: First Edition

Revision History for the First Edition
= 2017-10-03: First Release

m 2017-11-03: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491987650 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 7.0 in a Nutshell, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or the intellectual property rights of

others, it is your responsibility to ensure that your use thereof complies with such licenses
and/or rights.

978-1-491-98765-0
[M]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491987650

Preface

C# 7.0 represents the sixth major update to Microsoft’s flagship programming language,
positioning C# as a language with unusual flexibility and breadth. At one end, it offers high-
level abstractions such as query expressions and asynchronous continuations, while at the other
end, it allows low-level efficiency through constructs such as custom value types and optional
pointers.

The price of this growth is that there’s more than ever to learn. Although tools such as
Microsoft’s IntelliSense — and online references — are excellent in helping you on the job,
they presume an existing map of conceptual knowledge. This book provides exactly that map of
knowledge in a concise and unified style — free of clutter and long introductions.

Like the past four editions, C# 7.0 in a Nutshell is organized around concepts and use cases,
making it friendly both to sequential reading and to random browsing. It also plumbs significant
depths while assuming only basic background knowledge — making it accessible to
intermediate as well as advanced readers.

This book covers C#, the CLR, and the core Framework assemblies. We’ve chosen this focus
to allow space for difficult topics such as concurrency, security, and application domains —
without compromising depth or readability. Features new to C# 6 and C# 7 and the associated
Framework are flagged so that you can also use this book as a C# 5 and C# 6 reference.

Intended Audience

This book targets intermediate to advanced audiences. No prior knowledge of C# is required,
but some general programming experience is necessary. For the beginner, this book
complements, rather than replaces, a tutorial-style introduction to programming.

This book is an ideal companion to any of the vast array of books that focus on an applied
technology such as ASP.NET, WPF, UWP, or WCF. The areas of the language and .NET
Framework that such books omit, C# 7.0 in a Nutshell covers in detail — and vice versa.

If you’re looking for a book that skims every .NET Framework technology, this is not for you.
This book is also unsuitable if you want to learn about APIs specific to mobile device
development.

How This Book Is Organized

The first three chapters after the introduction concentrate purely on C#, starting with the basics
of syntax, types, and variables, and finishing with advanced topics such as unsafe code and
preprocessor directives. If you’re new to the language, you should read these chapters
sequentially.

The remaining chapters cover the core .NET Framework, including such topics as LINQ, XML,
collections, concurrency, I/O and networking, memory management, reflection, dynamic
programming, attributes, security, application domains, and native interoperability. You can
read most of these chapters randomly, except for Chapters 6 and 7, which lay a foundation for
subsequent topics. The three chapters on LINQ are also best read in sequence, and some
chapters assume some knowledge of concurrency, which we cover in Chapter 14.

What You Need to Use This Book

The examples in this book require a C# 7.0 compiler and Microsoft .NET Framework 4.6/4.7.
You will also find Microsoft’s .NET documentation useful to look up individual types and
members (which is available online).

While it’s possible to write source code in Notepad and invoke the compiler from the
command line, you’ll be much more productive with a code scratchpad for instantly testing
code snippets, plus an Integrated Development Environment (IDE) for producing executables
and libraries.

For a code scratchpad, download LINQPad 5 from www:/ingpad.net (free). LINQPad fully
supports C# 7.0 and is maintained by one of the authors.

For an IDE, download Microsoft Visual Studio 2017: any edition is suitable for what’s taught
in this book, except the free express edition.

NOTE

All code listings for Chapters 2 through 10, plus the chapters on concurrency, parallel
programming, and dynamic programming are available as interactive (editable) LINQPad
samples. You can download the whole lot in a single click: go to LINQPad’s Samples tab at
the bottom left, click “Download more samples,” and choose “C# 7.0 in a Nutshell.”

Conventions Used in This Book

The book uses basic UML notation to illustrate relationships between types, as shown in
Figure P-1. A slanted rectangle means an abstract class; a circle means an interface. A line
with a hollow triangle denotes inheritance, with the triangle pointing to the base type. A line
with an arrow denotes a one-way association; a line without an arrow denotes a two-way
association.

http://www.linqpad.net

T Interface

Base type
ll\ / Abstract class
Subtype
Referencing type (Unidirec rl‘fon)al
association
Property > Referenced type
Referencing type (Bidirectional Referencing type
association)
Property Property

Figure P-1. Sample diagram

The following typographical conventions are used in this book:
Italic
Indicates new terms, URIs, filenames, and directories

Constant width
Indicates C# code, keywords and identifiers, and program output

Constant width bold
Shows a highlighted section of code

Constant width italic

Shows text that should be replaced with user-supplied values

NOTE

This icon signifies a tip, suggestion, or general note.

WARNING

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. For example: “C# 7.0 in a Nutshell, by Joseph
Albahari and Ben Albahari (O’Reilly) Copyright 2018, Joseph Albahari, Ben Albahari, 978-1-
491-98765-0.”

If you feel your use of code examples falls outside fair use or the permission given here, feel
free to contact us at permissions@oreilly.com.

O’Reilly Safari
NOTE

Safari (formerly Safari Books Online) is a membership-based training and reference platform
for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive
tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard
Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress,
Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

We’d Like to Hear from You

Please address comments and questions concerning this book to the publisher:
= O’Reilly Media, Inc.

= 1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

= 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at: http.//bit.ly/c-sharp7 nutshell.

Code listings and additional resources are provided at: http.://www.albahari.com/nutshell/.

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com.

For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our website at: Attp://www.oreilly.com.

Acknowledgments

Joseph Albahari

First, [want to thank my brother, Ben Albahari, for persuading me to take on C# 3.0 in a
Nutshell, whose success has spawned three subsequent editions. Ben shares my willingness to
question conventional wisdom, and the tenacity to pull things apart until it becomes clear how
they really work.

It’s been an honor to have superb technical reviewers on the team. In this and the last edition,
we had invaluable and extensive feedback from Rod Stephens, Jared Parsons, Stephen Toub,
Matthew Groves, Dixin Yan, Lee Coward, Bonnie DeWitt, Wonseok Chae, Lori Lalonde and
James Montemagno.

The book was built on previous editions, whose technical reviewers I owe a similar honor:
Eric Lippert, Jon Skeet, Stephen Toub, Nicholas Paldino, Chris Burrows, Shawn Farkas, Brian
Grunkemeyer, Maoni Stephens, David DeWinter, Mike Barnett, Melitta Andersen, Mitch
Wheat, Brian Peek, Krzysztof Cwalina, Matt Warren, Joel Pobar, Glyn Griffiths, Ion Vasilian,
Brad Abrams, Sam Gentile, and Adam Nathan.

I appreciate that many of the technical reviewers are accomplished individuals at Microsoft,
and I particularly thank you for taking out time to raise this book to the next quality bar.

Finally, I want to thank the O’Reilly team and extend personal thanks to Li, Miri, and Sonia.

Ben Albahari

Because my brother wrote his acknowledgments first, you can infer most of what [want to say.
:) We’ve actually both been programming since we were kids (we shared an Apple Ile; he was
writing his own operating system while I was writing Hangman), so it’s cool that we’re now
writing books together. I hope the enriching experience we had writing the book will translate
into an enriching experience for you reading the book.

I’d also like to thank my former colleagues at Microsoft. Many smart people work there, not
just in terms of intellect but also in a broader emotional sense, and I miss working with them. In
particular, I learned a lot from Brian Beckman, to whom I am indebted.

http://bit.ly/c-sharp7_nutshell
http://www.albahari.com/nutshell/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Chapter 1. Introducing C# and the .NET Framework

C# is a general-purpose, type-safe, object-oriented programming language. The goal of the
language is programmer productivity. To this end, C# balances simplicity, expressiveness, and
performance. The chief architect of the language since its first version is Anders Hejlsberg
(creator of Turbo Pascal and architect of Delphi). The C# language is platform-neutral and
works with a range of platform-specific compilers and frameworks, most notably the Microsoft
NET Framework for Windows.

Object Orientation

C# is a rich implementation of the object-orientation paradigm, which includes encapsulation,
inheritance, and polymorphism. Encapsulation means creating a boundary around an object, to
separate its external (public) behavior from its internal (private) implementation details. The
distinctive features of C# from an object-oriented perspective are:

Unified type system
The fundamental building block in C# is an encapsulated unit of data and functions called
a type. C# has a unified type system, where all types ultimately share a common base
type. This means that all types, whether they represent business objects or are primitive
types such as numbers, share the same basic functionality. For example, an instance of any
type can be converted to a string by calling its Tostring method.

Classes and interfaces

In a traditional object-oriented paradigm, the only kind of type is a class. In C#, there are
several other kinds of types, one of which is an interface. An interface is like a class,
except that it only describes members. The implementation for those members comes from
types that implement the interface. Interfaces are particularly useful in scenarios where
multiple inheritance is required (unlike languages such as C++ and Eiffel, C# does not
support multiple inheritance of classes).

Properties, methods, and events

In the pure object-oriented paradigm, all functions are methods (this is the case in
Smalltalk). In C#, methods are only one kind of function member, which also includes
properties and events (there are others, too). Properties are function members that
encapsulate a piece of an object’s state, such as a button’s color or a label’s text. Events
are function members that simplify acting on object state changes.

While C# is primarily an object-oriented language, it also borrows from the functional
programming paradigm. Specifically:
Functions can be treated as values

Through the use of delegates, C# allows functions to be passed as values to and from
other functions.

CH# supports patterns for purity
Core to functional programming is avoiding the use of variables whose values change, in

favor of declarative patterns. C# has key features to help with those patterns, including the
ability to write unnamed functions on the fly that “capture” variables (lambda
expressions), and the ability to perform list or reactive programming via query
expressions. C# also makes it easy to define read-only fields and properties for writing
immutable (read-only) types.

Type Safety

C# is primarily a type-safe language, meaning that instances of types can interact only through
protocols they define, thereby ensuring each type’s internal consistency. For instance, C#
prevents you from interacting with a string type as though it were an integer type.

More specifically, C# supports static typing, meaning that the language enforces type safety at
compile time. This is in addition to type safety being enforced at runtime.

Static typing eliminates a large class of errors before a program is even run. It shifts the burden
away from runtime unit tests onto the compiler to verify that all the types in a program fit
together correctly. This makes large programs much easier to manage, more predictable, and
more robust. Furthermore, static typing allows tools such as IntelliSense in Visual Studio to
help you write a program, since it knows for a given variable what type it is, and hence what
methods you can call on that variable.

NOTE

C# also allows parts of your code to be dynamically typed via the dynamic keyword.
However, C# remains a predominantly statically typed language.

C# is also called a strongly typed language because its type rules (whether enforced statically
or at runtime) are very strict. For instance, you cannot call a function that’s designed to accept
an integer with a floating-point number, unless you first explicitly convert the floating-point
number to an integer. This helps prevent mistakes.

Strong typing also plays a role in enabling C# code to run in a sandbox — an environment
where every aspect of security is controlled by the host. In a sandbox, it is important that you
cannot arbitrarily corrupt the state of an object by bypassing its type rules.

Memory Management

C# relies on the runtime to perform automatic memory management. The Common Language
Runtime has a garbage collector that executes as part of your program, reclaiming memory for
objects that are no longer referenced. This frees programmers from explicitly deallocating the
memory for an object, eliminating the problem of incorrect pointers encountered in languages
such as C++.

C# does not eliminate pointers: it merely makes them unnecessary for most programming tasks.
For performance-critical hotspots and interoperability, pointers and explicit memory allocation
is permitted in blocks that are marked unsafe.

Platform Support

Historically, C# was used almost entirely for writing code to run on Windows platforms.
Recently, however, Microsoft and other companies have invested in other platforms, including
Linux, macOS, i0S, and Android. Xamarin™ allows cross-platform C# development for
mobile applications, and Portable Class Libraries are becoming increasingly widespread.
Microsoft’s ASP.NET Core is a cross-platform lightweight web hosting framework that can run
either on the .NET Framework or on .NET Core, an open source cross-platform runtime.

C# and the CLR

C# depends on a runtime equipped with a host of features such as automatic memory
management and exception handling. At the core of the Microsoft NET Framework is the
Common Language Runtime (CLR), which provides these runtime features. (The .NET Core
and Xamarin frameworks provide similar runtimes.) The CLR is language-neutral, allowing
developers to build applications in multiple languages (e.g., C#, F#, Visual Basic .NET, and
Managed C++).

C# is one of several managed languages that get compiled into managed code. Managed code
is represented in Intermediate Language or IL. The CLR converts the IL into the native code
of the machine, such as X86 or X64, usually just prior to execution. This is referred to as Just-
In-Time (JIT) compilation. Ahead-of-time compilation is also available to improve startup
time with large assemblies or resource-constrained devices (and to satisfy i0S app store rules
when developing with Xamarin).

The container for managed code is called an assembly or portable executable. An assembly
can be an executable file (.exe) or a library (.dll), and contains not only IL, but type
information (metadata). The presence of metadata allows assemblies to reference types in
other assemblies without needing additional files.

NOTE

You can examine and disassemble the contents of an IL assembly with Microsoft’s ildasm
tool. And with tools such as ILSpy, dotPeek (JetBrains), or Reflector (Red Gate), you can go
further and decompile the IL to C#. Because IL is higher-level than native machine code, the
decompiler can do quite a good job of reconstructing the original C#.

A program can query its own metadata (reflection), and even generate new IL at runtime
(reflection.emit).

The CLR and .NET Framework

The .NET Framework consists of the CLR plus a vast set of libraries. The libraries consist of
core libraries (which this book is concerned with) and applied libraries, which depend on the
core libraries. Figure 1-1 is a visual overview of those libraries (and also serves as a
navigational aid to the book).

A Aapﬁed _
Technologies Windows Forms

G System.dll
System.Xml.dll
Framework System.Core.d1l

GO+

Windows

ADO.NET Presentation
Foundation
Windows
Communication
Foundation Workflow
Foundation
(#
Chapters
2-4
ASENET '
Web Forms
Managed
: Extensibility
ASPNET 2 Dynamic rmewers
mvc (System.Dynamic.dll)
Managed
Add-In Framework

The Nutshell

Figure I-1. Topics covered in this book and the chapters in which they are found. Topics not covered
are shown outside the large circle.

NOTE

The core libraries are sometimes collectively called the Base Class Library (BCL). The entire
framework is called the Framework Class Library (FCL).

Other Frameworks

The Microsoft .NET Framework is the most expansive and mature framework, but runs only on
Microsoft Windows (desktop/server). Over the years, other frameworks have emerged to
support other platforms. There are currently three major players besides the .NET Framework,
all of which are currently owned by Microsoft:

Universal Windows Platform (UWP)

For writing Windows 10 Store Apps and for targeting Windows 10 devices (mobile,
XBox, Surface Hub, Hololens). Your app runs in a sandbox to lessen the threat of
malware, prohibiting operations such as reading or writing arbitrary files.

.NET Core with ASPNET Core
An open source framework (originally based on a cut-down version of the .NET
Framework) for writing easily deployable Internet apps and micro-services that run on
Windows, macOS, and Linux. Unlike the .NET Framework, .NET Core can be packaged
with the web application and xcopy-deployed (self-contained deployment).

Xamarin

For writing mobile apps that target 10S, Android, and Windows Mobile. The Xamarin
company was purchased by Microsoft in 2016.

Table 1-1 compares the current platform support for each of the major frameworks.

Table 1-1. Platform support for the popular frameworks

Target operating system .NET Framework UWP .NET Core Xamarin

Windows 7/8 Yes Yes
Windows 10 desktop/server Yes Yes Yes
Windows 10 devices Yes Yes
Linux Yes
macOS Yes
iOS (iPhone) Yes
Android Yes

The four major frameworks differ in the platforms they support, the libraries that sit on top, and
their intended uses. However, it’s fair to say that as of the release of .NET Core 2.0, they all
expose a similar core framework (BCL), which is the main focus of this book. It is even
possible to directly leverage this commonality by writing class libraries that work across all
four frameworks (see “.NET Standard 2.0” in Chapter 5).

NOTE

A nuance not shown in Table 1-1 is that UWP uses .NET Core under the covers, so
technically .NET Core does run on Windows 10 devices (albeit not for the purpose of
providing a framework for ASP.NET Core). It’s likely that we’ll see more uses for .NET
Core 2 in the future.

Legacy and Niche Frameworks
The following frameworks are still available to support older platforms:
= Windows Runtime for Windows 8/8.1 (now UWP)

Windows Phone 7/8 (now UWP)

Microsoft XNA for game development (now UWP)

Silverlight (no longer actively developed since the rise of HTMLS5 and JavaScript)

NET Core 1.x (the predecessor to .NET Core 2.0, with significantly reduced functionality)

There are also a couple of niche frameworks worth mentioning;

m The .NET Micro Framework is for running .NET code on highly resource-constrained
embedded devices (under 1 MB).

= Mono, the open source framework upon which Xamarin sits, also has libraries to develop
cross-platform desktop applications on Linux, macOS, and Windows. Not all features are
supported, or work fully.

It’s also possible to run managed code inside SQL Server. With SQL Server CLR integration,
you can write custom functions, stored procedures, and aggregations in C# and then call them
from SQL. This works in conjunction with the standard .NET Framework, but with a special
“hosted” CLR that enforces a sandbox to protect the integrity of the SQL Server process.

Windows Runtime
C# also interoperates with Windows Runtime (WinRT) technology. WinRT means two things:

= A language-neutral object-oriented execution interface supported in Windows 8 and above

m A set of libraries baked into Windows 8 and above that support the preceding interface

NOTE

Somewhat confusingly, the term “WinRT” has historically been used to mean two more
things:

= The predecessor to UWP, i.e., the development platform for writing Store apps for
Windows 8/8.1, sometimes called “Metro” or “Modern”

= The defunct mobile operating system for RISC-based tablets (“Windows RT”) that
Microsoft released in 2011

By execution interface, we mean a protocol for calling code that’s (potentially) written in
another language. Microsoft Windows has historically provided a primitive execution interface
in the form of low-level C-style function calls comprising the Win32 APL

WinRT is much richer. In part, it is an enhanced version of COM (Component Object Model)
that supports .NET, C++, and JavaScript. Unlike Win32, it’s object-oriented and has a
relatively rich type system. This means that referencing a WinRT library from C# feels much
like referencing a .NET library — you may not even be aware that you’re using WinRT.

The WinRT libraries in Windows 10 form an essential part of the UWP platform (UWP relies
on both WinRT and .NET Core libraries). If you’re targeting the standard .NET Framework
platform, referencing the Windows 10 WinRT libraries is optional, and can be useful if you
need to access Windows 10—specific features not otherwise covered in the .NET Framework.

The WinRT libraries in Windows 10 support the UWP user interface for writing immersive
touch-first applications. They also support mobile device-specific features such as sensors,
text messaging, and so on (the new functionality of Window 8§, 8.1, and 10 has been exposed
through WinRT rather than Win32). WinRT libraries also provide file I/O tailored to work well
within the UWP sandbox.

What distinguishes WinRT from ordinary COM is that WinRT projects its libraries into a
multitude of languages, namely C#, VB, C++, and JavaScript, so that each language sees
WinRT types (almost) as though they were written especially for it. For example, WinRT will
adapt capitalization rules to suit the standards of the target language, and will even remap some
functions and interfaces. WinRT assemblies also ship with rich metadata in .winmd files,
which have the same format as .NET assembly files, allowing transparent consumption without
special ritual; this is why you might be unaware that you’re using WinRT rather than .NET
types, aside from namespace differences. Another clue is that WinRT types are subject to
COM-style restrictions; for instance, they offer limited support for inheritance and generics.

In C#, you can not only consume WinRT libraries, but also write your own (and call them from
a JavaScript application).

A Brief History of C#

The following is a reverse chronology of the new features in each C# version, for the benefit of
readers already familiar with an older version of the language.

What’s New in C# 7.0
(C# 7.0 ships with Visual Studio 2017.)

Numeric literal improvements

Numeric literals in C# 7 can include underscores to improve readability. These are called digit
separators and are ignored by the compiler:

int million = 1_000_000;
Binary literals can be specified with the ob prefix:

var b = 0b1010 1011 1100 1101 1110 1111;

Out variables and discards

C# 7 makes it easier to call methods that contain out parameters. First, you can now declare
out variables on the fly:

bool successful = int.TryParse ("123", out int result);
Console.WritelLine (result);

And when calling a method with multiple out parameters, you can discard ones you’re
uninterested in with the underscore character:

SomeBigMethod (out _, out _, out _, out int x, out _, out _, out _);
Console.WriteLine (x):;

Patterns

You can also introduce variables on the fly with the i s operator. These are called pattern
variables (see “The is operator and pattern variables (C# 7)” in Chapter 3):

void Foo (object x)

{
if (x is string s)
Console.WriteLine (s.Length);

The switch statement also supports patterns, so you can switch on #ype as well as constants
(see “The switch statement with patterns (C# 7)” in Chapter 2). You can specify conditions
with a when clause, and also switch on the nu11 value:

switch (x)
{
case int i:
Console.WriteLine ("It's an int!");
break;
case string s:
Console.WriteLine (s.Length); // We can use the s variable
break;
case bool b when b == true: // Matches only when b is true
Console.WriteLine ("True");
break;
case null:
Console.WriteLine ("Nothing");
break;

Local methods

A local method is a method declared inside another function (see “Local methods (C# 7)” in
Chapter 3):

void WriteCubes ()

{
Console.WriteLine (Cube (3));
Console.WriteLine (Cube (4));
Console.WriteLine (Cube (5));

int Cube (int value) => value * value * value;

Local methods are visible only to the containing function, and can capture local variables in the
same way that lambda expressions do.

More expression-bodied members

C# 6 introduced the expression-bodied “fat-arrow” syntax for methods, read-only properties,
operators, and indexers. C# 7 extends this to constructors, read/write properties, and
finalizers:

public class Person

{

string name;
public Person (string name) => Name = name;

public string Name
{
get => name;
set => name = value ?? "";

}

~Person () => Console.WriteLine ("finalize");

Deconstructors

C# 7 introduces the deconstructor pattern. Whereas a constructor typically takes a set of
values (as parameters) and assigns them to fields, a deconstructor does the reverse and assigns
fields back to a set of variables. We could write a deconstructor for the Person class in the
preceding example as follows (exception-handling aside):

public void Deconstruct (out string firstName, out string lastName)
{

int spacePos = name.IndexOf (' ');

firstName = name.Substring (0, spacePos);

lastName = name.Substring (spacePos + 1);

Deconstructors are called with the following special syntax:

var joe = new Person ("Joe Bloggs");

var (first, last) = joe; // Deconstruction
Console.WriteLine (first); // Joe
Console.WriteLine (last); // Bloggs

Tuples

Perhaps the most notable improvement to C# 7 is explicit tuple support (see “Tuples (C# 7)” in
Chapter 4). Tuples provide a simple way to store a set of related values:

var bob = ("Bob", 23);
Console.WriteLine (bob.Iteml); // Bob
Console.WriteLine (bob.Item2); // 23

C#’s new tuples are syntactic sugar for using the System.valueTuple<...> generic structs.
But thanks to compiler magic, tuple elements can be named:

var tuple = (Name:"Bob", Age:23);
Console.WriteLine (tuple.Name) ; // Bob
Console.WriteLine (tuple.Age); // 23

With tuples, functions can return multiple values without resorting to out parameters:

static (int row, int column) GetFilePosition() => (3, 10);

static void Main ()

{
var pos = GetFilePosition();
Console.Writeline (pos.row); // 3
Console.WriteLine (pos.column); // 10

Tuples implicitly support the deconstruction pattern, so they can easily be deconstructed into
individual variables. We can rewrite the preceding Main method so that the tuple returned by
GetFilePosition is instead assigned to two local variables, row and column:

static void Main ()

{
(int row, int column) = GetFilePosition(); // Creates 2 local variables
Console.WriteLine (row); // 3
Console.WritelLine (column); // 10

throw expressions

Prior to C# 7, throw was always a statement. Now it can also appear as an expression in
expression-bodied functions:

public string Foo() => throw new NotImplementedException();

A throw expression can also appear in a ternary conditional expression:

string Capitalize (string value) =>
value == null ? throw new ArgumentException ("value")
value == "m 7 wn .
char.ToUpper (value[0]) + value.Substring (1);

Other improve ments

C# 7 also includes a couple of features for specialized micro-optimization scenarios (see “Ref
Locals (C# 7)” and “Ref Returns (C# 7)” in Chapter 2), and the ability to declare asynchronous
methods with return types other than Task / Task<T>.

What’s New in C# 6.0

C# 6.0, which shipped with Visual Studio 2015, features a new-generation compiler,
completely written in C#. Known as project “Roslyn,” the new compiler exposes the entire
compilation pipeline via libraries, allowing you to perform code analysis on arbitrary source
code (see Chapter 27). The compiler itself is open source, and the source code is available at
github.com/dotnet/roslyn.

In addition, C# 6.0 features a number of minor, but significant enhancements, aimed primarily
at reducing code clutter.

The null-conditional (“Elvis”) operator (see “Null Operators”, Chapter 2) avoids having to
explicitly check for null before calling a method or accessing a type member. In the following
example, result evaluates to null instead of throwing a Nul1ReferenceException:

System.Text.StringBuilder sb = null;
string result = sb?.ToString(); // result is null

Expression-bodied functions (see “Methods”, Chapter 3) allow methods, properties,
operators, and indexers that comprise a single expression to be written more tersely, in the
style of a lambda expression:

public int TimesTwo (int x) => x * 2;
public string SomeProperty => "Property value";

Property initializers (Chapter 3) let you assign an initial value to an automatic property:

public DateTime TimeCreated { get; set; } = DateTime.Now;

Initialized properties can also be read-only:

public DateTime TimeCreated { get; } = DateTime.Now;

Read-only properties can also be set in the constructor, making it easier to create immutable

http://github.com/dotnet/roslyn

(read-only) types.

Index initializers (Chapter 4) allow single-step initialization of any type that exposes an
indexer:

var dict = new Dictionary<int,string>()

[3] = "three",
[10] = "ten"

String interpolation (see “String Type”, Chapter 2) offers a succinct alternative to

string.Format:

string s = $"It is {DateTime.Now.DayOfWeek} today";

Exception filters (see “try Statements and Exceptions”, Chapter 4) let you apply a condition to
a catch block:

string html;
try
{
html = new WebClient () .DownloadString ("http://asef");
}
catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{

}

The using static (see “Namespaces”, Chapter 2) directive lets you import all the static
members of a type, so that you can use those members unqualified:

using static System.Console;

WriteLine ("Hello, world"); // WriteLine instead of Console.WriteLine

The nameof (Chapter 3) operator returns the name of a variable, type, or other symbol as a
string. This avoids breaking code when you rename a symbol in Visual Studio:

int capacity = 123;
string x = nameof (capacity); // x 1is "capacity"
string y = nameof (Uri.Host); // y is "Host"

And finally, you’re now allowed to await inside catch and finally blocks.

What’s New in C# 5.0

C# 5.0’s big new feature was support for asynchronous functions via two new keywords,
async and await. Asynchronous functions enable asynchronous continuations, which make it
easier to write responsive and thread-safe rich-client applications. They also make it easy to
write highly concurrent and efficient I/O-bound applications that don’t tie up a thread resource
per operation.

We cover asynchronous functions in detail in Chapter 14.

What’s New in C# 4.0

The features new to C# 4.0 were:
» Dynamic binding

» Optional parameters and named arguments
= Type variance with generic interfaces and delegates
= COM interoperability improvements

Dynamic binding (Chapters 4 and 20) defers binding — the process of resolving types and
members — from compile time to runtime and is useful in scenarios that would otherwise
require complicated reflection code. Dynamic binding is also useful when interoperating with
dynamic languages and COM components.

Optional parameters (Chapter 2) allow functions to specify default parameter values so that
callers can omit arguments and named arguments allow a function caller to identify an
argument by name rather than position.

Type variance rules were relaxed in C# 4.0 (Chapters 3 and 4), such that type parameters in
generic interfaces and generic delegates can be marked as covariant or contravariant,
allowing more natural type conversions.

COM interoperability (Chapter 25) was enhanced in C# 4.0 in three ways. First, arguments
can be passed by reference without the ref keyword (particularly useful in conjunction with
optional parameters). Second, assemblies that contain COM interop types can be /inked rather
than referenced. Linked interop types support type equivalence, avoiding the need for Primary
Interop Assemblies and putting an end to versioning and deployment headaches. Third,
functions that return COM- Variant types from linked interop types are mapped to dynamic
rather than object, eliminating the need for casting.

What’s New in C# 3.0

The features added to C# 3.0 were mostly centered on Language Integrated Query
capabilities or LINQ for short. LINQ enables queries to be written directly within a C#
program and checked statically for correctness, and query both local collections (such as lists
or XML documents) or remote data sources (such as a database). The C# 3.0 features added to
support LINQ comprised implicitly typed local variables, anonymous types, object initializers,
lambda expressions, extension methods, query expressions, and expression trees.

Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable type in a
declaration statement, allowing the compiler to infer it. This reduces clutter as well as
allowing anonymous types (Chapter 4), which are simple classes created on the fly that are
commonly used in the final output of LINQ queries. Arrays can also be implicitly typed
(Chapter 2).

Object initializers (Chapter 3) simplify object construction by allowing properties to be set
inline after the constructor call. Object initializers work with both named and anonymous types.

Lambda expressions (Chapter 4) are miniature functions created by the compiler on the fly, and
are particularly useful in “fluent” LINQ queries (Chapter 8).

Extension methods (Chapter 4) extend an existing type with new methods (without altering the
type’s definition), making static methods feel like instance methods. LINQ’s query operators

are implemented as extension methods.

Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ queries that can
be substantially simpler when working with multiple sequences or range variables.

Expression trees (Chapter §) are miniature code DOMs (Document Object Models) that
describe lambda expressions assigned to the special type Expression<TDelegate>.
Expression trees make it possible for LINQ queries to execute remotely (e.g., on a database
server) because they can be introspected and translated at runtime (e.g., into a SQL statement).

C# 3.0 also added automatic properties and partial methods.

Automatic properties (Chapter 3) cut the work in writing properties that simply get/set a
private backing field by having the compiler do that work automatically. Partial methods
(Chapter 3) let an auto-generated partial class provide customizable hooks for manual
authoring that “melt away” if unused.

What’s New in C# 2.0

The big new features in C# 2 were generics (Chapter 3), nullable types (Chapter 4), iterators
(Chapter 4), and anonymous methods (the predecessor to lambda expressions). These features
paved the way for the introduction of LINQ in C# 3.

C# 2 also added support for partial classes, static classes, and a host of minor and
miscellaneous features such as the namespace alias qualifier, friend assemblies, and fixed-size
buffers.

The introduction of generics required a new CLR (CLR 2.0), because generics maintain full
type fidelity at runtime.

Chapter 2. C# Language Basics

In this chapter, we introduce the basics of the C# language.

NOTE

All programs and code snippets in this and the following two chapters are available as
interactive samples in LINQPad. Working through these samples in conjunction with the
book accelerates learning in that you can edit the samples and instantly see the results without
needing to set up projects and solutions in Visual Studio.

To download the samples, click the Samples tab in LINQPad, and then click “Download
more samples.” LINQPad is free — go to http.//www.lingpad.net.

A First C# Program

Here is a program that multiplies 12 by 30 and prints the result, 360, to the screen. The double
forward slash indicates that the remainder of a line is a comment.

using System; // Importing namespace
class Test // Class declaration
{
static void Main () // Method declaration
{
int x = 12 * 30; // Statement 1
Console.WriteLine (x); // Statement 2
} // End of method

} // End of class

At the heart of this program lie two statements:

int x = 12 * 30;
Console.WritelLine (x);

Statements in C# execute sequentially and are terminated by a semicolon (or a code block, as
we’ll see later). The first statement computes the expression 12 * 30 and stores the resultina
local variable, named x, which is an integer type. The second statement calls the console
class’s writeLine method, to print the variable x to a text window on the screen.

A method performs an action in a series of statements, called a statement block — a pair of
braces containing zero or more statements. We defined a single method named Main:

static void Main ()

{
}

Writing higher-level functions that call upon lower-level functions simplifies a program. We
can refactor our program with a reusable method that multiplies an integer by 12 as follows:

using System;

http://www.linqpad.net

class Test
{
static void Main ()
{
Console.WritelLine (FeetToInches (30)); // 360
Console.WriteLine (FeetToInches (100)); // 1200
}

static int FeetToInches (int feet)
{
int inches = feet * 12;
return inches;
}
}

A method can receive input data from the caller by specifying parameters and output data
back to the caller by specifying a return type. We defined a method called FeetToInches that
has a parameter for inputting feet, and a return type for outputting inches:

static int FeetToInches (int feet) {...}

The literals 30 and 100 are the arguments passed to the FeetToInches method. The Main
method in our example has empty parentheses because it has no parameters, and is void
because it doesn’t return any value to its caller:

static void Main()

C# recognizes a method called Main as signaling the default entry point of execution. The Main
method may optionally return an integer (rather than void) in order to return a value to the
execution environment (where a nonzero value typically indicates an error). The Main method
can also optionally accept an array of strings as a parameter (that will be populated with any
arguments passed to the executable). For example:

static int Main (string[] args) {...}

NOTE

An array (such as string[]) represents a fixed number of elements of a particular type.
Arrays are specified by placing square brackets after the element type and are described in
“Arrays”.

Methods are one of several kinds of functions in C#. Another kind of function we used in our
example program was the * operator, which performs multiplication. There are also
constructors, properties, events, indexers, and finalizers.

In our example, the two methods are grouped into a class. A class groups function members and
data members to form an object-oriented building block. The console class groups members
that handle command-line input/output functionality, such as the writeLine method. Our Test
class groups two methods — the Main method and the FeetToInches method. A class is a kind
of type, which we will examine in “Type Basics”.

At the outermost level of a program, types are organized into namespaces. The using directive
was used to make the system namespace available to our application, to use the console

class. We could define all our classes within the Test Programs namespace, as follows:

using System;

namespace TestPrograms
{
class Test {...}
class Test2 {...}
}

The .NET Framework is organized into nested namespaces. For example, this is the namespace
that contains types for handling text:

using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully qualified
name, which is the type name prefixed with its namespace, such as
System.Text.StringBuilder.

Compilation

The C# compiler compiles source code, specified as a set of files with the .cs extension, into
an assembly. An assembly is the unit of packaging and deployment in .NET. An assembly can
be either an application or a library. A normal console or Windows application has a Main
method and is an .exe file. A library is a .dll and is equivalent to an .exe without an entry point.
Its purpose is to be called upon (referenced) by an application or by other libraries. The .NET
Framework is a set of libraries.

The name of the C# compiler is csc.exe. You can either use an IDE such as Visual Studio to
compile, or call csc manually from the command line. (The compiler is also available as a
library; see Chapter 27.) To compile manually, first save a program to a file such as
MyFirstProgram.cs, and then go to the command line and invoke csc (located in
%ProgramFiles(X86)%\msbuild\14.0\bin) as follows:

csc MyFirstProgram.cs

This produces an application named MyFirstProgram.exe.

WARNING

Peculiarly, .NET Framework 4.6 and 4.7 still ship with the C# 5 compiler. To obtain the C# 7
command-line compiler, you must install Visual Studio 2017 or MSBuild 15.

To produce a library (.d/l), do the following;

csc /target:library MyFirstProgram.cs

We explain assemblies in detail in Chapter 18.

Syntax

C# syntax is inspired by C and C++ syntax. In this section, we will describe C#’s elements of
syntax, using the following program:

using System;

class Test
{
static void Main ()
{
int x = 12 * 30;
Console.WriteLine (x);

Identifiers and Keywords
Identifiers are names that programmers choose for their classes, methods, variables, and so on.

These are the identifiers in our example program, in the order they appear:

System Test Main X Console WriteLine

An identifier must be a whole word, essentially made up of Unicode characters starting with a
letter or underscore. C# identifiers are case-sensitive. By convention, parameters, local
variables, and private fields should be in camel case (e.g., myvariable), and all other
identifiers should be in Pascal case (e.g., MyMethod).

Keywords are names that mean something special to the compiler. These are the keywords in
our example program:

using class static void int

Most keywords are reserved, which means that you can’t use them as identifiers. Here is the
full list of C# reserved keywords:

abstract do in protected true

as double int public try
base else interface readonly typeof
bool enum internal ref uint
break event is return ulong
byte explicit lock sbyte unchecked
case extern long sealed unsafe
catch false namespace short ushort
char finally new sizeof using
checked fixed null stackalloc virtual
class float object static void
const for operator string volatile
continue foreach out struct while
decimal goto override switch

default if params this

delegate implicit private throw

Avoiding conflicts

If you really want to use an identifier that clashes with a reserved keyword, you can do so by
qualifying it with the e prefix. For instance:

class class {...} // Illegal
class RQclass {...} // Legal

The ¢ symbol doesn’t form part of the identifier itself. So émyvariable is the same as

myVariable.

NOTE

The ¢ prefix can be useful when consuming libraries written in other .NET languages that
have different keywords.

Contextual keywords

Some keywords are contextual, meaning they can also be used as identifiers — without an ¢
symbol. These are:

add dynamic in orderby var
ascending equals into partial when
async from join remove where
await get let select yield
by global nameof set
descending group on value

With contextual keywords, ambiguity cannot arise within the context in which they are used.

Literals, Punctuators, and Operators

Literals are primitive pieces of data lexically embedded into the program. The literals we used
in our example program are 12 and 30.

Punctuators help demarcate the structure of the program. These are the punctuators we used in
our example program:

The braces group multiple statements into a statement block.

The semicolon terminates a statement. (Statement blocks, however, do not require a
semicolon.) Statements can wrap multiple lines:

Console.WriteLine
(1l +2+3+4+5+6+7+8+ 9+ 10);

An operator transforms and combines expressions. Most operators in C# are denoted with a
symbol, such as the multiplication operator, . We will discuss operators in more detail later in
this chapter. These are the operators we used in our example program:

0 =

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are used when the
method accepts no arguments. (Parentheses also have other purposes that we’ll see later in this
chapter.) An equals sign performs assignment. (The double equals sign, ==, performs equality
comparison, as we’ll see later.)

Comments

C# offers two different styles of source-code documentation: single-line comments and
multiline comments. A single-line comment begins with a double forward slash and continues
until the end of the line. For example:

int x = 3; // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For example:

int x = 3; /* This is a comment that
spans two lines */

Comments may embed XML documentation tags, explained in “XML Documentation” in
Chapter 4.

Type Basics

A type defines the blueprint for a value. In our example, we used two literals of type int with
values 12 and 30. We also declared a variable of type int whose name was x:

static void Main ()

{
int x = 12 * 30;
Console.WritelLine (x);

}

A variable denotes a storage location that can contain different values over time. In contrast, a
constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value, and the set of possible values
a variable can have, is determined by its type.

Predefined Type Examples

Predefined types are types that are specially supported by the compiler. The int type is a
predefined type for representing the set of integers that fit into 32 bits of memory, from —23! to
231-1, and is the default type for numeric literals within this range. We can perform functions
such as arithmetic with instances of the int type as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of characters,
such as “.NET” or “http.//oreilly.com”. We can work with strings by calling functions on them
as follows:

string message = "Hello world";
string upperMessage = message.ToUpper () ;
Console.WriteLine (upperMessage); // HELLO WORLD

int x = 2015;
message = message + x.ToString();
Console.WriteLine (message); // Hello world2015

http://oreilly.com

The predefined boo1 type has exactly two possible values: true and false. The bool type is
commonly used to conditionally branch execution flow based with an i f statement. For
example:

bool simpleVar = false;
if (simpleVar)
Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
Console.WriteLine ("This will print");

NOTE

In C#, predefined types (also referred to as built-in types) are recognized with a C# keyword.
The system namespace in the .NET Framework contains many important types that are not
predefined by C# (e.g., DateTime).

Custom Type Examples

Just as we can build complex functions from simple functions, we can build complex types
from primitive types. In this example, we will define a custom type named UnitConverter —
a class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter

{

int ratio; // Field
public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
public int Convert (int unit) {return unit * ratio; } // Method

}

class Test

{

static void Main ()
{

UnitConverter feetToInchesConverter = new UnitConverter (12);

UnitConverter milesToFeetConverter = new UnitConverter (5280);
Console.WritelLine (feetToInchesConverter.Convert (30)) // 360
Console.WriteLine (feetToInchesConverter.Convert (100)); // 1200
Console.WritelLine (feetToInchesConverter.Convert (
milesToFeetConverter.Convert (1))); // 63360

Members of a type

A type contains data members and function members. The data member of UnitConverter 18
the field called ratio. The function members of unitcConverter are the convert method and
the UnitConverter’s constructor.

Symmetry of predefined types and custom types

A beautiful aspect of C# is that predefined types and custom types have few differences. The
predefined int type serves as a blueprint for integers. It holds data — 32 bits — and provides
function members that use that data, such as Tostring. Similarly, our custom unitConverter

type acts as a blueprint for unit conversions. It holds data — the ratio — and provides function
members to use that data.

Constructors and instantiation

Data is created by instantiating a type. Predefined types can be instantiated simply by using a
literal such as 12 or "Hel1o wor1d". The new operator creates instances of a custom type. We
created and declared an instance of the Unitconverter type with this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is called to
perform initialization. A constructor is defined like a method, except that the method name and
return type are reduced to the name of the enclosing type:

public class UnitConverter

{

public UnitConverter (int unitRatio) { ratio = unitRatio; }

Instance versus static members

The data members and function members that operate on the instance of the type are called
instance members. The Unitconverter’s Convert method and the int’s ToString method
are examples of instance members. By default, members are instance members.

Data members and function members that don’t operate on the instance of the type, but rather on
the type itself, must be marked as static. The Test.Main and Console.WriteLine methods
are static methods. The console class is actually a static class, which means a/l its members
are static. You never actually create instances of a console — one console is shared across
the whole application.

Let’s contrast instance from static members. In the following code, the instance field Name
pertains to an instance of a particular panda, whereas Population pertains to the set of all
Panda instances:

public class Panda

{

public string Name; // Instance field
public static int Population; // Static field
public Panda (string n) // Constructor
{
Name = n; // Assign the instance field

Population = Population + 1; // Increment the static Population field
}
}

The following code creates two instances of the Panda, prints their names, and then prints the
total population:

using System;

class Test

{

static void Main ()

{

Panda pl = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (pl.Name); // Pan Dee
Console.WriteLine (p2.Name); // Pan Dah
Console.WriteLine (Panda.Population); // 2

Attempting to evaluate p1.Population Or Panda.Name Will generate a compile-time error.

The public keyword

The pub1ic keyword exposes members to other classes. In this example, if the name field in
pPanda was not marked as public, it would be private and the Test class could not access it.
Marking a member public is how a type communicates: “Here is what I want other types to
see — everything else is my own private implementation details.” In object-oriented terms, we
say that the public members encapsulate the private members of the class.

Conversions

C# can convert between instances of compatible types. A conversion always creates a new
value from an existing one. Conversions can be either implicit or explicit: implicit conversions
happen automatically, and explicit conversions require a cast. In the following example, we
implicitly convert an int to a 1ong type (Which has twice the bitwise capacity of an int) and
explicitly castan int to a short type (Which has half the capacity of an int):

int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit integer
short z = (short)x; // Explicit conversion to 16-bit integer

Implicit conversions are allowed when both of the following are true:

» The compiler can guarantee they will always succeed.

= No information is lost in conversion.!

Conversely, explicit conversions are required when one of the following is true:

» The compiler cannot guarantee they will always succeed.
» Information may be lost during conversion.

(If the compiler can determine that a conversion will a/ways fail, both kinds of conversion are
prohibited. Conversions that involve generics can also fail in certain conditions — see “Type
Parameters and Conversions” in Chapter 3.)

NOTE

The numeric conversions that we just saw are built into the language. C# also supports
reference conversions and boxing conversions (see Chapter 3) as well as custom conversions
(see “Operator Overloading” in Chapter 4). The compiler doesn’t enforce the aforementioned
rules with custom conversions, so it’s possible for badly designed types to behave otherwise.

Value Types Versus Reference Types
All C# types fall into the following categories:
= Value types

m Reference types
= Generic type parameters

= Pointer types

NOTE

In this section, we’ll describe value types and reference types. We’ll cover generic type
parameters in “Generics” in Chapter 3, and pointer types in “Unsafe Code and Pointers™ in
Chapter 4.

Value types comprise most built-in types (specifically, all numeric types, the char type, and the
bool type) as well as custom st ruct and enum types.

Reference types comprise all class, array, delegate, and interface types. (This includes the
predefined string type.)

The fundamental difference between value types and reference types is how they are handled in
memory.

Value types

The content of a value type variable or constant is simply a value. For example, the content of
the built-in value type, int, is 32 bits of data.

You can define a custom value type with the st ruct keyword (see Figure 2-1):

public struct Point { public int X; public int Y; }

or more tersely:

public struct Point { public int X, Y; }

Point struct

X Value / instance

1

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always copies the instance. For example:

static void Main ()
{
Point pl = new Point();
pl.X = 7;
Point p2 = pl; // Assignment causes copy

Console.WritelLine (pl.X); // 7
Console.WritelLine (p2.X); // 7

pl.X = 9; // Change pl.X

Console.WritelLine (pl.X); // 9
Console.WritelLine (p2.X); // 7

Figure 2-2 shows that p1 and p2 have independent storage.

Point struct
p p2
9 /

0 0

Figure 2-2. Assignment copies a value-type instance

Reference types

A reference type is more complex than a value type, having two parts: an object and the
reference to that object. The content of a reference-type variable or constant is a reference to
an object that contains the value. Here is the point type from our previous example rewritten
as a class, rather than a st ruct (shown in Figure 2-3):

public class Point { public int X, Y; }

Reference

Reference

Point class

Object

............................ Value / instance

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance. This allows
multiple variables to refer to the same object — something not ordinarily possible with value
types. If we repeat the previous example, but with point now a class, an operation to p1

affects p2:

static void Main ()

{

Point pl = new Point();

pl.X = 7;

Point p2 = pl;

Console.WriteLine (
Console.WriteLine (p

pl.X = 9;

Console.WriteLine (
Console.WriteLine (p

//

//
//

//
//

Copies pl reference

7
7

Change pl.X

9
9

Figure 2-4 shows that p1 and p2 are two references that point to the same object.

Point class

P
Reference | >

Reference 9

0

Figure 2-4. Assignment copies a reference

Null

A reference can be assigned the literal nu11, indicating that the reference points to no object:

class Point {...}

Point p = null;
Console.WriteLine (p == null); // True

// The following line generates a runtime error
// (a NullReferenceException is thrown) :
Console.WriteLine (p.X);

In contrast, a value type cannot ordinarily have a null value:

struct Point {...}

Point p = null; // Compile-time error
int x = null; // Compile-time error

NOTE

C# also has a construct called nullable types for representing value-type nulls (see “Nullable
Types” in Chapter 4).

Storage overhead

Value-type instances occupy precisely the memory required to store their fields. In this
example, point takes eight bytes of memory:

struct Point

int x; // 4 bytes
int y; // 4 bytes

NOTE

Technically, the CLR positions fields within the type at an address that’s a multiple of the
fields’ size (up to a maximum of eight bytes). Thus, the following actually consumes 16 bytes
of memory (with the seven bytes following the first field “wasted”):

struct A { byte b; long 1; }

You can override this behavior with the structrayout attribute (see “Mapping a Struct to
Unmanaged Memory”).

Reference types require separate allocations of memory for the reference and object. The
object consumes as many bytes as its fields, plus additional administrative overhead. The
precise overhead is intrinsically private to the implementation of the .NET runtime, but at
minimum, the overhead is eight bytes, used to store a key to the object’s type, as well as
temporary information such as its lock state for multithreading and a flag to indicate whether it
has been fixed from movement by the garbage collector. Each reference to an object requires an
extra four or eight bytes, depending on whether the .NET runtime is running on a 32- or 64-bit
platform.

Predefined Type Taxonomy
The predefined types in C# are:

Value types

= Numeric

Signed integer (sbyte, short, int, long)
Unsigned integer (byte, ushort, uint, ulong)
Real number (float, double, decimal)

u Logical (bool)

» Character (char)

Reference types

m String (string)

m Object (object)

Predefined types in C# alias Framework types in the system namespace. There is only a
syntactic difference between these two statements:

int 1 = 5;
System.Int32 i = 5;

The set of predefined value types excluding decima1 are known as primitive types in the CLR.
Primitive types are so called because they are supported directly via instructions in compiled
code, and this usually translates to direct support on the underlying processor. For example:

// Underlying hexadecimal representation

int 1 = 7; // 0x7
bool b = true; // 0x1
char ¢ = 'A'; // 0x41
float £ = 0.5f; // uses IEEE floating-point encoding

The system.IntPtr and system.UIntPtr types are also primitive (see Chapter 25).

Numeric Types
C# has the predefined numeric types shown in Table 2-1.

Table 2-1. Predefined numeric types in C#

C# type System type Suffix Size Range

Integral — signed

sbyte SByte 8 bits 7 to 271

short Intlé 16bits 21502151
int Int32 2 bits 231102311
long Intéd L 64bits 203102031

Integral — unsigned

byte Byte 8bits 0to28-1

ushort UIntlé 16 bits 0102161

wint UInt32 v 32bits 0t02321

ulong UInt64 UL 64 bits 0 to 2644

Real

float Single F R2bits =+ (~107% to 108)
double Double b 64bits = (~107324 0 10303
decimal Decimal M 128 bits % (~1028 0 1023)

Of the integral types, int and 1ong are first-class citizens and are favored by both C# and the
runtime. The other integral types are typically used for interoperability or when space
efficiency is paramount.

Of the real number types, float and double are called floating-point types® and are typically

used for scientific and graphical calculations. The decimal type is typically used for financial
calculations, where base-10-accurate arithmetic and high precision are required.

Numeric Literals
Integral-type literals can use decimal or hexadecimal notation; hexadecimal is denoted with
the 0x prefix. For example:

int x = 127;
long y = Ox7F;

From C# 7, you can insert an underscore anywhere inside a numeric literal to make it more
readable:

int million = 1 000 000;
C# 7 also lets you specify numbers in binary with the oo prefix:

var b = 0b1010 1011 1100 1101 1110 1111;

Real literals can use decimal and/or exponential notation. For example:

double d = 1.5;
double million = 1E06;
Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral type:

» [fthe literal contains a decimal point or the exponential symbol (£), itis a double.

» Otherwise, the literal’s type is the first type in this list that can fit the literal’s value: int,
uint, long, and ulong.

For example:

Console.WriteLine (1.0.GetType()); // Double (double)
Console.WriteLine (1E06.GetType()); // Double (double)
Console.WriteLine (1.GetType()); // Int32 (int)
Console.WriteLine (0xF0000000.GetType()); // UInt32 (uint)
Console.WriteLine (0x100000000.GetType()); // Int64 (long)

Numeric suffixes
Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower- or
uppercase, and are as follows:

Category C# type Example

F float float £ = 1.0F;

@)

double double d = 1D;

M decimal decimal d = 1.0M;
U uint uint 1 = 1U;
L long long i = 1L;

UL ulong ulong i = 1UL;

The suffixes u and 1. are rarely necessary, because the uint, 1ong, and ulong types can nearly
always be either inferred or implicitly converted from int:

long i = 5; // Implicit lossless conversion from int literal to long

The b suffix is technically redundant, in that all literals with a decimal point are inferred to be
double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The r and v suffixes are the most useful and should always be applied when specifying f1oat
or decimal literals. Without the r suffix, the following line would not compile, because 4.5
would be inferred to be of type doub1e, which has no implicit conversionto float:

float £ = 4.5F;
The same principle is true for a decimal literal:

decimal d = -1.23M; // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section.

Numeric Conversions

Converting between integral types

Integral type conversions are implicit when the destination type can represent every possible
value of the source type. Otherwise, an explicit conversion is required. For example:

int x = 12345; // int is a 32-bit integer
long y = X; // Implicit conversion to 64-bit integral type
short z = (short)x; // Explicit conversion to 16-bit integral type

Converting between floating-point types

A float can be implicitly converted to a double, since a double can represent every possible
value of a f1oat. The reverse conversion must be explicit.

Converting between floating-point and integral types

All integral types may be implicitly converted to all floating-point types:

int 1

=1;
float £ =

i;
The reverse conversion must be explicit:

int 12 = (int) £;

NOTE

When you cast from a floating-point number to an integral type, any fractional portion is
truncated; no rounding is performed. The static class System.cConvert provides methods that

round while converting between various numeric types (see Chapter 6).

Implicitly converting a large integral type to a floating-point type preserves magnitude but may
occasionally lose precision. This is because floating-point types always have more magnitude
than integral types, but may have less precision. Rewriting our example with a larger number
demonstrates this:

int i1 = 100000001;
float £ = 11; // Magnitude preserved, precision lost
int 12 = (int) f; // 100000000

Decimal conversions

All integral types can be implicitly converted to the decimal type, since a decimal can
represent every possible C# integral-type value. All other numeric conversions to and from a
decimal type must be explicit.

Arithmetic Operators

The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8- and 16-
bit integral types:

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder after division

Increment and Decrement Operators

The increment and decrement operators (++, --) increment and decrement numeric types by 1.
The operator can either follow or precede the variable, depending on whether you want its
value before or after the increment/decrement. For example:

int x = 0, y = 0;
Console.WriteLine (x++); // Outputs 0; x is now 1
Console.WriteLine (++y); // Outputs 1; y is now 1

Specialized Operations on Integral Types

(The integral types are int, uint, long, ulong, short, ushort, byte and sbyte.)
Division

Division operations on integral types always truncate remainders (round toward zero).

Dividing by a variable whose value is zero generates a runtime error (a
DivideByZeroException)

int a =2/ 3; // 0
int b = 0;
int ¢ =5 / b; // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.

Overflow

At runtime, arithmetic operations on integral types can overflow. By default, this happens
silently — no exception is thrown, and the result exhibits “wraparound” behavior, as though the
computation was done on a larger integer type and the extra significant bits discarded. For
example, decrementing the minimum possible int value results in the maximum possible int
value:

int a = int.MinValue;
a==;
Console.WriteLine (a == int.MaxValue); // True

Overflow check operators

The checked operator tells the runtime to generate an overflowException rather than
overflowing silently when an integral-type expression or statement exceeds the arithmetic
limits of that type. The checked operator affects expressions with the ++, --, +, - (binary and
unary), *, /, and explicit conversion operators between integral types.

NOTE

The checked operator has no effect on the double and float types (which overflow to special
“infinite” values, as we’ll see soon) and no effect on the decimal type (which is always
checked).

checked can be used around either an expression or a statement block. For example:

int a = 1000000;

int b = 1000000;

int ¢ = checked (a * Db); // Checks Jjust the expression.
checked // Checks all expressions

{ // in statement block.

You can make arithmetic overflow checking the default for all expressions in a program by
compiling with the /checked+ command-line switch (in Visual Studio, go to Advanced Build
Settings). If you then need to disable overflow checking just for specific expressions or
statements, you can do so with the unchecked operator. For example, the following code will
not throw exceptions — even if compiled with /checked+:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions

Regardless of the /checked compiler switch, expressions evaluated at compile time are
always overflow-checked — unless you apply the unchecked operator:

int x = int.MaxValue + 1; // Compile-time error

int y = unchecked (int.MaxValue + 1); // No errors

Bitwise operators

C# supports the following bitwise operators:

Operator Meaning Sample expression Result

~ Complement ~0xfU OxfEEEEEEOU
& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

2 Exclusive Or 0xff00 ~ 0x0ff0 0xFOFO0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integral Types

The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types lack their
own arithmetic operators, so C# implicitly converts them to larger types as required. This can
cause a compile-time error when trying to assign the result back to a small integral type:

short x =1, v = 1;
short z = x + y; // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be performed. This
means the result is also an int, which cannot be implicitly cast back to a short (because it
could cause loss of data). To make this compile, we must add an explicit cast:

short z = (short) (x + y); // OK

Special Float and Double Values

Unlike integral types, floating-point types have values that certain operations treat specially.
These special values are NaN (Not a Number), +o0, —o0, and —0. The f1oat and double
classes have constants for naN, +oo, and —oo, as well as other values (Maxvalue, Minvalue,
and Epsilon). For example:

Console.WritelLine (double.NegativeInfinity); // -Infinity

The constants that represent special values for double and f1oat are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

o0 double.PositiveInfinity float.PositiveInfinity
—00 double.NegativeInfinity float.NegativeInfinity
—0 -0.0 -0.0f

Dividing a nonzero number by zero results in an infinite value. For example:

Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (-1.0 / 0.0); // —-Infinity
Console.WriteLine (1.0 / -0.0); // -Infinity

Console.WriteLine (-1.0 / -0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN. For example:

): // NaN
) — (1.0 / 0.0)); // NaN

Console.WriteLine (O.

0/ 0.0
Console.WriteLine ((1.0 / 0.0

When using ==, a NaN value is never equal to another value, even another NaN value:

Console.WriteLine (0.0 / 0.0 == double.NaN) ; // False

To test whether a value is NaN, you must use the f1oat.IsNaN or double.IsNaN method:

Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True

When using object .Equals, however, two NaN values are equal:

Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN)) ; // True

NOTE

NaNs are sometimes useful in representing special values. In WPF, double.nan represents a
measurement whose value is “Automatic”. Another way to represent such a value is with a
nullable type (Chapter 4); another is with a custom struct that wraps a numeric type and adds
an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported natively
by almost all processors. You can find detailed information on the behavior of these types at
hitp://www.ieee.org.

double Versus decimal

double is useful for scientific computations (such as computing spatial coordinates). decimal
is useful for financial computations and values that are “man-made” rather than the result of
real-world measurements. Here’s a summary of the differences:

Category double decimal
Internal representation Base 2 Base 10

Decimal precision 15-16 significant figures 28-29 significant figures

Range +(~10324 16 ~10308) (<1028 10 ~1028)
Special values +0, —0, +oo, —o0, and NaN None
Speed Native to processor Non-native to processor (about 10 times slower than double)

Real Number Rounding Errors

float and double internally represent numbers in base 2. For this reason, only numbers
expressible in base 2 are represented precisely. Practically, this means most literals with a
fractional component (which are in base 10) will not be represented precisely. For example:

http://www.ieee.org

float tenth = 0.1f; // Not quite 0.1
float one = 1f;
Console.WriteLine (one - tenth * 10f); // -1.490116E-08

This is why f1oat and double are bad for financial calculations. In contrast, decimal works
in base 10 and so can precisely represent numbers expressible in base 10 (as well as its
factors, base 2 and base 5). Since real literals are in base 10, decimal can precisely represent
numbers such as 0.1. However, neither double nor decimal can precisely represent a
fractional number whose base 10 representation is recurring:

decimal m = 1M / 6M; // 0.1666666666666666666666666667M
double d = 1.0 / 6.0; // 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = mtm+m+mt+m+m; // 1.0000000000000000000000000002M
double notQuiteWholeD = d+d+d+d+d+d; // 0.99999999999999989

which breaks equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M) ; // False
Console.WriteLine (notQuiteWholeD < 1.0); // True

Boolean Type and Operators

C#’s boo1 type (aliasing the system.Boolean type) is a logical value that can be assigned the
literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one byte of
memory, since this is the minimum chunk that the runtime and processor can efficiently work
with. To avoid space inefficiency in the case of arrays, the Framework provides a Bitarray
class inthe system.Collections namespace that is designed to use just one bit per Boolean
value.

Bool Conversions

No casting conversions can be made from the boo1l type to numeric types or vice versa.

Equality and Comparison Operators

—— and ! = test for equality and inequality of any type, but always return a boo1l value.? Value
types typically have a very simple notion of equality:

int x = 1;

int v = 2;
int z = 1;
Console.WriteLine (x == y); // False
Console.WritelLine (x == z); // True

For reference types, equality, by default, is based on reference, as opposed to the actual value
of the underlying object (more on this in Chapter 6):

public class Dude

{

public string Name;
public Dude (string n) { Name = n; }

}

Dude dl = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (dl == d2); // False

Dude d3 = di;
Console.WriteLine (dl == d3); // True
The equality and comparison operators, ==, ! =, <, >, >=, and <=, work for all numeric types,

but should be used with caution with real numbers (as we saw in “Real Number Rounding
Errors™). The comparison operators also work on enum type members, by comparing their
underlying integral-type values. We describe this in “Enums” in Chapter 3.

We explain the equality and comparison operators in greater detail in “Operator Overloading”
in Chapter 4, and in “Equality Comparison” and “Order Comparison”.

Conditional Operators

The ss and | | operators test for and and or conditions. They are frequently used in conjunction
with the ! operator, which expresses not. In this example, the UseUmbre11a method returns
true if it’s rainy or sunny (to protect us from the rain or the sun), as long as it’s not also windy
(since umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{

return !windy && (rainy || sunny);

}

The ss and | | operators short-circuit evaluation when possible. In the preceding example, if it
is windy, the expression (rainy || sunny) is not even evaluated. Short-circuiting is
essential in allowing expressions such as the following to run without throwing a

NullReferenceException:

if (sb != null && sb.Length > 0)

The s and | operators also test for and and or conditions:

return !windy & (rainy | sunny);

The difference is that they do not short-circuit. For this reason, they are rarely used in place of
conditional operators.

NOTE

Unlike in C and C++, the &« and | operators perform (non-short-circuiting) Boolean
comparisons when applied to bool expressions. The & and | operators perform bitwise
operations only when applied to numbers.

Conditional operator (ternary operator)

The conditional operator (more commonly called the ternary operator, as it’s the only

operator that takes three operands) has the formq » a : b, where if condition g is true, a is
evaluated, else b is evaluated. For example:

static int Max (int a, int Db)
{
return (a > b) ? a : b;

}

The conditional operator is particularly useful in LINQ queries (Chapter 8).

Strings and Characters

C#’s char type (aliasing the system.Char type) represents a Unicode character and occupies
2 bytes. A char literal is specified inside single quotes:

char ¢ = 'A'; // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally. An
escape sequence is a backslash followed by a character with a special meaning. For example:

char newLine = '\n';
char backSlash = "\\';

The escape sequence characters are shown in Table 2-2.

Table 2-2. Escape
sequence characters

Char Meaning Value

\! Single quote 0x0027
\" Double quote 0x0022
\\ Backslash 0x005C
\o Nul 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A

\r Carriage return 0x000D
\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its four-digit
hexadecimal code:

char copyrightSymbol = '\uO0A9';
char omegaSymbol = '"\u03a9';
char newLine = '"\u000A";

Char Conversions

An implicit conversion from a char to a numeric type works for the numeric types that can
accommodate an unsigned short. For other numeric types, an explicit conversion is required.

String Type

C#’s string type (aliasing the system.string type, covered in depth in Chapter 6) represents
an immutable sequence of Unicode characters. A string literal is specified inside double
quotes:

string a = "Heat";

NOTE

string is a reference type, rather than a value type. Its equality operators, however, follow
value-type semantics:

string a = "test";
string b = "test";
Console.Write (a == b); // True

The escape sequences that are valid for char literals also work inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it twice:

string al = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is prefixed
with ¢ and does not support escape sequences. The following verbatim string is identical to the
preceding one:

string a2 = @"\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines:

string escaped = "First Line\r\nSecond Line";
string verbatim = Q@"First Line
Second Line";

// True if your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:
string xml = @"<customer id=""123""></customer>";

String concatenation

The + operator concatenates two strings:

string s = "a" + "b";

One of the operands may be a nonstring value, in which case Tostring is called on that value.
For example:

string s = "a" + 5; // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is to use the
System.Text.StringBuilder type (described in Chapter 6).

String interpolation (C# 6)

A string preceded with the s character is called an interpolated string. Interpolated strings can
include expressions inside braces:

int x = 4;
Console.Write ($"A square has {x} sides"); // Prints: A square has 4 sides

Any valid C# expression of any type can appear within the braces, and C# will convert the
expression to a string by calling its Tostring method or equivalent. You can change the
formatting by appending the expression with a colon and a format string (format strings are
described in “String.Format and composite format strings”):

string s = $"255 in hex is {byte.MaxValue:X2}"; // X2 = 2-digit Hexadecimal
// Evaluates to "255 in hex is FF"

Interpolated strings must complete on a single line, unless you also specify the verbatim string
operator. Note that the $ operator must come before @:

int x = 2;
string s =
x} lines";

$@"this spans {

To include a brace literal in an interpolated string, repeat the desired brace character.

String comparisons

string does not support < and > operators for comparisons. You must use the string’s
compareTo method, described in Chapter 6.

Arrays

An array represents a fixed number of variables (called elements) of a particular type. The
elements in an array are always stored in a contiguous block of memory, providing highly
efficient access.

An array is denoted with square brackets after the element type. For example:

char[] vowels = new char[5]; // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels [0]
vowels[1]
vowels[2]
vowels [3]

LI A | I
O FH 0 o

Ne Ne Ne o Se

vowels[4] = 'u';
Console.WriteLine (vowels[1]); // e

This prints “e” because array indexes start at 0. We can use a for loop statement to iterate
through each element in the array. The for loop in this example cycles the integer i from o to
4:

for (int 1 = 0; i < vowels.Length; i++)
Console.Write (vowels[i]); // aeiou

The Length property of an array returns the number of elements in the array. Once an array has
been created, its length cannot be changed. The system.collection namespace and
subnamespaces provide higher-level data structures, such as dynamically sized arrays and
dictionaries.

An array initialization expression lets you declare and populate an array in a single step:

char([] vowels = new char[] {'a','e','i','o','u'};
or simply:
char[] vowels = {'a','e','i','0o','u'};

All arrays inherit from the system.array class, providing common services for all arrays.
These members include methods to get and set elements regardless of the array type, and are
described in Chapter 7.

Default Element Initialization

Creating an array always preinitializes the elements with default values. The default value for a
type is the result of a bitwise zeroing of memory. For example, consider creating an array of
integers. Since int is a value type, this allocates 1,000 integers in one contiguous block of
memory. The default value for each element will be O:

int[] a = new int[1000];
Console.Write (a[123]); // 0
Value types versus reference types

Whether an array element type is a value type or a reference type has important performance
implications. When the element type is a value type, each element value is allocated as part of
the array. For example:

public struct Point { public int X, Y; }

Point[]
int x =

= new Point[1000];

a
a[500].X; // 0

Had point been a class, creating the array would have merely allocated 1,000 null references:
public class Point { public int X, Y; }

Point[] a = new Point[1000];

int x = a[500].X; // Runtime error, NullReferenceException

To avoid this error, we must explicitly instantiate 1,000 points after instantiating the array:

Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
ali] = new Point(); // Set array element i with new point

An array itself'is always a reference type object, regardless of the element type. For instance,
the following is legal:

int[] a = null;

Multidimensional Arrays

Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular arrays
represent an n-dimensional block of memory, and jagged arrays are arrays of arrays.
Rectangular arrays

Rectangular arrays are declared using commas to separate each dimension. The following

declares a rectangular two-dimensional array, where the dimensions are 3 by 3:

int[,] matrix = new int[3,3];

The cetLength method of an array returns the length for a given dimension (starting at 0):

for (int 1 = 0
for (int j =
matrix[i,J

; 1 < matrix.GetLength(0); i++)
0; J < matrix.GetLength(1l); j++)
=1i*3+ 3;

]
A rectangular array can be initialized as follows (to create an array identical to the previous

example):

int[,] matrix = new int/[,]
{

{Olllz}l

{3,4,5},

{6,7,8}

}i

Jagged arrays

Jagged arrays are declared using successive square brackets to represent each dimension. Here

is an example of declaring a jagged two-dimensional array, where the outermost dimension is
3:

int[][] matrix = new int[3][];

NOTE

Interestingly, this iS new int[3][] and not new int[][3]. Eric Lippert has written an excellent
article on why this is so: see Attp://albahari.com/jagged.

http://albahari.com/jagged

The inner dimensions aren’t specified in the declaration because, unlike a rectangular array,
each inner array can be an arbitrary length. Each inner array is implicitly initialized to null
rather than an empty array. Each inner array must be created manually:

for (int 1 = 0; i < matrix.Length; i++)
{
matrix[i] = new int[3]; // Create inner array
for (int j = 0; j < matrix[i].Length; j++)
matrix[i] [J] i* 3+ 3;

A jagged array can be initialized as follows (to create an array identical to the previous
example with an additional element at the end):

int[][] matrix = new int[] []
{

new int[] {0,1,2},

new int[] {3,4,5},

new int[] {6,7,8,9}
}i

Simplified Array Initialization Expressions

There are two ways to shorten array initialization expressions. The first is to omit the new
operator and type qualifications:

char[] vowels = {'a','e','i','0o','u'};

int[,] rectangularMatrix =
{

{0,1,2},

{3,4,5},

{6,7,8}

}i

int[][] jaggedMatrix =

{
new int[] {0,1,2},
new int[] {3,4,5},
new int[] {6,7,8}

}i

The second approach is to use the var keyword, which tells the compiler to implicitly type a
local variable:

var i 3; // i is implicitly of type int
var s = "sausage"; // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,] // rectMatrix is implicitly of type int[,]
{
{01112}1
{3,4,5},
{6,7,8}
}i
var jaggedMat = new int[][] // jaggedMat is implicitly of type int[][]

{
new int[] {0,1,2},
new int[] {3,4,5},
new int[] {6,7,8}
}i

Implicit typing can be taken one stage further with arrays: you can omit the type qualifier after
the new keyword and have the compiler infer the array type:

var vowels = new[] {'a','e','i','o','u'}; // Compiler infers char[]

For this to work, the elements must all be implicitly convertible to a single type (and at least
one of the elements must be of that type, and there must be exactly one best type). For example:

var x = new[] {1,10000000000}; // all convertible to long

Bounds Checking

All array indexing is bounds-checked by the runtime. An IndexOutOfRangeException 18
thrown if you use an invalid index:

int[] arr = new int[3];
arr(3] = 1; // IndexOutOfRangeException thrown

As with Java, array bounds checking is necessary for type safety and simplifies debugging.

NOTE

Generally, the performance hit from bounds checking is minor, and the JIT (Just-In-Time)
compiler can perform optimizations, such as determining in advance whether all indexes will
be safe before entering a loop, thus avoiding a check on each iteration. In addition, C#
provides “unsafe” code that can explicitly bypass bounds checking (see “Unsafe Code and
Pointers” in Chapter 4).

Variables and Parameters

A variable represents a storage location that has a modifiable value. A variable can be a local
variable, parameter (value, ref, or out), field (instance or static), or array element.

The Stack and the Heap

The stack and the heap are the places where variables and constants reside. Each has very
different lifetime semantics.

Stack

The stack is a block of memory for storing local variables and parameters. The stack logically
grows and shrinks as a function is entered and exited. Consider the following method (to avoid
distraction, input argument checking is ignored):

static int Factorial (int x)
{
if (x == 0) return 1;
return x * Factorial (x-1);

}

This method is recursive, meaning that it calls itself. Each time the method is entered, a new

int is allocated on the stack, and each time the method exits, the int is deallocated.

Heap

The heap is a block of memory in which objects (i.e., reference-type instances) reside.
Whenever a new object is created, it is allocated on the heap, and a reference to that object is
returned. During a program’s execution, the heap starts filling up as new objects are created.
The runtime has a garbage collector that periodically deallocates objects from the heap, so
your program does not run out of memory. An object is eligible for deallocation as soon as it’s
not referenced by anything that’s itself “alive.”

In the following example, we start by creating a stringBuilder object referenced by the
variable ref1, and then write out its content. That StringBuilder object is then immediately
eligible for garbage collection, because nothing subsequently uses it.

Then, we create another stringBuilder referenced by variable ref2, and copy that reference
to ref3. Even though ref2 is not used after that point, re £3 keeps the same stringBuilder
object alive — ensuring that it doesn’t become eligible for collection until we’ve finished
using ref3.

using System;
using System.Text;

class Test
{
static void Main ()
{
StringBuilder refl = new StringBuilder ("objectl");
Console.WriteLine (refl);
// The StringBuilder referenced by refl is now eligible for GC.

StringBuilder ref2 new StringBuilder ("object2");
StringBuilder ref3 = ref2;
// The StringBuilder referenced by ref2 is NOT yet eligible for GC.

Console.WritelLine (ref3); // object2

Value-type instances (and object references) live wherever the variable was declared. If the
instance was declared as a field within a class type, or as an array element, that instance lives
on the heap.

NOTE

You can’t explicitly delete objects in C#, as you can in C++. An unreferenced object is
eventually collected by the garbage collector.

The heap also stores static fields. Unlike objects allocated on the heap (which can get garbage-
collected), these live until the application domain is torn down.

Definite Assignment

C# enforces a definite assignment policy. In practice, this means that outside of an unsafe
context, it’s impossible to access uninitialized memory. Definite assignment has three

implications:

» [ocal variables must be assigned a value before they can be read.

= Function arguments must be supplied when a method is called (unless marked as optional —
see “Optional parameters”).

» All other variables (such as fields and array elements) are automatically initialized by the
runtime.

For example, the following code results in a compile-time error:

static void Main ()
{
int x;
Console.WritelLine (x); // Compile-time error

}

Fields and array elements are automatically initialized with the default values for their type.
The following code outputs 0, because array elements are implicitly assigned to their default
values:

static void Main ()
{
int[] ints = new int[2];
Console.WriteLine (ints([0]); // 0
}

The following code outputs 0, because fields are implicitly assigned a default value:

class Test

{
static int x;
static void Main() { Console.WriteLine (x); } // 0

}

Default Values

All type instances have a default value. The default value for the predefined types is the result
of a bitwise zeroing of memory:

Type Default value
All reference types null

All numeric and enum types 0

char type "\0'

bool type false

You can obtain the default value for any type with the default keyword (in practice, this is
useful with generics, which we’ll cover in Chapter 3):

decimal d = default (decimal);

The default value in a custom value type (i.e., st ruct) is the same as the default value for each
field defined by the custom type.

Parameters

A method has a sequence of parameters. Parameters define the set of arguments that must be
provided for that method. In this example, the method Foo has a single parameter named p, of

type int:

static void Foo (int p)

{
p=p+ 1; // Increment p by 1
Console.WriteLine (p); // Write p to screen

}

static void Main ()

{
Foo (8); // Call Foo with an argument of 8
}

You can control how parameters are passed with the ref and out modifiers:

Parameter modifier Passed by Variable must be definitely assigned

(None) Value Going in
ref Reference Going in
out Reference Going out

Passing arguments by value

By default, arguments in C# are passed by value, which is by far the most common case. This
means a copy of the value is created when passed to the method:

class Test

{
static void Foo (int p)
{
p=p+ 1; // Increment p by 1
Console.WritelLine (p); // Write p to screen

}

static void Main ()

{
int x = 8;
Foo (x); // Make a copy of x
Console.WriteLine (x); // x will still be 8

Assigning p a new value does not change the contents of %, since p and x reside in different
memory locations.

Passing a reference-type argument by value copies the reference, but not the object. In the
following example, Foo sees the same stringBuilder object that Main instantiated, but has an
independent reference to it. In other words, sb and foosB are separate variables that reference
the same stringBuilder object:

class Test
{
static void Foo (StringBuilder fooSB)
{
fooSB.Append ("test");
fooSB = null;

static void Main ()
{
StringBuilder sb = new StringBuilder();
Foo (sb);
Console.WriteLine (sb.ToString()); // test

Because foosB is a copy of a reference, setting it to nu11 doesn’t make sb null. (If, however,
foosr was declared and called with the re f modifier, sb would become null.)

The ref modifier

To pass by reference, C# provides the re f parameter modifier. In the following example, p and
x refer to the same memory locations:

class Test
{
static void Foo (ref int p)
{
p=p+1 // Increment p by 1
Console.WriteLine (p); // Write p to screen

}

static void Main ()

{

int x = 8;
Foo (ref x); // Ask Foo to deal directly with x
Console.WriteLine (x); // x is now 9

Now assigning p a new value changes the contents of x. Notice how the re £ modifier is

required both when writing and when calling the method.* This makes it very clear what’s
going on.

The ref modifier is essential in implementing a swap method (later, in “Generics” in
Chapter 3, we will show how to write a swap method that works with any type):

class Test
{
static void Swap (ref string a, ref string b)
{
string temp = a;
a = b;
b = temp;
}

static void Main ()

{
string x = "Penn";
string y = "Teller";
Swap (ref x, ref y);
Console.WriteLine (x);

Console.WriteLine (y);

// Teller
// Penn

NOTE

A parameter can be passed by reference or by value, regardless of whether the parameter
type is a reference type or a value type.

The out modifier
An out argument is like a re f argument, except it:

= Need not be assigned before going into the function
= Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a method. For
example:

class Test
{
static void Split (string name, out string firstNames,
out string lastName)
{
int i = name.LastIndexOf (' ');
firstNames = name.Substring (0, 1i);
lastName = name.Substring (i + 1);

}

static void Main ()

{
string a, b;
Split ("Stevie Ray Vaughan", out a, out b);
Console.WriteLine (a); // Stevie Ray
Console.WriteLine (b); // Vaughan

Like a ref parameter, an out parameter is passed by reference.

Out variables and discards (C# 7)

From C# 7, you can declare variables on the fly when calling methods with out parameters.
We can shorten the Main method in our preceding example as follows:

static void Main ()

{
Split ("Stevie Ray Vaughan", out string a, out string b);
Console.WriteLine (a); // Stevie Ray
Console.WriteLine (b); // Vaughan

When calling methods with multiple out parameters, sometimes you’re not interested in
receiving values from all the parameters. In such cases, you can “discard” the ones you’re
uninterested in with an underscore:

Split ("Stevie Ray Vaughan", out string a, out _); // Discard the 2nd param
Console.WriteLine (a);

In this case, the compiler treats the underscore as a special symbol, called a discard. You can
include multiple discards in a single call. Assuming someBigMethod has been defined with
seven out parameters, we can ignore all but the fourth as follows:

SomeBigMethod (out , out , out , out int x, out , out , out);

For backward compatibility, this language feature will not take effect if a real underscore

variable is in scope:

string _;
Split ("Stevie Ray Vaughan", out string a, _); // Will not compile

Implications of passing by reference

When you pass an argument by reference, you alias the storage location of an existing variable
rather than create a new storage location. In the following example, the variables x and y
represent the same instance:

class Test

{
static int x;

static void Main() { Foo (out x); }

static void Foo (out int vy)

{

Console.WriteLine (Xx); // x is 0
y = 1; // Mutate y
Console.WriteLine (x); // x is 1

The params modifier

The params parameter modifier may be specified on the last parameter of a method so that the
method accepts any number of arguments of a particular type. The parameter type must be
declared as an array. For example:

class Test

{

static int Sum (params int[] ints)
{
int sum = 0;
for (int i = 0; i < ints.Length; i++)
sum += ints[i]; // Increase sum by ints[i]
return sum;

}

static void Main ()

{
int total = Sum (1, 2, 3, 4);
Console.WriteLine (total); // 10

You can also supply a params argument as an ordinary array. The first line inMain is
semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4 });

Optional parameters

From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional
parameters. A parameter is optional if it specifies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

Optional parameters may be omitted when calling the method:

Foo () ; // 23

The default argument of 23 is actually passed to the optional parameter x — the compiler
bakes the value 23 into the compiled code at the calling side. The preceding call to Foo is
semantically identical to:

Foo (23);

because the compiler simply substitutes the default value of an optional parameter wherever it
is used.

WARNING

Adding an optional parameter to a public method that’s called from another assembly requires
recompilation of both assemblies — just as though the parameter was mandatory.

The default value of an optional parameter must be specified by a constant expression, or a
parameterless constructor of a value type. Optional parameters cannot be marked with ref or

out.

Mandatory parameters must occur before optional parameters in both the method declaration
and the method call (the exception is with params arguments, which still always come last). In
the following example, the explicit value of 1 is passed to x, and the default value of 0 is
passed to y:

void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test ()

{
Foo (1) ; // 1, 0
}

To do the converse (pass a default value to x and an explicit value to y) you must combine
optional parameters with named arguments.

Named arguments

Rather than identifying an argument by position, you can identify an argument by name. For
example:

void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

void Test ()

{
Foo (x:1, y:2); // 1, 2
}

Named arguments can occur in any order. The following calls to Foo are semantically
identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

NOTE

A subtle difference is that argument expressions are evaluated in the order in which they
appear at the calling site. In general, this makes a difference only with interdependent side-
effecting expressions such as the following, which writes o, 1:

int a = 0;
Foo (y: ++a, x: —--a); // ++a is evaluated first

Of course, you would almost certainly avoid writing such code in practice!

You can mix named and positional arguments:

Foo (1, y:2);

However, there is a restriction: positional arguments must come before named arguments. So
we couldn’t call Foo like this:

Foo (x:1, 2); // Compile-time error

Named arguments are particularly useful in conjunction with optional parameters. For instance,
consider the following method:

void Bar (int a = 0, int b = 0, int ¢ =0, int d = 0) { ... }
We can call this supplying only a value for d as follows:

Bar (d:3);

This is particularly useful when calling COM APIs, and is discussed in detail in “Native and
COM Interoperability”.

Ref Locals (C# 7)

C# 7 adds an esoteric feature, whereby you can define a local variable that references an
element in an array or field in an object:

int[] numbers = { 0, 1, 2, 3, 4 };
ref int numRef = ref numbers [2];

In this example, nunref is a reference to the numbers [2]. When we modify numre £, we
modify the array element:

numRef *= 10;
Console.WriteLine (numRef); // 20
Console.WriteLine (numbers [2]); // 20

The target for a ref local must be an array element, field, or local variable; it cannot be a
property (Chapter 3). Ref locals are intended for specialized micro-optimization scenarios,
and are typically used in conjunction with ref returns.

Ref Returns (C# 7)

You can return a ref local from a method. This is called a ref return:

static string X = "0ld Value";
static ref string GetX() => ref X; // This method returns a ref

static void Main ()

{

ref string xRef = ref GetX(); // Assign result to a ref local
xRef = "New Value";
Console.WriteLine (X); // New Value

var — Implicitly Typed Local Variables

It is often the case that you declare and initialize a variable in one step. If the compiler is able
to infer the type from the initialization expression, you can use the keyword var (introduced in
C# 3.0) in place of the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to:

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello"; // Compile-time error; x is of type int

NOTE

var can decrease code readability in the case when you can t deduce the type purely by
looking at the variable declaration. For example:

Random r = new Random() ;
var x = r.Next();

What type is x?

In “Anonymous Types” in Chapter 4, we will describe a scenario where the use of var is
mandatory.

Expressions and Operators

An expression essentially denotes a value. The simplest kinds of expressions are constants and
variables. Expressions can be transformed and combined using operators. An operator takes

one or more input operands to output a new expression.

Here is an example of a constant expression:

12

We can use the * operator to combine two operands (the literal expressions 12 and 30), as
follows:

12 * 30

Complex expressions can be built because an operand may itself be an expression, such as the
operand (12 * 30) inthe following example:

1+ (12 * 30)

Operators in C# can be classed as unary, binary, or ternary — depending on the number of
operands they work on (one, two, or three). The binary operators always use infix notation,
where the operator is placed between the two operands.

Primary Expressions

Primary expressions include expressions composed of operators that are intrinsic to the basic
plumbing of the language. Here is an example:

Math.Log (1)

This expression is composed of two primary expressions. The first expression performs a
member-lookup (with the . operator), and the second expression performs a method call (with
the () operator).

Void Expressions
A void expression is an expression that has no value. For example:

Console.WriteLine (1)

A void expression, since it has no value, cannot be used as an operand to build more complex
expressions:

1 + Console.WriteLine (1) // Compile-time error

Assignment Expressions

An assignment expression uses the = operator to assign the result of another expression to a
variable. For example:

An assignment expression is not a void expression — it has a value of whatever was assigned,
and so can be incorporated into another expression. In the following example, the expression

assigns 2 to x and 10 to y:

The compound assignment operators are syntactic shortcuts that combine assignment with
another operator. For example:

X * 2
x << 1

X *= 2 // equivalent to x
x <<= 1 // equivalent to x

(A subtle exception to this rule is with events, which we describe in Chapter 4: the += and -=
operators here are treated specially and map to the event’s add and remove accessors.)

Operator Precedence and Associativity

When an expression contains multiple operators, precedence and associativity determine the
order of their evaluation. Operators with higher precedence execute before operators of lower
precedence. If the operators have the same precedence, the operator’s associativity determines
the order of evaluation.

Precedence

The following expression:
1 +2*3

is evaluated as follows because * has a higher precedence than +:
1+ (2 * 3)

Left-associative operators

Binary operators (except for assignment, lambda, and null coalescing operators) are left-
associative; in other words, they are evaluated from left to right. For example, the following
expression:

8 /4 /2
is evaluated as follows due to left associativity:
(8/4) /2 //1
You can insert parentheses to change the actual order of evaluation:
8/ (a/2) /4

Right-associative operators

The assignment operators, lambda, null coalescing, and conditional operator are right-

associative; in other words, they are evaluated from right to left. Right associativity allows
multiple assignments such as the following to compile:

x =y = 3;

This first assigns 3 to y, and then assigns the result of that expression (3) to x.

Operator Table

Table 2-3 lists C#’s operators in order of precedence. Operators in the same category have the

same precedence. We explain user-overloadable operators in “Operator Overloading” in

Chapter 4.

Category

Primary

Unary

Multiplicative

Table 2-3. C# operators (categories in order of precedence)

Operator
symbol

-> (unsafe)
0

[1

++

new
stackalloc
typeof
nameof

checked

unchecked

default
await
sizeof
?

+

* (unsafe)
& (unsafe)

*

/

Operator name

Member access
Pointer to struct
Function call
Array/index
Post-increment
Post-decrement

Create instance
Unsafe stack allocation
Get type from identifier
Get name of identifier

Integral overflow check
on

Integral overflow check
off

Default value
Await

Get size of struct
Null-conditional
Positive value of
Negative value of
Not

Bitwise complement
Pre-increment
Pre-decrement
Cast

Value at address
Address of value
Multiply

Divide

Example

new Foo ()
stackalloc (10)
typeof (int)
nameof (x)

checked (x)

unchecked (x)

default (char)
await myTask
sizeof (int)

xX?.y

(int) x

User-
overloadable

Via indexer

% Remainder x %y Yes
Additive + Add X+ y Yes
- Subtract X -y Yes
Shift << Shift left x << 1 Yes
>> Shift right x >> 1 Yes
Relational < Less than x <y Yes
> Greater than X >y Yes
<= Less than or equal to X <=y Yes
>= Greater than or equalto x >= y Yes
is Type is or is subclass of x is y No
as Type conversion x as y No
Equality == Equals X ==y Yes
= Not equals x =y Yes
Logical And & And X & Y Yes
Logical Xor 2 Exclusive Or X~y Yes
Logical Or | Or x |y Yes
Conditional And && Conditional And X && y Via &
Conditional Or I Conditional Or x |y Via |
Null coalescing 22 Null coalescing x 22 y No
Conditional 2: Conditional isTrue ? thenThisValue : No
elseThisValue
Assignment & = Assign X =y No
Lambda
= Multiply self by x *= 2 Via *
f= Divide self by x /=2 Via /
+= Add to self X += 2 Via +
-= Subtract from self x -= 2 Via -
<<= Shift self left by x <<= 2 Via <<
>>= Shift self right by X >>= 2 Via >>
&= And self by X &= 2 Via &
&= Exclusive-Or self by x "= 2 Via ~
|= Or self by x |=2 Via |
=> Lambda x =>x + 1 No
Null Operators

C# provides two operators to make it easier to work with nulls: the null coalescing operator
and the null-conditional operator.

Null Coalescing Operator

The 22 operator is the null coalescing operator. It says “If the operand is non-null, give it to
me; otherwise, give me a default value.” For example:

string sl
string s2

null;
sl ?? "nothing"; // s2 evaluates to "nothing"

If the lefthand expression is non-null, the righthand expression is never evaluated. The null
coalescing operator also works with nullable value types (see ‘“Nullable Types™ in Chapter 4).

Null-conditional Operator (C# 6)

The 2. operator is the null-conditional or “Elvis” operator (after the Elvis emoticon), and is
new to C# 6. It allows you to call methods and access members just like the standard dot
operator, except that if the operand on the left is null, the expression evaluates to null instead of
throwing a Nul1ReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?.ToString(); // No error; s instead evaluates to null

The last line is equivalent to:

string s = (sb == null ? null : sb.ToString());

Upon encountering a null, the Elvis operator short-circuits the remainder of the expression. In
the following example, s evaluates to null, even with a standard dot operator between
ToString()andToUpper(ﬂ

System.Text.StringBuilder sb = null;
string s = sb?.ToString() .ToUpper () ; // s evaluates to null without error

Repeated use of Elvis is necessary only if the operand immediately to its left may be null. The
following expression is robust to both x being null and x . y being null:

x?.y?.2
and is equivalent to the following (except that x . y is evaluated only once):

x == null ? null
(x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

System.Text.StringBuilder sb = null;
int length = sb?.ToString() .Length; // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Types” in Chapter 4): If
you’re already familiar with nullable types, here’s a preview:

int? length = sb?.ToString() .Length; // OK : int? can be null
You can also use the null-conditional operator to call a void method:

someObject?.SomeVoidMethod () ;

If someobject is null, this becomes a “no-operation” rather than throwing a

NullReferenceException.

The null-conditional operator can be used with the commonly used type members that we

describe in Chapter 3, including methods, fields, properties and indexers. It also combines
well with the null coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() 2?? "nothing"; // s evaluates to "nothing"

Statements

Functions comprise statements that execute sequentially in the textual order in which they
appear. A statement block is a series of statements appearing between braces (the {} tokens).

Declaration Statements

A declaration statement declares a new variable, optionally initializing the variable with an
expression. A declaration statement ends in a semicolon. You may declare multiple variables
of the same type in a comma-separated list. For example:

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;

A constant declaration is like a variable declaration, except that it cannot be changed after it
has been declared, and the initialization must occur with the declaration (see “Constants” in
Chapter 3):

const double c = 2.99792458E08;
c += 10; // Compile-time Error

Local variables

The scope of a local variable or local constant extends throughout the current block. You
cannot declare another local variable with the same name in the current block or in any nested
blocks. For example:

static void Main ()

{

int x;
{
int y;
int x; // Error - x already defined
}
{
int y; // OK - y not in scope
}
Console.Write (y); // Error - y is out of scope

NOTE

A variable’s scope extends in both directions throughout its code block. This means that if
we moved the initial declaration of x in this example to the bottom of the method, we’d get
the same error. This is in contrast to C++ and is somewhat peculiar, given that it’s not legal to
refer to a variable or constant before it’s declared.

Expression Statements

Expression statements are expressions that are also valid statements. An expression statement
must either change state or call something that might change state. Changing state essentially
means changing a variable. The possible expression statements are:

= Assignment expressions (including increment and decrement expressions)
= Method call expressions (both void and nonvoid)

= Object instantiation expressions

Here are some examples:

// Declare variables with declaration statements:
string s;

int x, y;

System.Text.StringBuilder sb;

// Expression statements

x =1+ 2; // Assignment expression

x++; // Increment expression

y = Math.Max (x, 5); // Assignment expression
Console.WriteLine (y); // Method call expression

sb = new StringBuilder(); // Assignment expression

new StringBuilder () ; // Object instantiation expression

When you call a constructor or a method that returns a value, you’re not obliged to use the
result. However, unless the constructor or method changes state, the statement is completely
useless:

new StringBuilder () ; // Legal, but useless
new string ('c', 3); // Legal, but useless
x.Equals (y); // Legal, but useless

Selection Statements
C# has the following mechanisms to conditionally control the flow of program execution:

m Selection statements (if, switch)
= Conditional operator (2 :)
» Loop statements (while, do..while, for, foreach)

This section covers the simplest two constructs: the i f-e1se statement and the switch
statement.

The if statement

An i f statement executes a statement if a bool expression is true. For example:

if (5 <2 * 3)
Console.WriteLine ("true"); // true

The statement can be a code block:

if (5 <2 * 3)

{
Console.WriteLine ("true");
Console.WriteLine ("Let's move on!");

The else clause

An i f statement can optionally feature an e1se clause:

if (2 + 2 == 5)
Console.WriteLine ("Does not compute");
else
Console.WriteLine ("False"); // False

Within an e1se clause, you can nest another i £ statement:

if (2 + 2 == 5)
Console.WriteLine ("Does not compute");
else
if (2 + 2 == 4)
Console.WriteLine ("Computes"); // Computes

Changing the flow of execution with braces

An else clause always applies to the immediately preceding i £ statement in the statement
block. For example:

if (true)
if (false)
Console.WriteLine () ;
else
Console.WriteLine ("executes");

This is semantically identical to:

if (true)
{
if (false)
Console.WriteLine () ;
else
Console.WriteLine ("executes");

We can change the execution flow by moving the braces:

if (true)
{
if (false)
Console.WriteLine () ;

}
else
Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of nested i £
statements — even when not required by the compiler. A notable exception is with the
following pattern:

static void TellMeWhatICanDo (int age)
{
if (age >= 35)
Console.WriteLine ("You can be president!");

else if (age >= 21)

Console.WriteLine ("You can drink!");
else if (age >= 18)

Console.WriteLine ("You can vote!");
else

Console.WriteLine ("You can wait!");

Here, we’ve arranged the i f and e1se statements to mimic the “elseif” construct of other
languages (and C#’s #e1if preprocessor directive). Visual Studio’s auto-formatting recognizes
this pattern and preserves the indentation. Semantically, though, each i £ statement following an
else statement is functionally nested within the e1se clause.

The switch statement

switch statements let you branch program execution based on a selection of possible values
that a variable may have. switch statements may result in cleaner code than multiple i £
statements, since switch statements require an expression to be evaluated only once. For
instance:

static void ShowCard (int cardNumber)
{
switch (cardNumber)

{
case 13:
Console.WriteLine ("King");
break;
case 12:
Console.WriteLine ("Queen");
break;
case 11:
Console.WriteLine ("Jack");
break;
case -1: // Joker is -1
goto case 12; // In this game joker counts as queen
default: // Executes for any other cardNumber
Console.WriteLine (cardNumber) ;
break;

This example demonstrates the most common scenario, which is switching on constants. When
you specify a constant, you’re restricted to the built-in integral types, bool, char, enum types,
and the string type.

At the end of each case clause, you must say explicitly where execution is to go next, with
some kind of jump statement (unless your code ends in an infinite loop). Here are the options:

® break (Jumps to the end of the switch statement)

m goto case x (jumps to another case clause)

m goto default (jumps to the default clause)

= Any other jump statement — namely, return, throw, continue, O goto label

When more than one value should execute the same code, you can list the common cases
sequentially:

switch (cardNumber)

case 13:

case 12:

case 11:
Console.WriteLine ("Face card");
break;

default:
Console.WriteLine ("Plain card"):;
break;

This feature of a switch statement can be pivotal in terms of producing cleaner code than
multiple i f-e1se statements.

The switch statement with patterns (C# 7)

From C# 7, you can also switch on types:

static void Main ()

{
TellMeTheType (12);
TellMeTheType ("hello");
TellMeTheType (true);

}

static void TellMeTheType (object x) // object allows any type.
{
switch (x)
{
case int i:
Console.WriteLine ("It's an int!");
Console.WriteLine ($"The square of {i} is {1 * 1i}");
break;
case string s:
Console.WriteLine ("It's a string");
Console.WriteLine ($"The length of {s} is {s.Length}");
break;
default:
Console.WriteLine ("I don't know what x is");
break;

(The object type allows for a variable of any type; we discuss this fully in “Inheritance” and
“The object Type” in Chapter 3.)

Each case clause specifies a type upon which to match, and a variable upon which to assign the
typed value if the match succeeds (see the “pattern” variable). Unlike with constants, there’s no
restriction on what types you can use.

You can predicate a case with the when keyword:

switch (x)

{

case bool b when b == true: // Fires only when b is true
Console.WriteLine ("True!");
break;

case bool b:
Console.WriteLine ("False!");
break;

The order of the case clauses can matter when switching on type (unlike when switching on
constants). This example would give a different result if we reversed the two cases (in fact, it

would not even compile, because the compiler would determine that the second case is
unreachable). An exception to this rule is the default clause, which is always executed last,
regardless of where it appears.

You can stack multiple case clauses. The console.writeLine inthe following code will
execute for any floating-point type greater than 1000:

switch (x)
{
case float £ when £ > 1000:
case double d when d > 1000:
case decimal m when m > 1000:
Console.WriteLine ("We can refer to x here but not £ or d or m");
break;

In this example, the compiler lets us consume the pattern variables £, d, and m, only in the
when clauses. When we call console.WriteLine, it’s unknown as to which one of those three
variables will be assigned, so the compiler puts all of them out of scope.

You can mix and match constants and patterns in the same switch statement. And you can also
switch on the null value:

case null:
Console.WriteLine ("Nothing here");
break;

Iteration Statements

C# enables a sequence of statements to execute repeatedly with the while, do-while, for, and
foreach statements.

while and do-while loops

while loops repeatedly execute a body of code while a boo1 expression is true. The
expression is tested before the body of the loop is executed. For example:

int 1 = 0;

while (i < 3)

{
Console.WriteLine (1i);
i++;

}

OUTPUT:
0
1
2

do-while loops differ in functionality from while loops only in that they test the expression
after the statement block has executed (ensuring that the block is always executed at least
once). Here’s the preceding example rewritten with a do-while loop:

int 1 = 0;

do

{
Console.WriteLine (1i);
i++;

}

while (1 < 3);

for loops

for loops are like while loops with special clauses for initialization and iteration of a loop
variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
statement-or-statement-block

Initialization clause

Executed before the loop begins; used to initialize one or more iteration variables.

Condition clause

The ool expression that, while true, will execute the body.

Iteration clause

Executed after each iteration of the statement block; used typically to update the iteration
variable.

For example, the following prints the numbers 0 through 2:

for (int i = 0; 1 < 3; i++)
Console.WriteLine (1i);

The following prints the first 10 Fibonacci numbers (where each number is the sum of the
previous two):

for (int 1 = 0, prevFib = 1, curFib = 1; i < 10; i++)
{

Console.WritelLine (prevFib);

int newFib = prevFib + curFib;

prevFib = curFib; curFib = newFib;

}

Any of the three parts of the for statement may be omitted. One can implement an infinite loop
such as the following (though while (true) may be used instead):

for (;;)
Console.WriteLine ("interrupt me");
foreach loops

The foreach statement iterates over each element in an enumerable object. Most of the types in
C# and the .NET Framework that represent a set or list of elements are enumerable. For
example, both an array and a string are enumerable. Here is an example of enumerating over
the characters in a string, from the first character through to the last:

foreach (char c in "beer") // ¢ is the iteration variable
Console.WriteLine (c);

OUTPUT:
b

e
e
r

We define enumerable objects in “Enumeration and Iterators” in Chapter 4.

Jump Statements

The C# jump statements are break, continue, goto, return, and throw.

NOTE

Jump statements obey the reliability rules of try statements (see “try Statements and
Exceptions” in Chapter 4). This means that:

= A jump out of a try block always executes the try’s final1y block before reaching the
target of the jump.

= A jump cannot be made from the inside to the outside of a final1y block (except via
throw)

The break statement
The break statement ends the execution of the body of an iteration or switch statement:
int x = 0;

while (true)
{
if (x++ > 5)
break ; // break from the loop
}

// execution continues here after break

The continue statement
The continue statement forgoes the remaining statements in a loop and makes an early start on
the next iteration. The following loop skips even numbers:

for (int 1 = 0; i < 10; i++)
{
if ((1 % 2) == 0) // If i is even,
continue; // continue with next iteration

Console.Write (1 + " ");

}

OUTPUT: 1 3 57 9

The goto statement

The goto statement transfers execution to another label within a statement block. The form is
as follows:

goto statement-label;
Or, when used within a switch statement:

goto case case-constant; // (Only works with constants, not patterns)

A label is a placeholder in a code block that precedes a statement, denoted with a colon suffix.
The following iterates the numbers 1 through 5, mimicking a for loop:

int 1 = 1;

startLoop:

if (1 <= 5)

{
Console.Write (i + " ");
i++;
goto startLoop;

}

OUTPUT: 1 2 3 4 5

The goto case case-constant transfers execution to another case ina switch block (see
“The switch statement”).

The return statement
The return statement exits the method and must return an expression of the method’s return

type if the method is nonvoid:

static decimal AsPercentage (decimal d)
{

decimal p = d * 100m;

return p; // Return to the calling method with value
}

A return statement can appear anywhere in a method (exceptina final1ly block).

The throw statement
The throw statement throws an exception to indicate an error has occurred (see “try Statements
and Exceptions” in Chapter 4):

if (w == null)
throw new ArgumentNullException (...);

Miscellaneous Statements

The using statement provides an elegant syntax for calling i spose on objects that implement
IDisposable, Withina finally block (see “try Statements and Exceptions” in Chapter 4 and
“IDisposable, Dispose, and Close” in Chapter 12).

NOTE

C# overloads the using keyword to have independent meanings in different contexts.
Specifically, the using directive is different from the using statement.

The 1ock statement is a shortcut for calling the Enter and Exit methods of the Monitor class
(see Chapters 14 and 23).

Namespaces

A namespace is a domain for type names. Types are typically organized into hierarchical
namespaces, making them easier to find and avoiding conflicts. For example, the rsa type that
handles public key encryption is defined within the following namespace:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RsaA’s Create
method:

System.Security.Cryptography.RSA rsa =
System.Security.Cryptography.RSA.Create () ;

NOTE

Namespaces are independent of assemblies, which are units of deployment such as an .exe or
.dll (described in Chapter 18).

Namespaces also have no impact on member visibility — public, internal, private, and so
on.

The namepace keyword defines a namespace for types within that block. For example:

namespace Outer.Middle.Inner
{

class Classl {}

class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that follows is
semantically identical to the preceding example:

namespace Outer

{

namespace Middle

{

namespace Inner
{
class Classl {}
class Class2 {}
}
}
}

You can refer to a type with its fully qualified name, which includes all namespaces from the
outermost to the innermost. For example, we could refer to c1ass1 in the preceding example as
Outer.Middle.Inner.Classl.

Types not defined in any namespace are said to reside in the global namespace. The global
namespace also includes top-level namespaces, such as outer in our example.

The using Directive

The using directive imports a namespace, allowing you to refer to types without their fully
qualified names. The following imports the previous example’s outer.Middle.Inner
namespace:

using Outer.Middle.Inner;

class Test

{

static void Main ()

{
Classl c; // Don't need fully qualified name
}
}

NOTE

It’s legal (and often desirable) to define the same type name in different namespaces.
However, you’d typically do so only if it was unlikely for a consumer to want to import both
namespaces at once. A good example, from the .NET Framework, is the TextBox class,
which is defined both in System.Windows.Controls(VVPIQ and.System.Web.UI.WebControls
(ASP.NET).

using static (C# 6)

From C# 6, you can import not just a namespace, but a specific type, with the using static
directive. All static members of that type can then be used without being qualified with the type
name. In the following example, we call the console class’s static WriteLine method:

using static System.Console;

class Test

{

static void Main() { WriteLine ("Hello"); }

}

The using static directive imports all accessible static members of the type, including
fields, properties, and nested types (Chapter 3). You can also apply this directive to enum types
(Chapter 3), in which case their members are imported. So, if we import the following enum

type:

using static System.Windows.Visibility;

we can specify Hidden instead of visibility.Hidden:

var textBox = new TextBox { Visibility = Hidden }; // XBML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not smart enough
to infer the correct type from the context, and will generate an error.

Rules Within a Namespace

Name scoping

Names declared in outer namespaces can be used unqualified within inner namespaces. In this
example, class1 does not need qualification within Inner:

namespace Outer

{

class Classl {}

namespace Inner

{
class Class2 : Classl {}

}

If you want to refer to a type in a different branch of your namespace hierarchy, you can use a
partially qualified name. In the following example, we base salesReport on
Common.ReportBase:

namespace MyTradingCompany
{
namespace Common
{
class ReportBase {}
}
namespace ManagementReporting
{
class SalesReport : Common.ReportBase {}
}
}

Name hiding

If the same type name appears in both an inner and an outer namespace, the inner name wins. To
refer to the type in the outer namespace, you must qualify its name. For example:

namespace Outer
{

class Foo { }

namespace Inner
{

class Foo { }

class Test
{
Foo f1; // Outer.Inner.Foo
Outer.Foo f2; // = Outer.Foo
}
}
}

NOTE

All type names are converted to fully qualified names at compile time. Intermediate Language
(IL) code contains no unqualified or partially qualified names.

Repeated namespaces

You can repeat a namespace declaration, as long as the type names within the namespaces don’t
conflict:

namespace Outer.Middle.Inner
{

class Classl {}
}

namespace Outer.Middle.Inner
{
class Class2 {}

}

We can even break the example into two source files such that we could compile each class

into a different assembly.

Source file 1:

namespace Outer.Middle.Inner
{
class Classl {}

}

Source file 2:

namespace Outer.Middle.Inner

{
class Class2 {}
}

Nested using directive

You can nest a using directive within a namespace. This allows you to scope the using
directive within a namespace declaration. In the following example, c1ass1 is visible in one
scope, but not in another:

namespace N1

{

class Classl {}

}
namespace N2
{

using N1;

class Class2 : Classl {}
}

namespace N2

{
class Class3 : Classl {} // Compile-time error

}

Aliasing Types and Namespaces

Importing a namespace can result in type-name collision. Rather than importing the whole
namespace, you can import just the specific types you need, giving each type an alias. For
example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern

Extern aliases allow your program to reference two types with the same fully qualified name
(i.e., the namespace and type name are identical). This is an unusual scenario and can occur

only when the two types come from different assemblies. Consider the following example.

Library 1:

// csc target:library /out:Widgetsl.dll widgetsvl.cs

namespace Widgets

{
public class Widget {}
}

Library 2:

// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets

{
public class Widget {}
}

Application:

// csc /r:Widgetsl.dll /r:Widgets2.dll application.cs
using Widgets;

class Test

{

static void Main ()

{
Widget w = new Widget () ;
}

The application cannot compile, because widget is ambiguous. Extern aliases can resolve the
ambiguity in our application:

// csc /r:Wl=Widgetsl.dll /r:W2=Widgets2.dll application.cs

extern alias W1;
extern alias W2;

class Test

{

static void Main ()
{
Wl.Widgets.Widget wl = new Wl.Widgets.Widget () ;
W2 .Widgets.Widget w2 = new W2.Widgets.Widget () ;
}

Namespace alias qualifiers

As we mentioned earlier, names in inner namespaces hide names in outer namespaces.
However, sometimes even the use of a fully qualified type name does not resolve the conflict.
Consider the following example:

namespace N
{
class A
{
public class B {} // Nested type
static void Main() { new A.B(); } // Instantiate class B

}
}

namespace A

{
class B {}

}

The Main method could be instantiating either the nested class B, or the class B within the
namespace A. The compiler always gives higher precedence to identifiers in the current
namespace; in this case, the nested B class.

To resolve such conflicts, a namespace name can be qualified, relative to one of the following;

» The global namespace — the root of all namespaces (identified with the contextual keyword

global)

m The set of extern aliases

The : : token is used for namespace alias qualification. In this example, we qualify using the
global namespace (this is most commonly seen in auto-generated code to avoid name

conflicts):

namespace N

{

class A

{

static void Main ()

{

System.Console.WriteLine
System.Console.WriteLine

}

public class B {}
}
}

namespace A

{
class B {}

}

(new A.B());
(new global::A.B());

Here is an example of qualifying with an alias (adapted from the example in “Extern”):

extern alias W1;
extern alias W2;

class Test

{

static void Main ()

{

Wl::Widgets.Widget wl =
W2::Widgets.Widget w2

}
}

new Wl::Widgets.Widget();
new W2::Widgets.Widget () ;

I' A minor caveat is that very large 1ong values lose some precision when converted to double.

2 Technically, decimal is a floating-point type too, although it’s not referred to as such in the C#

language specification.

3 It’s possible to overload these operators (Chapter 4) such that they return a non-boo1 type, but this
is almost never done in practice.

4 An exception to this rule is when calling COM methods. We discuss this in Chapter 25.

Chapter 3. Creating Types in C#

In this chapter, we will delve into types and type members.

Classes

A class is the most common kind of reference type. The simplest possible class declaration is
as follows:

class YourClassName
{
}

A more complex class optionally has the following;

Preceding the Attributes and class modifiers. The non-nested class modifiers are public, internal, abstract,
keyword class sealed, static, unsafe, and partial

Following Generic type parameters, a base class, and interfaces

YourClassName

Within the braces Class members (these are methods, properties, indexers, events, fields, constructors, overloaded

operators, nested types, and a finalizer)

This chapter covers all of these constructs except attributes, operator functions, and the unsafe
keyword, which are covered in Chapter 4. The following sections enumerate each of the class
members.

Fields

A field is a variable that is a member of a class or struct. For example:

class Octopus

{

string name;

public int Age = 10;
}

Fields allow the following modifiers:

Static modifier static

Access modifiers public internal private protected
Inheritance modifier new

Unsafe code modifier unsafe

Read-only modifier readonly

Threading modifier ~ volatile

The readonly modifier

The readon1y modifier prevents a field from being modified after construction. A read-only
field can be assigned only in its declaration or within the enclosing type’s constructor.

Field initialization
Field initialization is optional. An uninitialized field has a default value (0, \ 0, nul1, false).
Field initializers run before constructors:

public int Age = 10;

Declaring multiple fields together

For convenience, you may declare multiple fields of the same type in a comma-separated list.
This is a convenient way for all the fields to share the same attributes and field modifiers. For
example:

static readonly int legs
eyes

Methods

A method performs an action in a series of statements. A method can receive input data from
the caller by specifying parameters and output data back to the caller by specifying a return

type. A method can specify a void return type, indicating that it doesn’t return any value to its
caller. A method can also output data back to the caller via ref/out parameters.

A method’s signature must be unique within the type. A method’s signature comprises its name
and parameter types in order (but not the parameter names, nor the return type).

Methods allow the following modifiers:

Static modifier static

Access modifiers public internal private protected
Inheritance modifiers new virtual abstract override sealed
Partial method modifier partial

Unmanaged code modifiers unsafe extern

Asynchronous code modifier async
Expression-bodied methods (C# 6)
A method that comprises a single expression, such as the following:

int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method. A fat arrow replaces the braces
and return keyword:

int Foo (int x) => x * 2;
Expression-bodied functions can also have a void return type:

void Foo (int x) => Console.WritelLine (x);

Overloading methods

A type may overload methods (have multiple methods with the same name), as long as the

signatures are different. For example, the following methods can all coexist in the same type:

int x) {...}

double x) {...}
int x, float y)
float x, int y)

void Foo
void Foo
void Foo
void Foo

(
(
({...}
({...}

However, the following pairs of methods cannot coexist in the same type, since the return type

and the params modifier are not part of a method’s signature:

}

} // Compile-time error

void Foo (int x)

{...
float Foo (int x) {...

void Goo (intf[] x) {...}
void Goo (params int[] x) {...} // Compile-time error

Pass-by-value versus pass-by-reference

Whether a parameter is pass-by-value or pass-by-reference is also part of the signature. For
example, Foo (int) can coexist with either Foo (ref int) or Foo (out int). However,
Foo (ref int) and Foo (out int) cannot coexist:

void Foo (int x) {...}
void Foo (ref int x) {...} // OK so far
void Foo (out int x) {...} // Compile-time error

Local methods (C# 7)

From C# 7, you can define a method inside another method:

void WriteCubes ()

{
Console.WriteLine (Cube (3));
Console.WriteLine (Cube (4));
Console.WriteLine (Cube (5));

int Cube (int value) => value * value * value;

The local method (cube, in this case) is visible only to the enclosing method (writecubes).
This simplifies the containing type and instantly signals to anyone looking at the code that cube
is used nowhere else. Another benefit of local methods is that they can access the local
variables and parameters of the enclosing method. This has a number of consequences, which
we describe in detail in “Capturing Outer Variables” in Chapter 4.

Local methods can appear inside other function kinds, such as property accessors, constructors,
and so on. You can even put local methods inside other local methods, and inside lambda
expressions that use a statement block (Chapter 4). Local methods can be iterators (Chapter 4)
or asynchronous (Chapter 14).

The static modifier is invalid for local methods. They are implicitly static if the enclosing
method is static.

Instance Constructors

Constructors run initialization code on a class or struct. A constructor is defined like a method,
except that the method name and return type are reduced to the name of the enclosing type:

public class Panda
{

string name; // Define field
public Panda (string n) // Define constructor
{
name = n; // Initialization code (set up field)
}
}
Panda p = new Panda ("Petey"):; // Call constructor

Instance constructors allow the following modifiers:

Access modifiers public internal private protected

Unmanaged code modifiers unsafe extern

From C# 7, single-statement constructors can also be written as expression-bodied members:

public Panda (string n) => name = n;

Overloading constructors

A class or struct may overload constructors. To avoid code duplication, one constructor may
call another, using the this keyword:

using System;

public class Wine
{
public decimal Price;
public int Year;
public Wine (decimal price) { Price = price; }
public Wine (decimal price, int year) : this (price) { Year = year; }

When one constructor calls another, the called constructor executes first.

You can pass an expression into another constructor as follows:

public Wine (decimal price, DateTime year) : this (price, year.Year) { }

The expression itself cannot make use of the this reference, for example, to call an instance
method. (This is enforced because the object has not been initialized by the constructor at this
stage, so any methods that you call on it are likely to fail.) It can, however, call static methods.

Implicit parameterless constructors

For classes, the C# compiler automatically generates a parameterless public constructor if and
only if you do not define any constructors. However, as soon as you define at least one
constructor, the parameterless constructor is no longer automatically generated.

Constructor and field initialization order
We saw previously that fields can be initialized with default values in their declaration:
class Player

{
int shields = 50; // Initialized first

int health = 100; // Initialized second

Field initializations occur before the constructor is executed, and in the declaration order of the
fields.

Nonpublic constructors

Constructors do not need to be public. A common reason to have a nonpublic constructor is to
control instance creation via a static method call. The static method could be used to return an
object from a pool rather than necessarily creating a new object, or return various subclasses
based on input arguments:

public class Classl

{
Classl() {} // Private constructor
public static Classl Create (...)
{

// Perform custom logic here to return an instance of Classl

Deconstructors (C# 7)

C# 7 introduces the deconstructor pattern. A deconstructor (also called a deconstructing
method) acts as an approximate opposite to a constructor: Whereas a constructor typically
takes a set of values (as parameters) and assigns them to fields, a deconstructor does the
reverse and assigns fields back to a set of variables.

A deconstruction method must be called beconstruct, and have one or more out parameters,
such as in the following class:

class Rectangle
{
public readonly float Width, Height;

public Rectangle (float width, float height)
{

Width = width;

Height = height;
}

public void Deconstruct (out float width, out float height)
{
width = Width;
height = Height;
}
}

To call the deconstructor, we use the following special syntax:

var rect = new Rectangle (3, 4);
(float width, float height) = rect; // Deconstruction
Console.WritelLine (width + " " + height); // 3 4

The second line is the deconstructing call. It creates two local variables and then calls the
Deconstruct method. Our deconstructing call is equivalent to:

float width, height;

rect.Deconstruct (out width, out height);

Or:

rect.Deconstruct (out var width, out var height);

Deconstructing calls allow implicit typing, so we could shorten our call to:

(var width, wvar height) = rect;

Or simply:

var (width, height) = rect;

If the variables into which you’re deconstructing are already defined, omit the types altogether:

float width, height;
(width, height) = rect;

This is called a deconstructing assignment.

You can offer the caller a range of deconstruction options by overloading the beconstruct
method.

NOTE

The peconstruct method can be an extension method (see “Extension Methods™ in
Chapter 4). This is a useful trick if you want to deconstruct types you did not author.

Object Initializers

To simplify object initialization, any accessible fields or properties of an object can be set via
an object initializer directly after construction. For example, consider the following class:

public class Bunny

{
public string Name;
public bool LikesCarrots;
public bool LikesHumans;

public Bunny () {}
public Bunny (string n) { Name = n; }

Using object initializers, you can instantiate Bunny objects as follows:

// Note parameterless constructors can omit empty parentheses
Bunny bl = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo") { LikesCarrots=true, LikesHumans=false };

The code to construct b1 and b2 is precisely equivalent to:

Bunny templ = new Bunny () ; // templ is a compiler-generated name
templ.Name = "Bo";
templ.LikesCarrots = true;

templ.LikesHumans = false;
Bunny bl = templ;

Bunny temp2 = new Bunny ("Bo");
temp2.LlikesCarrots = true;
temp2.LlikesHumans = false;
Bunny b2 = temp2;

The temporary variables are to ensure that if an exception is thrown during initialization, you
can’t end up with a half-initialized object.

OBJECT INITIALIZERS VERSUS OPTIONAL PARAMETERS

Instead of using object initializers, we could make Bunny’s constructor accept optional parameters:

public Bunny (string name,
bool likesCarrots = false,
bool likesHumans = false)
{
Name = name;
LikesCarrots = likesCarrots;
LikesHumans = likesHumans;

}
This would allow us to construct a Bunny as follows:

Bunny bl = new Bunny (name: "Bo",
likesCarrots: true);

An advantage of this approach is that we could make Bunny’s fields (or properties, as we’ll explain
shortly) read-only if we choose. Making fields or properties read-only is good practice when there’s
no valid reason for them to change throughout the life of the object.

The disadvantage in this approach is that each optional parameter value is baked into the calling
site. In other words, C# translates our constructor call into this:

Bunny bl = new Bunny ("Bo", true, false);

This can be problematic if we instantiate the Bunny class from another assembly, and later modify
Bunny by adding another optional parameter — such as 1ikescats. Unless the referencing assembly
is also recompiled, it will continue to call the (now nonexistent) constructor with three parameters
and fail at runtime. (A subtler problem is that if we changed the value of one of the optional
parameters, callers in other assemblies would continue to use the old optional value until they were
recompiled.)

Hence, you should exercise caution with optional parameters in public functions if you want to offer
binary compatibility between assembly versions.

Object initializers were introduced in C# 3.0.

The this Reference

The this reference refers to the instance itself. In the following example, the Marry method
uses this to set the partner’s mate field:

public class Panda

{
public Panda Mate;

public void Marry (Panda partner)

{
Mate = partner;
partner.Mate = this;
}
}

The this reference also disambiguates a local variable or parameter from a field. For
example:

public class Test
{
string name;
public Test (string name) { this.name = name; }

}

The this reference is valid only within nonstatic members of a class or struct.

Properties

Properties look like fields from the outside, but internally they contain logic, like methods do.
For example, you can’t tell by looking at the following code whether currentprice is a field
or a property:

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);

A property is declared like a field, but with a get/set block added. Here’s how to implement
CurrentPrice as a property:

public class Stock
{

decimal currentPrice; // The private "backing" field
public decimal CurrentPrice // The public property
{

get { return currentPrice; }

set { currentPrice = value; }

}
}

get and set denote property accessors. The get accessor runs when the property is read. It
must return a value of the property’s type. The set accessor runs when the property is
assigned. It has an implicit parameter named value of the property’s type that you typically
assign to a private field (in this case, currentPrice).

Although properties are accessed in the same way as fields, they differ in that they give the
implementer complete control over getting and setting its value. This control enables the
implementer to choose whatever internal representation is needed, without exposing the
internal details to the user of the property. In this example, the set method could throw an
exception if value was outside a valid range of values.

NOTE

Throughout this book, we use public fields extensively to keep the examples free of
distraction. In a real application, you would typically favor public properties over public

fields, in order to promote encapsulation.

Properties allow the following modifiers:

Static modifier static
Access modifiers public internal private protected
Inheritance modifiers new virtual abstract override sealed

Unmanaged code modifiers unsafe extern

Read-only and calculated properties

A property is read-only if it specifies only a get accessor, and it is write-only if it specifies
only a set accessor. Write-only properties are rarely used.

A property typically has a dedicated backing field to store the underlying data. However, a
property can also be computed from other data. For example:

decimal currentPrice, sharesOwned;

public decimal Worth
{

get { return currentPrice * sharesOwned; }

}

Expression-bodied properties (C# 6, C# 7)

From C# 6, you can declare a read-only property, such as the preceding example, more tersely
as an expression-bodied property. A fat arrow replaces all the braces and the get and return
keywords:

public decimal Worth => currentPrice * sharesOwned;

C# 7 extends this further by allowing set accessors to be expression-bodied, with a little extra
syntax:

public decimal Worth
{
get => currentPrice * sharesOwned;
set => sharesOwned = value / currentPrice;

}

Automatic properties

The most common implementation for a property is a getter and/or setter that simply reads and
writes to a private field of the same type as the property. An automatic property declaration
instructs the compiler to provide this implementation. We can improve the first example in this
section by declaring currentPrice as an automatic property:

public class Stock
{

public decimal CurrentPrice { get; set; }

}

The compiler automatically generates a private backing field of a compiler-generated name that

cannot be referred to. The set accessor can be marked private or protected if you want to
expose the property as read-only to other types. Automatic properties were introduced in C#
3.0.

Property initializers (C# 6)

From C# 6, you can add a property initializer to automatic properties, just as with fields:

public decimal CurrentPrice { get; set; } = 123;

This gives currentpPrice an initial value of 123. Properties with an initializer can be read-
only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties can also be assigned in the type’s
constructor. This is useful in creating immutable (read-only) types.

get and set accessibility

The> get and set accessors can have different access levels. The typical use case for this is
to have a public property withan internal or private access modifier on the setter:

public class Foo

{
private decimal x;
public decimal X
{
get { return x; }
private set { x = Math.Round (value, 2); }
}
}

Notice that you declare the property itself with the more permissive access level (public, in
this case), and add the modifier to the accessor you want to be /ess accessible.

CLR property implementation

C# property accessors internally compile to methods called get xxx and set xxx:

public decimal get CurrentPrice {...}
public void set CurrentPrice (decimal value) {...}

Simple nonvirtual property accessors are inlined by the JIT (Just-In-Time) compiler,
eliminating any performance difference between accessing a property and a field. Inlining is an
optimization in which a method call is replaced with the body of that method.

With WinRT properties, the compiler assumes the put xxx naming convention rather than
set XXX.

Indexers

Indexers provide a natural syntax for accessing elements in a class or struct that encapsulate a
list or dictionary of values. Indexers are similar to properties, but are accessed via an index
argument rather than a property name. The string class has an indexer that lets you access
each of its char values via an int index:

string s = "hello";
Console.WriteLine (s[0])
Console.WriteLine (s[3])

// "h'
// e

The syntax for using indexers is like that for using arrays, except that the index argument(s) can
be of any type(s).

Indexers have the same modifiers as properties (see “Properties™), and can be called null-
conditionally by inserting a question mark before the square bracket (see “Null Operators” in
Chapter 2):

string s = null;
Console.WritelLine (s?[0]); // Writes nothing; no error.

Implementing an indexer

To write an indexer, define a property called this, specifying the arguments in square
brackets. For instance:

class Sentence

{
string[] words = "The quick brown fox".Split():;

public string this [int wordNum] // indexer
{

get { return words [wordNum]; }
set { words [wordNum] = value; }

}

Here’s how we could use this indexer:

Sentence s = new Sentence();

Console.WriteLine (s[3]); // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]); // kangaroo

A type may declare multiple indexers, each with parameters of different types. An indexer can
also take more than one parameter:

public string this [int argl, string arg2]
{

get { ... } set { ...}
}

If you omit the set accessor, an indexer becomes read-only, and expression-bodied syntax may
be used in C# 6 to shorten its definition:

public string this [int wordNum] => words [wordNum];

CLR indexer implementation

Indexers internally compile to methods called get Item and set Item, as follows:

public string get Item (int wordNum) {...}
public void set Item (int wordNum, string value) {...}

Constants

A constant is a static field whose value can never change. A constant is evaluated statically at
compile time and the compiler literally substitutes its value whenever used (rather like a macro
in C++). A constant can be any of the built-in numeric types, bool, char, string, Or an enum

type.
A constant is declared with the const keyword and must be initialized with a value. For
example:

public class Test

{
public const string Message = "Hello World";

}

A constant is much more restrictive than a static readonly field — both in the types you can
use and in field initialization semantics. A constant also differs froma static readonly field
in that the evaluation of the constant occurs at compile time. For example:

public static double Circumference (double radius)

{

return 2 * System.Math.PI * radius;

}
is compiled to:

public static double Circumference (double radius)

{
return 6.2831853071795862 * radius;

}

It makes sense for P1 to be a constant, since it can never change. In contrast, a static
readonly field can have a different value per application.

NOTE

A static readonly field is also advantageous when exposing to other assemblies a value that
might change in a later version. For instance, suppose assembly x exposes a constant as
follows:

public const decimal ProgramVersion = 2.3;

If assembly v references x and uses this constant, the value 2.3 will be baked into assembly v
when compiled. This means that if x is later recompiled with the constant set to 2.4, v will
still use the old value of 2.3 until v is recompiled. A static readonly field avoids this
problem.

Another way of looking at this is that any value that might change in the future is not constant
by definition, and so should not be represented as one.

Constants can also be declared local to a method. For example:

static void Main ()

{
const double twoPI = 2 * System.Math.PI;

Nonlocal constants allow the following modifiers:

Access modifiers public internal private protected

Inheritance modifier new

Static Constructors

A static constructor executes once per type, rather than once per instance. A type can define
only one static constructor, and it must be parameterless and have the same name as the type:

class Test

{
static Test() { Console.WriteLine ("Type Initialized"); }

}

The runtime automatically invokes a static constructor just prior to the type being used. Two
things trigger this:

» [nstantiating the type
m Accessing a static member in the type

The only modifiers allowed by static constructors are unsafe and extern.

WARNING

If a static constructor throws an unhandled exception (Chapter 4), that type becomes
unusable for the life of the application.

Static constructors and field initialization order

Static field initializers run just before the static constructor is called. If a type has no static
constructor, field initializers will execute just prior to the type being used — or anytime
earlier at the whim of the runtime.

Static field initializers run in the order in which the fields are declared. The following example
illustrates this: x is initialized to 0 and v is initialized to 3.

class Foo
{
public static int X
public static int Y
}

If we swap the two field initializers around, both fields are initialized to 3. The next example
prints 0 followed by 3 because the field initializer that instantiates a Foo executes before x is
initialized to 3:

class Program

{
static void Main() { Console.WritelLine (Foo.X); } // 3

}
class Foo
{
public static Foo Instance = new Foo();
public static int X = 3;
Foo() { Console.WriteLine (X); } // 0
}

If we swap the two lines in boldface, the example prints 3 followed by 3.

Static Classes

A class can be marked static, indicating that it must be composed solely of static members
and cannot be subclassed. The system.Console and system.Math classes are good examples
of static classes.

Finalizers

Finalizers are class-only methods that execute before the garbage collector reclaims the
memory for an unreferenced object. The syntax for a finalizer is the name of the class prefixed
with the ~ symbol:

class Classl
{
~Classl ()
{

}
}

This is actually C# syntax for overriding object’s Finalize method, and the compiler
expands it into the following method declaration:

protected override void Finalize ()

{

base.Finalize();

}
We discuss garbage collection and finalizers fully in Chapter 12.
Finalizers allow the following modifier:

Unmanaged code modifier unsafe

From C# 7, single-statement finalizers can be written with expression-bodied syntax:

~Classl () => Console.WriteLine ("Finalizing");

Partial Types and Methods

Partial types allow a type definition to be split — typically across multiple files. A common
scenario is for a partial class to be auto-generated from some other source (such as a Visual
Studio template or designer), and for that class to be augmented with additional hand-authored
methods. For example:

// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration; the following is illegal:

partial class PaymentForm {}
class PaymentForm {}

Participants cannot have conflicting members. A constructor with the same parameters, for
instance, cannot be repeated. Partial types are resolved entirely by the compiler, which means
that each participant must be available at compile time and must reside in the same assembly.

You can specify a base class on one or more partial class declarations, as long as the base
class, if specified, is the same. In addition, each participant can independently specify
interfaces to implement. We cover base classes and interfaces in “Inheritance” and
“Interfaces”.

The compiler makes no guarantees with regard to field initialization order between partial type
declarations.

Partial methods

A partial type may contain partial methods. These let an auto-generated partial type provide
customizable hooks for manual authoring. For example:

partial class PaymentForm // In auto-generated file

{

partial void ValidatePayment (decimal amount);

}

partial class PaymentForm // In hand-authored file

{

partial void ValidatePayment (decimal amount)
{
if (amount > 100)

A partial method consists of two parts: a definition and an implementation. The definition is
typically written by a code generator, and the implementation is typically manually authored. If
an implementation is not provided, the definition of the partial method is compiled away (as is
the code that calls it). This allows auto-generated code to be liberal in providing hooks,
without having to worry about bloat. Partial methods must be void and are implicitly private.

Partial methods were introduced in C# 3.0.

The nameof Operator (C# 6)

The nameof operator returns the name of any symbol (type, member, variable, and so on) as a
string;

int count = 123;
string name = nameof (count); // name 1is "count"

Its advantage over simply specifying a string is that of static type checking. Tools such as
Visual Studio can understand the symbol reference, so if you rename the symbol in question, all
its references will be renamed, too.

To specify the name of a type member such as a field or property, include the type as well. This
works with both static and instance members:

string name = nameof (StringBuilder.Length);

This evaluates to “Length”. To return “StringBuilder.Length”, you would do this:

nameof (StringBuilder) + "." + nameof (StringBuilder.Length);

Inheritance

A class can inherit from another class to extend or customize the original class. Inheriting from
a class lets you reuse the functionality in that class instead of building it from scratch. A class
can inherit from only a single class, but can itself be inherited by many classes, thus forming a
class hierarchy. In this example, we start by defining a class called asset:

public class Asset
{
public string Name;

}

Next, we define classes called stock and House, which will inherit from Asset. Stock and
House get everything an asset has, plus any additional members that they define:

public class Stock : Asset // inherits from Asset
{

public long SharesOwned;
}

public class House : Asset // inherits from Asset
{

public decimal Mortgage;
}

Here’s how we can use these classes:

Stock msft = new Stock { Name="MSFT",
SharesOwned=1000 };

Console.WriteLine (msft.Name); // MSFET
Console.WriteLine (msft.SharesOwned); // 1000

House mansion = new House { Name="Mansion",
Mortgage=250000 };

Console.WriteLine (mansion.Name); // Mansion
Console.WritelLine (mansion.Mortgage); // 250000

The derived classes, stock and House, inherit the Name property from the base class, Asset.

NOTE

A derived class is also called a subclass.

A base class is also called a superclass.

Polymorphism

References are polymorphic. This means a variable of type x can refer to an object that
subclasses x. For instance, consider the following method:

public static void Display (Asset asset)
{

System.Console.WriteLine (asset.Name) ;

}

This method can display both a stock and a House, since they are both Assets:

Stock msft
House mansion

new Stock ... ;
new House ... ;

Display (msft);
Display (mansion);

Polymorphism works on the basis that subclasses (stock and House) have all the features of
their base class (asset). The converse, however, is not true. If Display was modified to
accept a House, you could not pass in an Asset:

static void Main() { Display (new Asset()); } // Compile-time error
public static void Display (House house) // Will not accept Asset
{

System.Console.WriteLine (house.Mortgage);

}

Casting and Reference Conversions
An object reference can be:

» Implicitly upcast to a base class reference
» Explicitly downcast to a subclass reference

Upcasting and downcasting between compatible reference types performs reference
conversions: a new reference is (logically) created that points to the same object. An upcast
always succeeds; a downcast succeeds only if the object is suitably typed.

Upcasting

An upcast operation creates a base class reference from a subclass reference. For example:

Stock msft = new Stock();
Asset a = msft; // Upcast

After the upcast, variable a still references the same stock object as variable msft. The object
being referenced is not itself altered or converted:

Console.WriteLine (a == msft); // True

Although 2 and ms £t refer to the identical object, a has a more restrictive view on that object:

Console.WritelLine (a.Name); // OK
Console.WritelLine (a.SharesOwned) ; // Error: SharesOwned undefined

The last line generates a compile-time error because the variable a is of type Asset, even
though it refers to an object of type stock. To get to its sharesowned field, you must downcast
the Asset to a Stock.

Downcasting

A downcast operation creates a subclass reference from a base class reference. For example:

Stock msft = new Stock();

Asset a = msft; // Upcast
Stock s = (Stock)a; // Downcast
Console.WriteLine (s.SharesOwned) ; // <No error>
Console.WriteLine (s == a); // True
Console.WriteLine (s == msft); // True

As with an upcast, only references are affected — not the underlying object. A downcast
requires an explicit cast because it can potentially fail at runtime:

House h = new House();
Asset a = h; // Upcast always succeeds
Stock s = (Stock)a; // Downcast fails: a is not a Stock

If a downcast fails, an 1nvalidcastException is thrown. This is an example of runtime type
checking (we will elaborate on this concept in “Static and Runtime Type Checking”).

The as operator

The as operator performs a downcast that evaluates to nu11 (rather than throwing an
exception) if the downcast fails:

Asset a new Asset();
Stock s = a as Stock; // s is null; no exception thrown

This is useful when you’re going to subsequently test whether the result is nu11:

if (s '= null) Console.WriteLine (s.SharesOwned) ;

NOTE

Without such a test, a cast is advantageous, because if it fails, a more helpful exception is
thrown. We can illustrate by comparing the following two lines of code:

((Stock)a) .SharesOwned; // RApproach #1
(a as Stock) .SharesOwned; // Approach #2

int shares
int shares

If a is not a stock, the first line throws an InvalidcastException, Which is an accurate
description of what went wrong. The second line throws a Nul1ReferenceException, which is
ambiguous. Was a not a stock or was a null?

Another way of looking at it is that with the cast operator, you’re saying to the compiler: “I’'m
certain of a value’s type; if I’'m wrong, there’s a bug in my code, so throw an exception!”

Whereas with the as operator, you’re uncertain of its type and want to branch according to
the outcome at runtime.

The as operator cannot perform custom conversions (see “Operator Overloading” in
Chapter 4) and it cannot do numeric conversions:

long x = 3 as long; // Compile-time error

NOTE

The as and cast operators will also perform upcasts, although this is not terribly useful
because an implicit conversion will do the job.

The is operator

The is operator tests whether a reference conversion would succeed; in other words, whether
an object derives from a specified class (or implements an interface). It is often used to test
before downcasting.

if (a is Stock)
Console.WriteLine (((Stock)a) .SharesOwned) ;

The is operator also evaluates to true if an unboxing conversion would succeed (see “The
object Type”). However, it does not consider custom or numeric conversions.

The is operator and pattern variables (C# 7)

From C# 7, you can introduce a variable while using the is operator:

if (a is Stock s)
Console.WriteLine (s.SharesOwned) ;

This is equivalent to:

Stock s;
if (a is Stock)
{
s = (Stock) a;
Console.WriteLine (s.SharesOwned) ;

The variable that you introduce is available for “immediate” consumption, so the following is
legal:

if (a is Stock s && s.SharesOwned > 100000)
Console.WriteLine ("Wealthy");

And it remains in scope outside the is-expression, allowing this:

if (a is Stock s && s.SharesOwned > 100000)
Console.WriteLine ("Wealthy");

else
s = new Stock(); // s is in scope

Console.WriteLine (s.SharesOwned); // Still in scope

Virtual Function Members

A function marked as virtual can be overridden by subclasses wanting to provide a
specialized implementation. Methods, properties, indexers, and events can all be declared

virtual:

public class Asset
{

public string Name;

public virtual decimal Liability => 0; // Expression-bodied property
}

(Liability => 0 1sashortcut for { get { return 0; } }.See “Expression-bodied
properties (C# 6, C# 7)” for more details on this syntax.)

A subclass overrides a virtual method by applying the override modifier:

public class Stock : Asset

{
public long SharesOwned;
}

public class House : Asset
{

public decimal Mortgage;

public override decimal Liability => Mortgage;
}

By default, the ziability ofan asset is 0. A stock does not need to specialize this behavior.
However, the House specializes the Liability property to return the value of the Mortgage:

House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;

Console.WriteLine (mansion.Liability); // 250000
Console.WriteLine (a.Liability); // 250000

The signatures, return types, and accessibility of the virtual and overridden methods must be
identical. An overridden method can call its base class implementation via the base keyword
(we will cover this in “The base Keyword”).

WARNING

Calling virtual methods from a constructor is potentially dangerous because authors of
subclasses are unlikely to know, when overriding the method, that they are working with a
partially initialized object. In other words, the overriding method may end up accessing
methods or properties that rely on fields not yet initialized by the constructor.

Abstract Classes and Abstract Members

A class declared as abstract can never be instantiated. Instead, only its concrete subclasses
can be instantiated.

Abstract classes are able to define abstract members. Abstract members are like virtual

members, except they don’t provide a default implementation. That implementation must be
provided by the subclass, unless that subclass is also declared abstract:

public abstract class Asset
{

// Note empty implementation

public abstract decimal NetValue { get; }
}

public class Stock : Asset

{
public long SharesOwned;
public decimal CurrentPrice;

// Override like a virtual method.
public override decimal NetValue => CurrentPrice * SharesOwned;

Hiding Inherited Members

A base class and a subclass may define identical members. For example:

public class A { public int Counter = 1;
public class B : A { public int Counter = 2; }

The counter field in class B is said to hide the counter field in class a. Usually, this happens
by accident, when a member is added to the base type after an identical member was added to
the subtype. For this reason, the compiler generates a warning, and then resolves the ambiguity
as follows:

m References to A (at compile time) bind to A.counter.
m References to B (at compile time) bind to B. Counter.

Occasionally, you want to hide a member deliberately, in which case you can apply the new
modifier to the member in the subclass. The new modifier does nothing more than suppress the
compiler warning that would otherwise result:

o
[N
—

public class A { public int Counter =
public class B : A { public new int Counter

The new modifier communicates your intent to the compiler — and other programmers — that
the duplicate member is not an accident.

NOTE

C# overloads the new keyword to have independent meanings in different contexts.
Specifically, the new operator is different from the new member modifier.

new versus override

Consider the following class hierarchy:

public class BaseClass

{

public virtual void Foo () { Console.WriteLine ("BaseClass.Foo"); }

}

public class Overrider : BaseClass

{

public override void Foo() { Console.WritelLine ("Overrider.Foo"); }

}

public class Hider : BaseClass

{

public new void Foo () { Console.WriteLine ("Hider.Foo"); }

}

The differences in behavior between overrider and Hider are demonstrated in the following
code:

Overrider over = new Overrider():;

BaseClass bl = over;

over.Foo(); // Overrider.Foo
bl.Foo(); // Overrider.Foo

Hider h = new Hider();
BaseClass b2 = h;

h.Foo () ; // Hider.Foo
b2.Foo () ; // BaseClass.Foo

Sealing Functions and Classes

An overridden function member may seal its implementation with the sealed keyword to
prevent it from being overridden by further subclasses. In our earlier virtual function member
example, we could have sealed House’s implementation of Liability, preventing a class that
derives from House from overriding Liability, as follows:

public sealed override decimal Liability { get { return Mortgage; } }

You can also seal the class itself, implicitly sealing all the virtual functions, by applying the
sealed modifier to the class itself. Sealing a class is more common than sealing a function
member.

Although you can seal against overriding, you can’t seal a member against being hidden.

The base Keyword
The vase keyword is similar to the this keyword. It serves two essential purposes:

m Accessing an overridden function member from the subclass
» Calling a base-class constructor (see the next section)

In this example, House uses the base keyword to access asset’s implementation of
Liability:

public class House : Asset

{

public override decimal Liability => base.lLiability + Mortgage;
}

With the base keyword, we access Asset’s Liability property nonvirtually. This means we
will always access asset’s version of this property — regardless of the instance’s actual

runtime type.

The same approach works if L.iability is hidden rather than overridden. (You can also
access hidden members by casting to the base class before invoking the function.)

Constructors and Inheritance

A subclass must declare its own constructors. The base class’s constructors are accessible to
the derived class, but are never automatically inherited. For example, if we define Baseclass
and Subclass as follows:

public class Baseclass
{
public int X;
public Baseclass () { }
public Baseclass (int x) { this.X = x; }

}

public class Subclass : Baseclass { }

the following is illegal:

Subclass s = new Subclass (123);

subclass must hence “redefine” any constructors it wants to expose. In doing so, however, it
can call any of the base class’s constructors with the base keyword:

public class Subclass : Baseclass

{
public Subclass (int x) : base (x) { }

}

The vase keyword works rather like the this keyword, except that it calls a constructor in the
base class.

Base-class constructors always execute first; this ensures that base initialization occurs before
specialized initialization.

Implicit calling of the parameterless base-class constructor

If'a constructor in a subclass omits the base keyword, the base type’s parameterless
constructor is implicitly called:

public class BaseClass
{

public int X;

public BaseClass() { X = 1; }
}

public class Subclass : BaseClass

{
public Subclass() { Console.WriteLine (X); } // 1

}

If the base class has no accessible parameterless constructor, subclasses are forced to use the
base keyword in their constructors.

Constructor and field initialization order

When an object is instantiated, initialization takes place in the following order:
1. From subclass to base class:

a. Fields are initialized.
b. Arguments to base-class constructor calls are evaluated.

2. From base class to subclass:

a. Constructor bodies execute.
The following code demonstrates:

public class B

{
int x = 1;
public B (int x)
{

// Executes 3rd

// Executes 4th
}
}
public class D : B
{

int vy = 1; // Executes lst
public D (int x)
: base (x + 1) // Executes 2nd

{
// Executes 5th
}
}

Overloading and Resolution

Inheritance has an interesting impact on method overloading. Consider the following two
overloads:

static void Foo (Asset a)
static void Foo (House h)

{3
{3}
When an overload is called, the most specific type has precedence:

House h = new House (...);
Foo (h) ; // Calls Foo (House)

The particular overload to call is determined statically (at compile time) rather than at runtime.
The following code calls Foo (Asset), even though the runtime type of a is House:

Asset a = new House (...);
Foo (a) ; // Calls Foo (Asset)

NOTE
If you cast asset to dynamic (Chapter 4), the decision as to which overload to call is deferred
until runtime, and is then based on the object’s actual type:

Asset a = new House (...);
Foo ((dynamic)a); // Calls Foo (House)

The object Type

object (System.Object) is the ultimate base class for all types. Any type can be upcast to
object.

To illustrate how this is useful, consider a general-purpose stack. A stack is a data structure
based on the principle of LIFO — “Last-In First-Out.” A stack has two operations: push an
object on the stack, and pop an object off the stack. Here is a simple implementation that can
hold up to 10 objects:

public class Stack
{
int position;
object|[] data = new object[10];
public void Push (object obj) { data[position++] = obj; }
public object Pop () { return data[--position]; }

Because stack works with the object type, we can push and pop instances of any fype to and
fromthe stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop(); // Downcast, so explicit cast is needed

Console.WriteLine (s); // sausage

object 1s a reference type, by virtue of being a class. Despite this, value types, such as int,
can also be cast to and from object, and so be added to our stack. This feature of C# is called
type unification and is demonstrated here:

stack.Push (3);
int three = (int) stack.Pop();

When you cast between a value type and object, the CLR must perform some special work to
bridge the difference in semantics between value and reference types. This process is called
boxing and unboxing.

NOTE

In “Generics”, we’ll describe how to improve our stack class to better handle stacks with
same-typed elements.

Boxing and Unboxing

Boxing is the act of converting a value-type instance to a reference-type instance. The reference
type may be either the object class or an interface (which we will visit later in the chapter).!
In this example, we box an int into an object:

int x = 9;
object obj = x; // Box the int

Unboxing reverses the operation, by casting the object back to the original value type:
int y = (int)obj; // Unbox the int

Unboxing requires an explicit cast. The runtime checks that the stated value type matches the
actual object type, and throws an InvalidcastException if the check fails. For instance, the
following throws an exception, because 1ong does not exactly match int:

object obj = 9; // 9 is inferred to be of type int
long x = (long) obj; // InvalidCastException

The following succeeds, however:

object obj = 9;
long x = (int) obj;

As does this:
object obj = 3.5; // 3.5 is inferred to be of type double
int x = (int) (double) obj; // x is now 3

In the last example, (double) performs an unboxing and then (int) performs a numeric
conversion.

NOTE

Boxing conversions are crucial in providing a unified type system. The system is not perfect,
however: we’ll see in “Generics” that variance with arrays and generics supports only
reference conversions and not boxing conversions:

object[] al
object[] a2

new string[3]; // Legal
new int[3]; // Error

Copying semantics of boxing and unboxing

Boxing copies the value-type instance into the new object, and unboxing copies the contents of
the object back into a value-type instance. In the following example, changing the value of i
doesn’t change its previously boxed copy:

int 1 = 3;

object boxed = i;

i =5;

Console.WriteLine (boxed) ; // 3

Static and Runtime Type Checking
C# programs are type-checked both statically (at compile time) and at runtime (by the CLR).
Static type checking enables the compiler to verify the correctness of your program without

running it. The following code will fail because the compiler enforces static typing:

int x = "5";

Runtime type checking is performed by the CLR when you downcast via a reference conversion
or unboxing. For example:

object y = "5";
int z = (int) y; // Runtime error, downcast failed

Runtime type checking is possible because each object on the heap internally stores a little type
token. This token can be retrieved by calling the Get Type method of object.

The GetType Method and typeof Operator

All types in C# are represented at runtime with an instance of System. Type. There are two
basic ways to geta system. Type object:

m Call cetType on the instance.
m Use the typeof operator on a type name.

GetType is evaluated at runtime; typeof is evaluated statically at compile time (when generic
type parameters are involved, it’s resolved by the Just-In-Time compiler).

system.Type has properties for such things as the type’s name, assembly, base type, and so on.
For example:

using System;
public class Point { public int X, Y; }

class Test

{

static void Main ()

{

Point p = new Point();

Console.WritelLine (p.GetType () .Name); // Point
Console.WritelLine (typeof (Point) .Name); // Point
Console.WritelLine (p.GetType() == typeof (Point)); // True
Console.WritelLine (p.X.GetType () .Name); // Int32
Console.WriteLine (p.Y.GetType ().FullName) ; // System.Int32

system.Type also has methods that act as a gateway to the runtime’s reflection model,
described in Chapter 19.

The ToString Method

The Tostring method returns the default textual representation of a type instance. This method
is overridden by all built-in types. Here is an example of using the int type’s Tostring
method:

int x = 1;

string s x.ToString () ; // s is "1"

You can override the Tostring method on custom types as follows:

public class Panda

{

public string Name;

public override string ToString() => Name;

}

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p); // Petey

If you don’t override Tostring, the method returns the type name.

NOTE

When you call an overridden ocbject member such as Tostring directly on a value type,
boxing doesn’t occur. Boxing then occurs only if you cast:

int x = 1;
string sl = x.ToString(); // Calling on nonboxed value
object box = x;
string s2 = box.ToString(); // Calling on boxed value
. o 4o
Object Member Listing

Here are all the members of object:

public class Object
{
public Object();
public extern Type GetType () ;
public virtual bool Equals (object obj);
public static bool Equals (object objA, object objB);
public static bool ReferenceEquals (object objA, object obiB);
public virtual int GetHashCode() ;

public virtual string ToString();

protected virtual void Finalize();
protected extern object MemberwiseClone() ;

We describe the Equals, ReferenceEquals, and GetHashCode methods in “Equality
Comparison” in Chapter 6.

Structs
A struct is similar to a class, with the following key differences:
= A struct is a value type, whereas a class is a reference type.
m A struct does not support inheritance (other than implicitly deriving from object, or more
pr@ﬁseb@System.ValueType)

A struct can have all the members a class can, except the following:

= A parameterless constructor

= Field initializers
= A finalizer
» Virtual or protected members

A struct is appropriate when value-type semantics are desirable. Good examples of structs are
numeric types, where it is more natural for assignment to copy a value rather than a reference.
Because a struct is a value type, each instance does not require instantiation of an object on the
heap; this incurs a useful saving when creating many instances of a type. For instance, creating
an array of value type requires only a single heap allocation.

Struct Construction Semantics

The construction semantics of a struct are as follows:

m A parameterless constructor that you can’t override implicitly exists. This performs a
bitwise-zeroing of its fields.

= When you define a struct constructor, you must explicitly assign every field.

(And you can’t have field initializers.) Here is an example of declaring and calling struct
constructors:

public struct Point

{

int x, y;

public Point (int x, int y) { this.x = x; this.y = y; }
}
Point pl new Point (); // pl.x and pl.y will be 0

)i
Point p2 new Point (1, 1); // pl.x and pl.y will be 1
The next example generates three compile-time errors:

public struct Point

{

int x = 1; // Illegal: field initializer

int y;

public Point () {} // Illegal: parameterless constructor
public Point (int x) {this.x = x;} // Illegal: must assign field y

Changing struct to class makes this example legal.

Access Modifiers

To promote encapsulation, a type or type member may limit its accessibility to other types and
other assemblies by adding one of five access modifiers to the declaration:

public
Fully accessible. This is the implicit accessibility for members of an enum or interface.

internal

Accessible only within the containing assembly or friend assemblies. This is the default

accessibility for non-nested types.

private

Accessible only within the containing type. This is the default accessibility for members
of'a class or struct.

protected
Accessible only within the containing type or subclasses.

protected internal
The union of protected and internal accessibility. Eric Lippert explains it as follows:
Everything is as private as possible by default, and each modifier makes the thing more
accessible. So something that is protected internal is made more accessible in two
ways.

NOTE

The CLR has the concept of the intersection of protected and internal accessibility, but C#
does not support this.

Examples

Class2 is accessible from outside its assembly; c1ass1 is not:

class Classl {} // Classl is internal (default)
public class Class2 {}

classB exposes field x to other types in the same assembly; c1assa does not:

class ClassA { int x; } // x is private (default)
class ClassB { internal int x; }

Functions within subclass can call Bar but not Foo:

class BaseClass

{
void Foo () {} // Foo is private (default)
protected void Bar () {}

}

class Subclass : BaseClass

{
void Testl () { Foo(); } // Error - cannot access Foo
void Test2() { Bar(); } // OK

}

Friend Assemblies

In advanced scenarios, you can expose internal members to other friend assemblies by
adding the system.Runtime.CompilerServices.InternalsVisibleTo assembly attribute,
specifying the name of the friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]

If the friend assembly has a strong name (see Chapter 18), you must specify its fu/l 160-byte
public key:

[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]

You can extract the full public key from a strongly named assembly with a LINQ query (we
explain LINQ in detail in Chapter 8):

string key = string.Join ("",
Assembly.GetExecutingAssembly () .GetName () .GetPublicKey ()
.Select (b => b.ToString ("x2")));

NOTE

The companion sample in LINQPad invites you to browse to an assembly and then copies
the assembly’s full public key to the clipboard.

Accessibility Capping
A type caps the accessibility of its declared members. The most common example of capping is

when you have an internal type with pub1ic members. For example:

class C { public void Foo() {} }

c’s (default) internal accessibility caps Foo’s accessibility, effectively making Foo
internal. A common reason Foo would be marked pub1ic is to make for easier refactoring,
should c later be changed to public.

Restrictions on Access Modifiers

When overriding a base class function, accessibility must be identical on the overridden
function. For example:

class BaseClass { protected virtual wvoid Foo() {} }
class Subclassl : BaseClass { protected override void Foo() {} } // OK
class Subclass2 : BaseClass { public override void Foo() {} } // Error

(An exception is when overriding a protected internal method in another assembly, in
which case the override must simply be protected.)

The compiler prevents any inconsistent use of access modifiers. For example, a subclass itself
can be less accessible than a base class, but not more:

internal class A {}
public class B : A {} // Error

Interfaces

An interface is similar to a class, but it provides a specification rather than an implementation
for its members. An interface is special in the following ways:

» Interface members are all implicitly abstract. In contrast, a class can provide both abstract

members and concrete members with implementations.

m A class (or struct) can implement multiple interfaces. In contrast, a class can inherit from
only a single class, and a struct cannot inherit at all (aside from deriving from
System.ValueType)

An interface declaration is like a class declaration, but it provides no implementation for its
members, since all its members are implicitly abstract. These members will be implemented by
the classes and structs that implement the interface. An interface can contain only methods,
properties, events, and indexers, which noncoincidentally are precisely the members of a class
that can be abstract.

Here is the definition of the IEnumerator interface, defined in System.Collections:

public interface IEnumerator

{
bool MoveNext () ;

object Current { get; }
void Reset () ;

}

Interface members are always implicitly public and cannot declare an access modifier.
Implementing an interface means providing a pub1lic implementation for all its members:

internal class Countdown : IEnumerator

{

int count = 11;

public bool MoveNext () => count-- > 0;
public object Current => count;
public void Reset () { throw new NotSupportedException(); }

You can implicitly cast an object to any interface that it implements. For example:

IEnumerator e = new Countdown () ;
while (e.MoveNext ())
Console.Write (e.Current); // 109876543210

NOTE

Even though countdown is an internal class, its members that implement 1Enumerator can be
called publicly by casting an instance of Countdown to TEnumerator. For instance, if a public
type in the same assembly defined a method as follows:

public static class Util
{

public static object GetCountDown () => new CountDown () ;

}
a caller from another assembly could do this:

IEnumerator e = (IEnumerator) Util.GetCountDown () ;
e.MoveNext () ;

If TEnumerator was itself defined as internal, this wouldn’t be possible.

Extending an Interface

Interfaces may derive from other interfaces. For instance:

public interface IUndoable { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of Tundoable. In other words, types that implement
TRedoable must also implement the members of TUndoable.

Explicit Interface Implementation

Implementing multiple interfaces can sometimes result in a collision between member
signatures. You can resolve such collisions by explicitly implementing an interface member.
Consider the following example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2
{
public void Foo ()
{
Console.WriteLine ("Widget's implementation of I1.Foo");

}

int I2.Foo ()
{
Console.WriteLine ("Widget's implementation of I2.Foo");
return 42;
}
}

Because both 11 and 12 have conflicting Foo signatures, widget explicitly implements 12°s
Foo method. This lets the two methods coexist in one class. The only way to call an explicitly
implemented member is to cast to its interface:

Widget w = new Widget();

w.Foo () ; // Widget's implementation of Il.Foo
((I1)w) .Foo(); // Widget's implementation of Il.Foo
((I2)w) .Foo(); // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to hide members that are highly
specialized and distracting to a type’s normal use case. For example, a type that implements
Iserializable would typically want to avoid flaunting its 1serializable members unless
explicitly cast to that interface.

Implementing Interface Members Virtually

An implicitly implemented interface member is, by default, sealed. It must be marked virtual
or abstract in the base class in order to be overridden. For example:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
public wvirtual void Undo () => Console.WriteLine ("TextBox.Undo");

}

public class RichTextBox : TextBox
{
public override void Undo() => Console.WriteLine ("RichTextBox.Undo");

}

Calling the interface member through either the base class or the interface calls the subclass’s
implementation:

RichTextBox r = new RichTextBox () ;

r.Undo () ; // RichTextBox.Undo
((IUndoable)r) .Undo () ; // RichTextBox.Undo
((TextBox) r) .Undo () ; // RichTextBox.Undo

An explicitly implemented interface member cannot be marked virtual, nor can it be
overridden in the usual manner. It can, however, be reimplemented.

Reimplementing an Interface in a Subclass

A subclass can reimplement any interface member already implemented by a base class.
Reimplementation hijacks a member implementation (when called through the interface) and
works whether or not the member is virtual in the base class. It also works whether a
member is implemented implicitly or explicitly — although it works best in the latter case, as
we will demonstrate.

In the following example, TextBox implements TUndoable.Undo explicitly, and so it cannot be
marked as virtual. In order to “override” it, RichTextBox must re-implement Tundoable’s
Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{

void IUndoable.Undo () => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox, IUndoable
{

public void Undo () => Console.WriteLine ("RichTextBox.Undo");
}

Calling the reimplemented member through the interface calls the subclass’s implementation:

RichTextBox r = new RichTextBox () ;
r.Undo () ; // RichTextBox.Undo Case 1
((IUndoable) r) .Undo () ; // RichTextBox.Undo Case 2

Assuming the same rRichTextBox definition, suppose that TextBox implemented Undo
implicitly:

public class TextBox : IUndoable
{
public void Undo () => Console.WriteLine ("TextBox.Undo") ;

}

This would give us another way to call undo, which would “break” the system, as shown in
Case 3:

RichTextBox r = new RichTextBox () ;

r.Undo () ; // RichTextBox.Undo Case 1
((IUndoable)r) .Undo () ; // RichTextBox.Undo Case 2
((TextBox)r) .Undo () ; // TextBox.Undo Case 3

Case 3 demonstrates that reimplementation hijacking is effective only when a member is called
through the interface and not through the base class. This is usually undesirable as it can mean
inconsistent semantics. This makes reimplementation most appropriate as a strategy for
overriding explicitly implemented interface members.

Alternatives to interface reimple mentation

Even with explicit member implementation, interface reimplementation is problematic for a
couple of reasons:

» The subclass has no way to call the base class method.

» The base class author may not anticipate that a method will be reimplemented and may not
allow for the potential consequences.

Reimplementation can be a good last resort when subclassing hasn’t been anticipated. A better
option, however, is to design a base class such that reimplementation will never be required.
There are two ways to achieve this:

= When implicitly implementing a member, mark it virtual if appropriate.

= When explicitly implementing a member, use the following pattern if you anticipate that
subclasses might need to override any logic:

public class TextBox : IUndoable

{
void IUndoable.Undo () => Undo () ; // Calls method below
protected virtual void Undo() => Console.WritelLine ("TextBox.Undo");

}

public class RichTextBox : TextBox

{

protected override void Undo() => Console.WriteLine ("RichTextBox.Undo") ;

}

If you don’t anticipate any subclassing, you can mark the class as sealed to preempt interface
reimplementation.

Interfaces and Boxing
Converting a struct to an interface causes boxing. Calling an implicitly implemented member on
a struct does not cause boxing:

interface I { void Foo(); }
struct S : I { public void Foo() {} }

S s = new S();
.Foo(); // No boxing.

n

Ii=s; // Box occurs when casting to interface.
i.Foo();

WRITING A CLASS VERSUS AN INTERFACE
As a guideline:

= Use classes and subclasses for types that naturally share an implementation.
= Use interfaces for types that have independent implementations.

Consider the following classes:

abstract class Animal {}

abstract class Bird : Animal {}
abstract class Insect : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore : Animal {}

// Concrete classes:

class Ostrich : Bird {}

class Eagle : Bird, FlyingCreature, Carnivore {} // Illegal
class Bee : Insect, FlyingCreature {} // Illegal
class Flea : Insect, Carnivore {} // Illegal

The Eagle, Bee, and Flea classes do not compile because inheriting from multiple classes is
prohibited. To resolve this, we must convert some of the types to interfaces. The question then
arises, which types? Following our general rule, we could say that insects share an implementation,
and birds share an implementation, so they remain classes. In contrast, flying creatures have
independent mechanisms for flying, and carnivores have independent strategies for eating animals,
so we would convert FlyingCreature and carnivore to interfaces:

interface IFlyingCreature {}
interface ICarnivore {}

In a typical scenario, Bird and Insect might correspond to a Windows control and a web control;
FlyingCreature and Carnivore might correspond to 1Printable and IuUndoable.

Enums

An enum is a special value type that lets you specify a group of named numeric constants. For
example:

public enum BorderSide { Left, Right, Top, Bottom }
We can use this enum type as follows:

BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top) ; // true

Each enum member has an underlying integral value. By default:

» Underlying values are of type int.

» The constants 0, 1, 2... are automatically assigned, in the declaration order of the enum
members.

You may specify an alternative integral type, as follows:

public enum BorderSide : byte { Left, Right, Top, Bottom }

You may also specify an explicit underlying value for each enum member:

public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }

NOTE

The compiler also lets you explicitly assign some of the enum members. The unassigned
enum members keep incrementing from the last explicit value. The preceding example is
equivalent to the following:

public enum BorderSide : byte
{ Left=1, Right, Top=10, Bottom }

Enum Conversions

You can convert an enum instance to and from its underlying integral value with an explicit
cast:

int 1 = (int) BorderSide.Left;
BorderSide side = (BorderSide) 1i;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another. Suppose HorizontalAlignment i8
defined as follows:

public enum HorizontalAlignment
{
Left = BorderSide.Left,
Right = BorderSide.Right,
Center

A translation between the enum types uses the underlying integral values:

HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;
// same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;

The numeric literal o is treated specially by the compiler in an enum expression and does not
require an explicit cast:

BorderSide b = 0; // No cast required
if (b == 0)

There are two reasons for the special treatment of 0:

m The first member of an enum is often used as the “default” value.

m For combined enum types, 0 means “no flags.”

Flags Enums

You can combine enum members. To prevent ambiguities, members of a combinable enum

require explicitly assigned values, typically in powers of two. For example:

[Flags]
public enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }

To work with combined enum values, you use bitwise operators, such as | and s. These
operate on the underlying integral values:

BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
Console.WriteLine ("Includes Left"); // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"

BorderSides s BorderSides.Left;

s |= BorderSides.Right;

Console.WriteLine (s == leftRight); // True

s "= BorderSides.Right; // Toggles BorderSides.Right
Console.WriteLine (s); // Left

By convention, the F1ags attribute should always be applied to an enum type when its members
are combinable. If you declare such an enum without the F1ags attribute, you can still combine
members, but calling Tostring on an enum instance will emit a number rather than a series of
names.

By convention, a combinable enum type is given a plural rather than singular name.

For convenience, you can include combination members within an enum declaration itself:

[Flags]

public enum BorderSides

{
None=0,
Left=1, Right=2, Top=4, Bottom=8,
LeftRight = Left | Right,
TopBottom = Top | Bottom,
All LeftRight | TopBottom

Enum Operators

The operators that work with enums are:

+= -= ++ - sizeof

The bitwise, arithmetic, and comparison operators return the result of processing the
underlying integral values. Addition is permitted between an enum and an integral type, but not
between two enums.

Type-Safety Issues

Consider the following enum:

public enum BorderSide { Left, Right, Top, Bottom }

Since an enum can be cast to and from its underlying integral type, the actual value it may have

may fall outside the bounds of a legal enum member. For example:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b); // 12345

The bitwise and arithmetic operators can produce similarly invalid values:

BorderSide b = BorderSide.Bottom;
b++; // No errors

Aninvalid Borderside would break the following code:

void Draw (BorderSide side)

{

if (side == BorderSide.Left) ({...}
else if (side == BorderSide.Right) {...}
else if (side == BorderSide.Top) {...}
else {...} // Assume BorderSide.Bottom

One solution is to add another e1se clause:

else if (side == BorderSide.BRottom)
else throw new ArgumentException ("Invalid BorderSide: " + side, "side");

Another workaround is to explicitly check an enum value for validity. The static
Enum. IsDefined method does this job:

BorderSide side = (BorderSide) 12345;
Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side)); // False

Unfortunately, Enum. IsDefined does not work for flagged enums. However, the following
helper method (a trick dependent on the behavior of Enum. Tostring ()) returns true if a given
flagged enum is valid:

static bool IsFlagDefined (Enum e)
{

decimal d;
return !decimal.TryParse (e.ToString(), out d);

}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

static void Main ()

{
for (int 1 = 0; 1 <= 16; i++)
{

BorderSides side = (BorderSides)i;
Console.WriteLine (IsFlagDefined (side) + " " + side);
}
}
Nested Types

A nested type 1s declared within the scope of another type. For example:

public class TopLevel

{
public class Nested { } // Nested class

public enum Color { Red, Blue, Tan } // Nested enum
}

A nested type has the following features:

» [t can access the enclosing type’s private members and everything else the enclosing type
can access.

m [t can be declared with the full range of access modifiers, rather than just pub1ic and
internal.

» The default accessibility for a nested type is private rather than internal.

m Accessing a nested type from outside the enclosing type requires qualification with the
enclosing type’s name (like when accessing static members).

For example, to access color.Red from outside our TopLevel class, we’d have to do this:

TopLevel.Color color = TopLevel.Color.Red;

All types (classes, structs, interfaces, delegates, and enums) can be nested inside either a class
or a struct.

Here is an example of accessing a private member of a type from a nested type:

public class TopLevel
{
static int x;
class Nested
{
static void Foo() { Console.WriteLine (TopLevel.x); }

}

Here is an example of applying the protected access modifier to a nested type:

public class TopLevel
{

protected class Nested { }
}

public class SubTopLevel : TopLevel
{
static void Foo() { new TopLevel.Nested(); }

}

Here is an example of referring to a nested type from outside the enclosing type:

public class TopLevel
{

public class Nested { }
}

class Test
{

TopLevel .Nested n;
}

Nested types are used heavily by the compiler itself when it generates private classes that
capture state for constructs such as iterators and anonymous methods.

NOTE

If the sole reason for using a nested type is to avoid cluttering a namespace with too many
types, consider using a nested namespace instead. A nested type should be used because of
its stronger access control restrictions, or when the nested class must access private members
of the containing class.

Generics

C# has two separate mechanisms for writing code that is reusable across different types:
inheritance and generics. Whereas inheritance expresses reusability with a base type, generics
express reusability with a “template” that contains “placeholder” types. Generics, when
compared to inheritance, can increase type safety and reduce casting and boxing.

NOTE

C# generics and C++ templates are similar concepts, but they work differently. We explain
this difference in “C# Generics Versus C++ Templates”.

Generic Types

A generic type declares type parameters — placeholder types to be filled in by the consumer
of the generic type, which supplies the type arguments. Here is a generic type stack<T>,
designed to stack instances of type T. stack<T> declares a single type parameter T:

public class Stack<T>
{
int position;
T[] data = new T[100];
public void Push (T obj) => datalposition++] = obj;
public T Pop () => data[--position];

We can use stack<T> as follows:

var stack = new Stack<int>();
stack.Push (5);

stack.Push (10);

int x = stack.Pop(); // x 1is 10
int y stack.Pop () ; // y is 5

stack<int> fills in the type parameter T with the type argument int, implicitly creating a type
on the fly (the synthesis occurs at runtime). Attempting to push a string onto our stack<int>
would, however, produce a compile-time error. stack<int> effectively has the following
definition (substitutions appear in bold, with the class name hashed out to avoid confusion):

public class ###
{

int position;

int[] data = new int[100];

public void Push (int obj) => datalposition++] = obj;
public int Pop () => datal[--position];

Technically, we say that stack<T> is an open type, whereas stack<int> is a closed type. At
runtime, all generic type instances are closed — with the placeholder types filled in. This
means that the following statement is illegal:

var stack = new Stack<T>(); // Illegal: What is T?

unless inside a class or method that itself defines T as a type parameter:

public class Stack<T>
{

public Stack<T> Clone ()

{
Stack<T> clone = new Stack<T>(); // Legal

Why Generics Exist

Generics exist to write code that is reusable across different types. Suppose we needed a stack
of integers, but we didn’t have generic types. One solution would be to hardcode a separate
version of the class for every required element type (e.g., IntStack, StringStack, etc.).
Clearly, this would cause considerable code duplication. Another solution would be to write a
stack that is generalized by using object as the element type:

public class ObjectStack
{
int position;
object[] data = new object[10];
public void Push (object obj) => data[position++] = obj;
public object Pop () => data[--position];

Anobjectstack, however, wouldn’t work as well as a hardcoded 1ntstack for specifically
stacking integers. Specifically, an objectstack would require boxing and downcasting that
could not be checked at compile time:

// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s"); // Wrong type, but no error!
int 1 = (int)stack.Pop(); // Downcast - runtime error

What we need is both a general implementation of a stack that works for all element types, and
a way to easily specialize that stack to a specific element type for increased type safety and
reduced casting and boxing. Generics give us precisely this, by allowing us to parameterize the
element type. stack<T> has the benefits of both objectstack and Intstack. Like
ObjectsStack, Stack<T> is written once to work generally across all types. Like 1ntstack,
Stack<T> is specialized for a particular type — the beauty is that this type is T, which we
substitute on the fly.

NOTE

Objectstack is functionally equivalent to Stack<object>.

Generic Methods
A generic method declares type parameters within the signature of a method.

With generic methods, many fundamental algorithms can be implemented in a general-purpose
way only. Here is a generic method that swaps the contents of two variables of any type T:

static void Swap<T> (ref T a, ref T b)
{

T temp = a;
a = b;
b = temp;

}
Swap<T> can be used as follows:

int x = 5;
int y = 10;
Swap (ref x, ref y);

Generally, there is no need to supply type arguments to a generic method, because the compiler
can implicitly infer the type. If there is ambiguity, generic methods can be called with the type
arguments as follows:

Swap<int> (ref x, ref y);

Within a generic #ype, a method is not classed as generic unless it introduces type parameters
(with the angle bracket syntax). The pop method in our generic stack merely uses the type’s
existing type parameter, T, and is not classed as a generic method.

Methods and types are the only constructs that can introduce type parameters. Properties,
indexers, events, fields, constructors, operators, and so on cannot declare type parameters,
although they can partake in any type parameters already declared by their enclosing type. In
our generic stack example, for instance, we could write an indexer that returns a generic item:

public T this [int index] => data [index];

Similarly, constructors can partake in existing type parameters, but not introduce them:

public Stack<T>() { } // Illegal

Declaring Type Parameters

Type parameters can be introduced in the declaration of classes, structs, interfaces, delegates
(covered in Chapter 4), and methods. Other constructs, such as properties, cannot introduce a
type parameter, but can use one. For example, the property value uses T:

public struct Nullable<T>

{
public T Value { get; }

A generic type or method can have multiple parameters. For example:

class Dictionary<TKey, TValue> {...}
To instantiate:
Dictionary<int, string> myDic = new Dictionary<int,string>();

Or:

var myDic = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number of type
parameters is different. For example, the following three type names do not conflict:

class A {}
class A<T> {}
class A<T1,T2> {}

NOTE

By convention, generic types and methods with a single type parameter typically name their
parameter T, as long as the intent of the parameter is clear. When using multiple type
parameters, each parameter is prefixed with T, but has a more descriptive name.

typeof and Unbound Generic Types

Open generic types do not exist at runtime: open generic types are closed as part of
compilation. However, it is possible for an unbound generic type to exist at runtime — purely
as a Type object. The only way to specify an unbound generic type in C# is with the t ypeof
operator:

class A<T> {}
class A<T1,T2> {}

Type al
Type a2

typeof (A<>); // Unbound type (notice no type arguments) .
typeof (A<,>); // Use commas to indicate multiple type args.

Open generic types are used in conjunction with the Reflection API (Chapter 19).

You can also use the typeof operator to specify a closed type:

Type a3 = typeof (A<int,int>);
or an open type (which is closed at runtime):

class B<T> { void X () { Type t = typeof (T); } }

The default Generic Value

The default keyword can be used to get the default value for a generic type parameter. The
default value for a reference type is nu11, and the default value for a value type is the result of
bitwise-zeroing the value type’s fields:

static void Zap<T> (T[] array)
{
for (int 1 = 0; i < array.Length; i++)
array[i] = default(T);

Generic Constraints

By default, a type parameter can be substituted with any type whatsoever. Constraints can be
applied to a type parameter to require more specific type arguments. These are the possible
constraints:

where T : base-class // Base-class constraint

where T : interface // Interface constraint

where T : class // Reference-type constraint

where T : struct // Value-type constraint (excludes Nullable types)
where T : new() // Parameterless constructor constraint

where U : T // Naked type constraint

In the following example, GenericClass<T, U> requires T to derive from (or be identical to)
SomeClass and implement Interfacel, and requires U to provide a parameterless
constructor:

class SomeClass {}
interface Interfacel {}

class GenericClass<T,U> where T : SomeClass, Interfacel
where U : new/()

{...}

Constraints can be applied wherever type parameters are defined, in both methods and type
definitions.

A base-class constraint specifies that the type parameter must subclass (or match) a particular
class; an interface constraint specifies that the type parameter must implement that interface.
These constraints allow instances of the type parameter to be implicitly converted to that class
or interface. For example, suppose we want to write a generic Max method, which returns the
maximum of two values. We can take advantage of the generic interface defined in the
framework called Tcomparable<T>:

public interface IComparable<T> // Simplified version of interface

{

int CompareTo (T other);

}

CompareTo returns a positive number if this is greater than other. Using this interface as a
constraint, we can write a Max method as follows (to avoid distraction, null checking is
omitted):

static T Max <T> (T a, T b) where T : IComparable<T>
{

return a.CompareTo (b) > 0 ? a : b;

}

The mMax method can accept arguments of any type implementing 1Comparable<T> (Which
includes most built-in types such as int and string):

int z = Max (5, 10); // 10
string last = Max ("ant", "zoo"); // zoo

The class constraint and struct constraint specify that T must be a reference type or (non-
nullable) value type. A great example of the struct constraint is the system.Nullable<T>
struct (we will discuss this class in depth in “Nullable Types™ in Chapter 4):

struct Nullable<T> where T : struct {...}

The parameterless constructor constraint requires T to have a public parameterless
constructor. If this constraint is defined, you can call new () on T:

static void Initialize<T> (T[] array) where T : new/()

{
for (int i = 0; i < array.Length; i++)
arrayl[i] = new T();

The naked type constraint requires one type parameter to derive from (or match) another type
parameter. In this example, the method rilteredstack returns another stack, containing only
the subset of elements where the type parameter v is of the type parameter T:

class Stack<T>

{
Stack<U> FilteredStack<U>() where U : T {...}

}

Subclassing Generic Types

A generic class can be subclassed just like a nongeneric class. The subclass can leave the base
class’s type parameters open, as in the following example:

class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}

Or the subclass can close the generic type parameters with a concrete type:

class IntStack : Stack<int> {...}

A subtype can also introduce fresh type arguments:

class List<T> {...
class KeyedList<T,TKey> : List<T> {...}

NOTE

Technically, all type arguments on a subtype are fresh: you could say that a subtype closes
and then reopens the base type arguments. This means that a subclass can give new (and
potentially more meaningful) names to the type arguments it reopens:

class List<T> {...}

class KeyedList<TElement, TKey> : List<TElement> {...}

Self-Referencing Generic Declarations

A type can name itself as the concrete type when closing a type argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>

{
public string Color { get; set; }
public int CC { get; set; }

public bool Equals (Balloon b)
{

if (b == null) return false;
return b.Color == Color && b.CC == CC;

The following are also legal:

class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data

Static data is unique for each closed type:

class Bob<T> { public static int Count; }

class Test

{
static void Main ()

{

Console.WriteLine (++Bob<int>.Count); // 1
Console.WriteLine (++Bob<int>.Count); // 2
Console.WriteLine (++Bob<string>.Count); // 1
Console.WriteLine (++Bob<object>.Count); // 1

Type Parameters and Conversions
C#’s cast operator can perform several kinds of conversion, including:

= Numeric conversion

= Reference conversion

= Boxing/unboxing conversion

= Custom conversion (via operator overloading; see Chapter 4)

The decision as to which kind of conversion will take place happens at compile time, based on
the known types of the operands. This creates an interesting scenario with generic type
parameters, because the precise operand types are unknown at compile time. If this leads to
ambiguity, the compiler generates an error.

The most common scenario is when you want to perform a reference conversion:

StringBuilder Foo<T> (T arg)
{
if (arg is StringBuilder)
return (StringBuilder) arg; // Will not compile

Without knowledge of T’s actual type, the compiler is concerned that you might have intended
this to be a custom conversion. The simplest solution is to instead use the as operator, which
is unambiguous because it cannot perform custom conversions:

StringBuilder Foo<T> (T arg)

{
StringBuilder sb = arg as StringBuilder;
if (sb != null) return sb;

A more general solution is to first cast to object. This works because conversions to/from
object are assumed not to be custom conversions, but reference or boxing/unboxing
conversions. In this case, stringBuilder is a reference type, so it has to be a reference
conversion:

return (StringBuilder) (object) arg;

Unboxing conversions can also introduce ambiguities. The following could be an unboxing,
numeric, or custom conversion:

int Foo<T> (T x) => (int) x; // Compile-time error

The solution, again, is to first cast to object and then to int (which then unambiguously
signals an unboxing conversion in this case):

int Foo<T> (T x) => (int) (object) x;

Covariance

Assuming A is convertible to B, x has a covariant type parameter if x<a> is convertible to
X.

NOTE

With C#’s notion of covariance (and contravariance), “convertible” means convertible via an
implicit reference conversion — such as a subclassing B, or a implementing B. Numeric
conversions, boxing conversions, and custom conversions are not included.

For instance, type 1Foo<T> has a covariant T if the following is legal:

IFoo<string> s = ...;
IFoo<object> b

]
[0]

From C# 4.0, interfaces permit covariant type parameters (as do delegates — see Chapter 4),
but classes do not. Arrays also allow covariance (a[] can be converted to B[] if 2 has an
implicit reference conversion to B), and are discussed here for comparison.

NOTE

Covariance and contravariance (or simply “variance”) are advanced concepts. The
motivation behind introducing and enhancing variance in C# was to allow generic interface
and generic types (in particular, those defined in the Framework, such as 1Enumerable<T>) to
work more as you’d expect. You can benefit from this without understanding the details
behind covariance and contravariance.

Variance is not automatic

To ensure static type safety, type parameters are not automatically variant. Consider the
following:

class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T> // A simple Stack implementation
{

int position;

T[] data = new T[100];

public void Push (T obj) => datal[position++] = obj;
public T Pop () => data[--position];

The following fails to compile:

Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears; // Compile-time error

That restriction prevents the possibility of runtime failure with the following code:

animals.Push (new Camel()); // Trying to add Camel to bears

Lack of covariance, however, can hinder reusability. Suppose, for instance, we wanted to write
a method to wash a stack of animals:

public class ZooCleaner

{
public static void Wash (Stack<Animal> animals) {...}

}

Calling wash with a stack of bears would generate a compile-time error. One workaround is to
redefine the wash method with a constraint:

class ZooCleaner

{
public static void Wash<T> (Stack<T> animals) where T : Animal { ... }

}

We can now call wash as follows:

Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);

Another solution is to have stack<T> implement an interface with a covariant type parameter,
as we’ll see shortly.

Arrays

For historical reasons, array types support covariance. This means that B[] can be castto A[]
if B subclasses a (and both are reference types). For example:

Bear[] bears = new Bear[3];
Animal([] animals = bears; // OK

The downside of this reusability is that element assignments can fail at runtime:

animals[0] = new Camel () ; // Runtime error

Declaring a covariant type parameter

As of C# 4.0, type parameters on interfaces and delegates can be declared covariant by
marking them with the out modifier. This modifier ensures that, unlike with arrays, covariant
type parameters are fully type-safe.

We can illustrate this with our stack<T> class by having it implement the following interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output positions (e.g., return types for
methods). The out modifier flags the type parameter as covariant and allows us to do this:

var bears = new Stack<Bear>();

bears.Push (new Bear());

// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal

Animal a = animals.Pop();

The conversion frombears to animals is permitted by the compiler — by virtue of the type
parameter being covariant. This is type-safe because the case the compiler is trying to avoid —
pushing a came1 onto the stack — can’t occur as there’s no way to feed a came1 into an
interface where T can appear only in output positions.

NOTE

Covariance (and contravariance) in interfaces is something that you typically consume: it’s
less common that you need to write variant interfaces.

WARNING

Curiously, method parameters marked as out are not eligible for covariance, due to a
limitation in the CLR.

We can leverage the ability to cast covariantly to solve the reusability problem described
earlier:

public class ZooCleaner

{
public static void Wash (IPoppable<Animal> animals) { ... }

}

NOTE

The 1Enumerator<T> and IEnumerable<T> interfaces described in Chapter 7 have a covariant
7. This allows you to cast IEnumerable<string> t0 IEnumerable<object>, for instance.

The compiler will generate an error if you use a covariant type parameter in an input position
(e.g., a parameter to a method or a writable property).

NOTE

Covariance (and contravariance) works only for elements with reference conversions — not
boxing conversions. (This applies both to type parameter variance and array variance.) So, if
you wrote a method that accepted a parameter of type 1poppable<object>, you could call it
with IPoppable<string>, but not Iroppable<int>.

Contravariance

We previously saw that, assuming that a allows an implicit reference conversion to B, a type x
has a covariant type parameter if x<a> allows a reference conversion to x. Contravariance
is when you can convert in the reverse direction — from x to x<a>. This is supported if the
type parameter appears only in input positions, and is designated with the in modifier.
Extending our previous example, if the stack<T> class implements the following interface:

public interface IPushable<in T> { void Push (T obj); }

we can legally do this:

IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());

No member in IPushable oufputs a T, o we can’t get into trouble by casting animals to
bears (there’s no way to pop, for instance, through that interface).

NOTE

Our stack<T> class can implement both 1Pushable<T> and 1Poppable<T> — despite T having
opposing variance annotations in the two interfaces! This works because you must exercise
variance through the interface and not the class; therefore, you must commit to the lens of
either 1Poppable oOr TPushable before performing a variant conversion. This lens then restricts
you to the operations that are legal under the appropriate variance rules.

This also illustrates why classes do not allow variant type parameters: concrete
implementations typically require data to flow in both directions.

To give another example, consider the following interface, defined as part of the .NET
Framework:

public interface IComparer<in T>

{
// Returns a value indicating the relative ordering of a and b
int Compare (T a, T b);

}

Because the interface has a contravariant T, we can use an IComparer<object> to compare
two strings:

var objectComparer = Comparer<object>.Default;

// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;

int result = stringComparer.Compare ("Brett", "Jemaine");

Mirroring covariance, the compiler will report an error if you try to use a contravariant type
parameter in an output position (e.g., as a return value, or in a readable property).

C# Generics Versus C++ Templates

C# generics are similar in application to C++ templates, but they work very differently. In both
cases, a synthesis between the producer and consumer must take place, where the placeholder
types of the producer are filled in by the consumer. However, with C# generics, producer types
(i.e., open types such as .ist<T>) can be compiled into a library (such as mscorlib.dll). This
works because the synthesis between the producer and the consumer that produces closed types
doesn’t actually happen until runtime. With C++ templates, this synthesis is performed at
compile time. This means that in C++ you don’t deploy template libraries as .dlls — they exist
only as source code. It also makes it difficult to dynamically inspect, let alone create,
parameterized types on the fly.

To dig deeper into why this is the case, consider the Max method in C#, once more:

static T Max <T> (

T a
=> a.CompareTo (b)

T b) where T : IComparable<T>
0

’
> a : b;

Why couldn’t we have implemented it like this?

static T Max <T> (T a, T b)
=> (a>b 2?2 a: b); // Compile error

The reason is that Max needs to be compiled once and work for all possible values of T.
Compilation cannot succeed, because there is no single meaning for > across all values of T —
in fact, not every T even has a > operator. In contrast, the following code shows the same mMax
method written with C++ templates. This code will be compiled separately for each value of T,
taking on whatever semantics > has for a particular T, failing to compile if a particular T does
not support the > operator:

template <class T> T Max (T a, T b)
{
return a > b ? a : b;

}

I The reference type may also be system.valueType Or System.Enum (Chapter 6).

Chapter 4. Advanced C#

In this chapter, we cover advanced C# topics that build on concepts explored in Chapters 2 and
3. You should read the first four sections sequentially; you can read the remaining sections in
any order.

Delegates
A delegate is an object that knows how to call a method.

A delegate type defines the kind of method that delegate instances can call. Specifically, it
defines the method’s return type and its parameter types. The following defines a delegate
type called Transformer:

delegate int Transformer (int x);

Transformer 1S compatible with any method with an int return type and a single int
parameter, such as this:

static int Square (int x) { return x * x; }
or more tersely:
static int Square (int x) => x * x;
Assigning a method to a delegate variable creates a delegate instance:
Transformer t = Square;
which can be invoked in the same way as a method:
int answer = t(3); // answer is 9
Here’s a complete example:

delegate int Transformer (int x);

class Test

{

static void Main ()

{

Transformer t = Square; // Create delegate instance
int result = t(3); // Invoke delegate
Console.WriteLine (result); // 9

}
static int Square (int x) => x * x;

}

A delegate instance literally acts as a delegate for the caller: the caller invokes the delegate,
and then the delegate calls the target method. This indirection decouples the caller from the
target method.

The statement:
Transformer t = Square;
1s shorthand for:

Transformer t = new Transformer (Square);

NOTE

Technically, we are specifying a method group when we refer to square without brackets or
arguments. If the method is overloaded, C# will pick the correct overload based on the
signature of the delegate to which it’s being assigned.

The expression:
t(3)

1s shorthand for:

t.Invoke (3)
NOTE
A delegate is similar to a callback, a general term that captures constructs such as C function
pointers.

Writing Plug-in Methods with Delegates

A delegate variable is assigned a method at runtime. This is useful for writing plug-in methods.
In this example, we have a utility method named Transform that applies a transform to each
element in an integer array. The Transform method has a delegate parameter, for specifying a
plug-in transform.

public delegate int Transformer (int x);

class Util
{

public static void Transform (int[] values, Transformer t)

{

for (int i = 0; i < values.Length; i++)
values[i] = t (values[i]);

}

}

class Test
{
static void Main ()
{
int[] values = { 1, 2, 3 };
Util.Transform (values, Square); // Hook in the Square method
foreach (int i in wvalues)
Console.Write (1 + "™ "), // 1 4 9

static int Square (int x) => x * x;

}

Our Transform method is a higher-order function, because it’s a function that takes a function
as an argument. (A method that returns a delegate would also be a higher-order function.)

Multicast Delegates

All delegate instances have multicast capability. This means that a delegate instance can
reference not just a single target method, but also a list of target methods. The + and +=
operators combine delegate instances. For example:

SomeDelegate d = SomeMethodl;
d += SomeMethod2;

The last line is functionally the same as:

d = d + SomeMethod2;

Invoking 4 will now call both someMethodl and someMethod2. Delegates are invoked in the
order they are added.

The - and -= operators remove the right delegate operand from the left delegate operand. For
example:

d -= SomeMethodl;

Invoking d will now cause only someMethod2 to be invoked.

Calling + or += on a delegate variable with a nu11 value works, and it is equivalent to
assigning the variable to a new value:

SomeDelegate d = null;
d += SomeMethodl; // Equivalent (when d is null) to d = SomeMethodl;

Similarly, calling -= on a delegate variable with a single target is equivalent to assigning nul1
to that variable.

NOTE

Delegates are immutable, so when you call += or -=, you’re in fact creating a new delegate
instance and assigning it to the existing variable.

If a multicast delegate has a nonvoid return type, the caller receives the return value from the
last method to be invoked. The preceding methods are still called, but their return values are
discarded. In most scenarios in which multicast delegates are used, they have void return
types, so this subtlety does not arise.

NOTE

All delegate types implicitly derive from system.MulticastDelegate, which inherits from

System.Delegate. C# compiles +, -, +=, and -= operations made on a delegate to the static
combine and Remove methods of the system.Delegate class.

Multicast delegate example

Suppose you wrote a method that took a long time to execute. That method could regularly
report progress to its caller by invoking a delegate. In this example, the Hardwork method has a
ProgressReporter delegate parameter, which it invokes to indicate progress:

public delegate void ProgressReporter (int percentComplete);

public class Util
{ public static void HardWork (ProgressReporter p)
{ for (int 1 = 0; 1 < 10; i++)
{ p (i * 10); // Invoke delegate
System.Threading.Thread.Sleep (100); // Simulate hard work
}

To monitor progress, the Main method creates a multicast delegate instance p, such that
progress is monitored by two independent methods:

class Test

{
static void Main ()
{
ProgressReporter p = WriteProgressToConsole;
p += WriteProgressToFile;
Util.HardWork (p);
}

static void WriteProgressToConsole (int percentComplete)
=> Console.WriteLine (percentComplete);

static void WriteProgressToFile (int percentComplete)
=> System.IO.File.WriteAllText ("progress.txt",
percentComplete.ToString()) ;

Instance Versus Static Method Targets

When an instance method is assigned to a delegate object, the latter must maintain a reference
not only to the method, but also to the instance to which the method belongs. The
System.Delegate class’s Target property represents this instance (and will be null for a
delegate referencing a static method). For example:

public delegate void ProgressReporter (int percentComplete) ;

class Test
{
static void Main ()
{
X x = new X();
ProgressReporter p = x.InstanceProgress;
p(99); // 99
Console.WriteLine (p.Target == x); // True
Console.WriteLine (p.Method) ; // Void InstanceProgress (Int32)

}

class X

{
public void InstanceProgress (int percentComplete)
=> Console.WritelLine (percentComplete);

Generic Delegate Types

A delegate type may contain generic type parameters. For example:

public delegate T Transformer<T> (T arg);

With this definition, we can write a generalized Transform utility method that works on any

type:

public class Util

{
public static void Transform<T> (T[] values, Transformer<T> t)

{
for (int 1 = 0; i < values.Length; i++)
values[i] = t (values[i]);

}

class Test

{

static void Main ()

{

int[] values = { 1, 2, 3 };
Util.Transform (values, Square); // Hook in Square
foreach (int i in values)

Console.Write (i + " "); // 1 4 9

}

static int Square (int x) => x * x;

}

The Func and Action Delegates

With generic delegates, it becomes possible to write a small set of delegate types that are so
general they can work for methods of any return type and any (reasonable) number of
arguments. These delegates are the Func and Action delegates, defined in the system
namespace (the in and out annotations indicate variance, which we will cover shortly):

delegate TResult Func <out TResult> O);

delegate TResult Func <in T, out TResult> (T arg);

delegate TResult Func <in T1, in T2, out TResult> (Tl argl, T2 arg2);
. and so on, up to T16

delegate void Action ()

delegate void Action <in T> (T arg);

delegate void Action <in T1, in T2> (Tl argl, T2 arg?);
. and so on, up to Tl16

These delegates are extremely general. The Transformer delegate in our previous example
can be replaced with a Func delegate that takes a single argument of type T and returns a same-
typed value:

public static void Transform<T> (T[] values, Func<T,T> transformer)
{

for (int 1 = 0; i < values.Length; i++)
values[i] = transformer (values[i]):;

The only practical scenarios not covered by these delegates are ref/out and pointer
parameters.

NOTE

Prior to Framework 2.0, the Func and action delegates did not exist (because generics did not
exist). It’s for this historical reason that much of the Framework uses custom delegate types
rather than rFunc and Action.

Delegates Versus Interfaces

A problem that can be solved with a delegate can also be solved with an interface. For

instance, we can rewrite our original example with an interface called 1Transformer instead
of a delegate:

public interface ITransformer
{
int Transform (int x);

}

public class Util
{
public static void TransformAll (int[] values, ITransformer t)
{
for (int i = 0; i < values.Length; i++)
values[i] = t.Transform (values[i]):;
}
}

class Squarer : ITransformer
{
public int Transform (int x) => x * x;

}

static void Main ()
{
int[] values = { 1, 2, 3 };
Util.TransformAll (values, new Squarer());
foreach (int i in wvalues)
Console.WriteLine (1i);

A delegate design may be a better choice than an interface design if one or more of these
conditions are true:

= The interface defines only a single method.
= Multicast capability is needed.
» The subscriber needs to implement the interface multiple times.

Inthe 1Transformer example, we don’t need to multicast. However, the interface defines only
a single method. Furthermore, our subscriber may need to implement ITransformer multiple
times, to support different transforms, such as square or cube. With interfaces, we’re forced

into writing a separate type per transform, since Test can implement ITransformer only once.
This is quite cumbersome:

class Squarer : ITransformer
{
public int Transform (int x) => x * x;

}

class Cuber : ITransformer
{
public int Transform (int x) => x * x * x;

}

static void Main ()
{
int[] values = { 1, 2, 3 };
Util.TransformAll (values, new Cuber()):;
foreach (int i in wvalues)
Console.WriteLine (1i);

Delegate Compatibility
Type compatibility
Delegate types are all incompatible with one another, even if their signatures are the same:

delegate void D1();
delegate void D2();

D1 dil Methodl;
D2 d2 = dl; // Compile-time error

NOTE

The following, however, is permitted:

D2 d2 = new D2 (dl);

Delegate instances are considered equal if they have the same method targets:

delegate void D();

D dl = Methodl;
D d2 = Methodl;
Console.WriteLine (dl == d2); // True

Multicast delegates are considered equal if they reference the same methods in the same order.

Parameter compatibility

When you call a method, you can supply arguments that have more specific types than the
parameters of that method. This is ordinary polymorphic behavior. For exactly the same reason,
a delegate can have more specific parameter types than its method target. This is called

contravariance.

Here’s an example:

delegate void StringAction (string s);

class Test

{

static void Main ()

{
StringAction sa = new StringAction (ActOnObject);
sa ("hello");

}

static void ActOnObject (object o) => Console.WriteLine (0); // hello
}

(As with type parameter variance, delegates are variant only for reference conversions.)

A delegate merely calls a method on someone else’s behalf. In this case, the stringaction is
invoked with an argument of type string. When the argument is then relayed to the target
method, the argument gets implicitly upcast to an object.

NOTE

The standard event pattern is designed to help you leverage contravariance through its use of
the common Eventargs base class. For example, you can have a single method invoked by
two different delegates, one passing a MouseEventargs and the other passing a KeyEventargs.

Return type compatibility

If you call a method, you may get back a type that is more specific than what you asked for.
This is ordinary polymorphic behavior. For exactly the same reason, a delegate’s target method
may return a more specific type than described by the delegate. This is called covariance. For
example:

delegate object ObjectRetriever();

class Test

{

static void Main ()

{
ObjectRetriever o = new ObjectRetriever (RetrieveString);
object result = o();
Console.WriteLine (result); // hello

}

static string RetrieveString() => "hello";

}

ObjectRetriever expects to get back an object, but an object subclass will also do:
delegate return types are covariant.

Generic delegate type parameter variance

In Chapter 3 we saw how generic interfaces support covariant and contravariant type
parameters. The same capability exists for delegates too (from C# 4.0 onward).

If you’re defining a generic delegate type, it’s good practice to:

» Mark a type parameter used only on the return value as covariant (out).
» Mark any type parameters used only on parameters as contravariant (in).

Doing so allows conversions to work naturally by respecting inheritance relationships between
types.

The following delegate (defined in the system namespace) has a covariant TResult:
delegate TResult Func<out TResult>();
allowing:

Func<string> x = ...;
Func<object> y =

|
X

The following delegate (defined in the system namespace) has a contravariant T:

delegate void Action<in T> (T arg);

allowing:

Action<object> x = ...;
Action<string> y = x;

Events
When using delegates, two emergent roles commonly appear: broadcaster and subscriber.

The broadcaster is a type that contains a delegate field. The broadcaster decides when to
broadcast, by invoking the delegate.

The subscribers are the method target recipients. A subscriber decides when to start and stop
listening, by calling += and -= on the broadcaster’s delegate. A subscriber does not know
about, or interfere with, other subscribers.

Events are a language feature that formalizes this pattern. An event is a construct that exposes
just the subset of delegate features required for the broadcaster/subscriber model. The main
purpose of events is to prevent subscribers from interfering with one another.

The easiest way to declare an event is to put the event keyword in front of a delegate member:

// Delegate definition
public delegate void PriceChangedHandler (decimal oldPrice,
decimal newPrice);
public class Broadcaster
{
// Event declaration
public event PriceChangedHandler PriceChanged;

}

Code within the Broadcaster type has full access to Pricechanged and can treat it as a
delegate. Code outside of Broadcaster can only perform += and -= operations on the
PriceChanged event.

HOW DO EVENTS WORK ON THE INSIDE?

Three things happen under the covers when you declare an event as follows:

public class Broadcaster

{
public event PriceChangedHandler PriceChanged;

}
First, the compiler translates the event declaration into something close to the following:

PriceChangedHandler priceChanged; // private delegate
public event PriceChangedHandler PriceChanged
{

add { priceChanged += value; }

remove { priceChanged -= value; }

}

The add and remove keywords denote explicit event accessors — which act rather like property
accessors. We’ll describe how to write these later.

Second, the compiler looks within the Broadcaster class for references to pricechanged that
perform operations other than += or -=, and redirects them to the underlying pricechanged delegate
field.

Third, the compiler translates += and -= operations on the event to calls to the event’s add and
remove accessors. Interestingly, this makes the behavior of += and -= unique when applied to events:
unlike in other scenarios, it’s not simply a shortcut for + and - followed by an assignment.

Consider the following example. The stock class fires its PriceChanged event every time the
Price of'the stock changes:

public delegate void PriceChangedHandler (decimal oldPrice,
decimal newPrice);
public class Stock

{
string symbol;
decimal price;

public Stock (string symbol) { this.symbol = symbol; }
public event PriceChangedHandler PriceChanged;

public decimal Price

{
get { return price; }
set

{
if (price == value) return; // Exit if nothing has changed
decimal oldPrice = price;
price = value;
if (PriceChanged != null) // If invocation list not
PriceChanged (oldPrice, price); // empty, fire event.

If we remove the event keyword from our example so that pricechanged becomes an
ordinary delegate field, our example would give the same results. However, stock would be
less robust, in that subscribers could do the following things to interfere with each other:

m Replace other subscribers by reassigning priceChanged (instead of using the += operator).

m Clear all subscribers (by setting PriceChanged to null).

= Broadcast to other subscribers by invoking the delegate.

NOTE

WinRT events have slightly different semantics in that attaching to an event returns a token
which is required to detach from the event. The compiler transparently bridges this gap (by
maintaining an internal dictionary of tokens) so that you can consume WinRT events as
though they were ordinary CLR events.

Standard Event Pattern

The .NET Framework defines a standard pattern for writing events. Its purpose is to provide
consistency across both Framework and user code. At the core of the standard event pattern is
System.EventArgs: a predefined Framework class with no members (other than the static
Empty property). EventArgs is a base class for conveying information for an event. In our
stock example, we would subclass EventArgs to convey the old and new prices when a
PriceChanged event is fired:

public class PriceChangedEventArgs : System.EventArgs
{

public readonly decimal LastPrice;

public readonly decimal NewPrice;

public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
{
LastPrice = lastPrice;
NewPrice = newPrice;
}
}

For reusability, the Eventargs subclass is named according to the information it contains
(rather than the event for which it will be used). It typically exposes data as properties or as
read-only fields.

With an Eventargs subclass in place, the next step is to choose or define a delegate for the
event. There are three rules:

= [t must have a void return type.

» [t must accept two arguments: the first of type object, and the second a subclass of
EventArgs. The first argument indicates the event broadcaster, and the second argument
contains the extra information to convey.

m [ts name must end with EventHandler.

The Framework defines a generic delegate called system.EventHandler<> that satisfies
these rules:

public delegate void EventHandler<TEventArgs>
(object source, TEventArgs e) where TEventArgs : EventArgs;

NOTE

Before generics existed in the language (prior to C# 2.0), we would have had to instead write
a custom delegate as follows:

public delegate void PriceChangedHandler
(object sender, PriceChangedEventArgs e);

For historical reasons, most events within the Framework use delegates defined in this way.

The next step is to define an event of the chosen delegate type. Here, we use the generic
EventHandler delegate:

public class Stock
{

public event EventHandler<PriceChangedEventArgs> PriceChanged;
}

Finally, the pattern requires that you write a protected virtual method that fires the event. The
name must match the name of the event, prefixed with the word On, and then accept a single
EventArgs argument:

public class Stock

{
public event EventHandler<PriceChangedEventArgs> PriceChanged;
protected virtual void OnPriceChanged (PriceChangedEventArgs e)
{

if (PriceChanged !'= null) PriceChanged (this, e);
}

NOTE

In multithreaded scenarios (Chapter 14), you need to assign the delegate to a temporary
variable before testing and invoking it, to avoid a thread-safety error:

var temp = PriceChanged;
if (temp != null) temp (this, e);

We can achieve the same functionality without the temp variable from C# 6 with the null-
conditional operator:

PriceChanged?.Invoke (this, e);

Being both thread-safe and succinct, this is now the best general way to invoke events.

This provides a central point from which subclasses can invoke or override the event
(assuming the class is not sealed).

Here’s the complete example:

using System;

public class PriceChangedEventArgs : EventArgs
{

public readonly decimal LastPrice;

public readonly decimal NewPrice;

public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
{
LastPrice = lastPrice; NewPrice = newPrice;
}
}

public class Stock
{
string symbol;
decimal price;

public Stock (string symbol) {this.symbol = symbol;}
public event EventHandler<PriceChangedEventArgs> PriceChanged;

protected virtual void OnPriceChanged (PriceChangedEventArgs e)
{
PriceChanged?.Invoke (this, e);

}

public decimal Price
{
get { return price; }
set
{
if (price == value) return;
decimal oldPrice = price;
price = value;
OnPriceChanged (new PriceChangedEventArgs (oldPrice, price));

}

class Test
{
static void Main ()
{
Stock stock = new Stock ("THPW");
stock.Price = 27.10M;
// Register with the PriceChanged event
stock.PriceChanged += stock PriceChanged;
stock.Price = 31.59M;
}

static void stock PriceChanged (object sender, PriceChangedEventArgs e)
{
if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
Console.WriteLine ("Alert, 10% stock price increase!");

The predefined nongeneric EventHandler delegate can be used when an event doesn’t carry
extra information. In this example, we rewrite stock such that the pricechanged event is fired
after the price changes, and no information about the event is necessary, other than it happened.

We also make use of the Eventargs.Empty property, in order to avoid unnecessarily
instantiating an instance of EventArgs.

public class Stock
{
string symbol;
decimal price;

public Stock (string symbol) { this.symbol = symbol; }
public event EventHandler PriceChanged;

protected virtual void OnPriceChanged (EventArgs e)
{
PriceChanged?.Invoke (this, e);

}

public decimal Price
{
get { return price; }
set
{
if (price == value) return;
price value;
OnPriceChanged (EventArgs.Empty)
}

Event Accessors

An event’s accessors are the implementations of its += and -= functions. By default, accessors
are implemented implicitly by the compiler. Consider this event declaration:

public event EventHandler PriceChanged;

The compiler converts this to the following:
= A private delegate field

= A public pair of event accessor functions (add_PriceChanged and

remove PriceChanged), whose implementations forward the += and -= operations to the
private delegate field

You can take over this process by defining explicit event accessors. Here’s a manual
implementation of the Pricechanged event from our previous example:

private EventHandler priceChanged; // Declare a private delegate

public event EventHandler PriceChanged
{
add { priceChanged += value; }
remove { priceChanged -= value; }
}

This example is functionally identical to C#’s default accessor implementation (except that C#
also ensures thread safety around updating the delegate via a lock-free compare-and-swap
algorithm — see http://albahari.com/threading). By defining event accessors ourselves, we
instruct C# not to generate default field and accessor logic.

With explicit event accessors, you can apply more complex strategies to the storage and access
of the underlying delegate. There are three scenarios where this is useful:

= When the event accessors are merely relays for another class that is broadcasting the event.
= When the class exposes a large number of events, where most of the time very few

subscribers exist, such as a Windows control. In such cases, it is better to store the
subscriber’s delegate instances in a dictionary, since a dictionary will contain less storage

http://albahari.com/threading

overhead than dozens of null delegate field references.
= When explicitly implementing an interface that declares an event.
Here is an example that illustrates the last point:

public interface IFoo { event EventHandler Ev; }
class Foo : IFoo
{
private EventHandler ev;
event EventHandler IFoo.Ev
{
add { ev += value; }
remove { ev -= value; }

}
}

NOTE

The add and remove parts of an event are compiled to add xxx and remove xxx methods.

Event Modifiers

Like methods, events can be virtual, overridden, abstract, or sealed. Events can also be static:

public class Foo

{
public static event EventHandler<EventArgs> StaticEvent;
public virtual event EventHandler<EventArgs> VirtualEvent;

}

Lambda Expressions

A lambda expression is an unnamed method written in place of a delegate instance. The
compiler immediately converts the lambda expression to either:

= A delegate instance.

» An expression tree, of type Expression<TDelegate>, representing the code inside the
lambda expression in a traversable object model. This allows the lambda expression to be
interpreted later at runtime (see “Building Query Expressions” in Chapter 8).

Given the following delegate type:
delegate int Transformer (int 1i);
we could assign and invoke the lambda expression x => x * x as follows:

Transformer sgr = x => x * x;
Console.WritelLine (sqr(3)); // 9

NOTE

Internally, the compiler resolves lambda expressions of this type by writing a private method,
and moving the expression’s code into that method.

A lambda expression has the following form:

(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one parameter of
an inferable type.

In our example, there is a single parameter, %, and the expressionis x * x:

X => x * x;

Each parameter of the lambda expression corresponds to a delegate parameter, and the type of
the expression (which may be void) corresponds to the return type of the delegate.

In our example, x corresponds to parameter i, and the expression x * x corresponds to the
return type int, therefore being compatible with the Transformer delegate:

delegate int Transformer (int 1i);

A lambda expression’s code can be a statement block instead of an expression. We can rewrite
our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func and Action delegates, so you will
most often see our earlier expression written as follows:

Func<int, int> sqr = x => x * x;
Here’s an exarnple of an expression that accepts two parameters:

Func<string,string,int> totallength = (sl, s2) => sl.Length + s2.Length;
int total = totallength ("hello", "world"); // total is 10;

Lambda expressions were introduced in C# 3.0.

Explicitly Specifying Lambda Parameter Types

The compiler can usually infer the type of lambda parameters contextually. When this is not the
case, you must specify the type of each parameter explicitly. Consider the following two
methods:

void Foo<T> (T x) {}
void Bar<T> (Action<T> a) {}

The following code will fail to compile, because the compiler cannot infer the type of x:

Bar (x => Foo (x)): // What type is x?

We can fix this by explicitly specify x’s type as follows:

Bar ((int x) => Foo (x));

This particular example is simple enough that it can be fixed in two other ways:

Bar<int> (x => Foo (x)); // Specify type parameter for Bar
Bar<int> (Foo); // As above, but with method group

Capturing Outer Variables

A lambda expression can reference the local variables and parameters of the method in which
it’s defined (outer variables). For example:

static void Main ()
{
int factor = 2;
Func<int, int> multiplier = n => n * factor;
Console.WritelLine (multiplier (3)); // 6
}

Outer variables referenced by a lambda expression are called captured variables. A lambda
expression that captures variables is called a closure.

NOTE

Variables can also be captured by anonymous methods and local methods. The rules for
captured variables, in these cases, are the same.

Captured variables are evaluated when the delegate is actually invoked, not when the variables
were captured.:

int factor = 2;

Func<int, int> multiplier = n => n * factor;

factor = 10;

Console.WritelLine (multiplier (3)); // 30

Lambda expressions can themselves update captured variables:

int seed = 0;

Func<int> natural = () => seed++;

Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 1
Console.WriteLine (seed); // 2

Captured variables have their lifetimes extended to that of the delegate. In the following
example, the local variable seed would ordinarily disappear from scope when Natural
finished executing. But because seed has been captured, its lifetime is extended to that of the
capturing delegate, natural:

static Func<int> Natural ()
{
int seed = 0;
return () => seed++; // Returns a closure

static void Main ()

{
Func<int> natural = Natural();
Console.WriteLine (natural());
Console.WriteLine (natural()); // 1

}

A local variable instantiated within a lambda expression is unique per invocation of the
delegate instance. If we refactor our previous example to instantiate seed within the lambda
expression, we get a different (in this case, undesirable) result:

static Func<int> Natural ()
{
return() => { int seed = 0; return seed++; };

}

static void Main ()

{
Func<int> natural = Natural():;
Console.WriteLine (natural()); // 0
Console.WriteLine (natural());

}

NOTE

Capturing is internally implemented by “hoisting” the captured variables into fields of a

private class. When the method is called, the class is instantiated and lifetime-bound to the
delegate instance.

Capturing iteration variables

When you capture the iteration variable of a for loop, C# treats that variable as though it was
declared outside the loop. This means that the same variable is captured in each iteration. The
following program writes 333 instead of writing 012:

Action[] actions = new Action[3];

for (int i = 0; 1 < 3; i++)
actions [i] = () => Console.Write (i);

foreach (Action a in actions) a(); // 333

Each closure (shown in boldface) captures the same variable, i. (This actually makes sense
when you consider that i is a variable whose value persists between loop iterations; you can
even explicitly change i within the loop body if you want.) The consequence is that when the
delegates are later invoked, each delegate sees i’s value at the time of invocation — which is
3. We can illustrate this better by expanding the for loop as follows:

Action[] actions = new Action[3];

int 1 = 0;

actions[0] = () => Console.Write (i);
i=1;

actions[1l] = () => Console.Write (i);
i=2;

actions[2] = () => Console.Write (i);
i=3;

foreach (Action a in actions) a(); // 333

The solution, if we want to write 012, is to assign the iteration variable to a local variable
that’s scoped inside the loop:

Action[] actions = new Action[3];
for (int 1 = 0; 1 < 3; i++)
{
int loopScopedi = i;
actions [i] = () => Console.Write (loopScopedi) ;
}

foreach (Action a in actions) a(); // 012

Because 10opscopedi is freshly created on every iteration, each closure captures a different
variable.

NOTE

Prior to C# 5.0, foreach loops worked in the same way:

Action[] actions = new Action[3];
int i = 0;

foreach (char c in "abc")
actions [i++] = () => Console.Write (c);

foreach (Action a in actions) al(); // ccc in C# 4.0

This caused considerable confusion: unlike with a for loop, the iteration variable in a foreach
loop is immutable, and so one would expect it to be treated as local to the loop body. The
good news is that it’s been fixed since C# 5.0, and the preceding example now writes “abc.”

WARNING

Technically, this is a breaking change because recompiling a C# 4.0 program in C# 5.0 could
create a different result. In general, the C# team tries to avoid breaking changes; however in
this case, a “break” would almost certainly indicate an undetected bug in the C# 4.0 program
rather than intentional reliance on the old behavior.

Lambda Expressions Versus Local Methods

The functionality of C# 7’s local methods (see “Local methods™ in Chapter 1) overlaps with
that of lambda expressions. Local methods have the following three advantages:

» They can be recursive (they can call themselves), without ugly hacks
» They avoid the clutter of specifying a delegate type
» They incur slightly less overhead

Local methods are more efficient because they avoid the indirection of a delegate (which costs
some CPU cycles and a memory allocation). They can also access local variables of the
containing method without the compiler having to “hoist” the captured variables into a hidden
class.

However, in many cases you need a delegate, most commonly when calling a higher-order

function, i.e., a method with a delegate-typed parameter:

public void Foo (Func<int,bool> predicate) { ... }

(We’ll see plenty more of these in Chapter 8.) In such cases, you need a delegate anyway, and
it’s in precisely these cases that lambda expressions are usually terser and cleaner.

Anonymous Methods

Anonymous methods are a C# 2.0 feature that has been mostly subsumed by C# 3.0’s lambda
expressions. An anonymous method is like a lambda expression, but it lacks the following
features:

s [mplicitly typed parameters
» Expression syntax (an anonymous method must always be a statement block)
» The ability to compile to an expression tree, by assigning to Expression<T>

To write an anonymous method, you include the de1egate keyword followed (optionally) by a
parameter declaration and then a method body. For example, given this delegate:

delegate int Transformer (int 1i);

we could write and call an anonymous method as follows:

Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3)); // 9

The first line is semantically equivalent to the following lambda expression:

Transformer sqgr (int x) => {return x * x;};

Or simply:

Transformer sqgr = x * x;

1
]

Anonymous methods capture outer variables in the same way lambda expressions do.

NOTE

Aunique feature of anonymous methods is that you can omit the parameter declaration
entirely — even if the delegate expects it. This can be useful in declaring events with a
default empty handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event. The following is also legal:

// Notice that we omit the parameters:
Clicked += delegate { Console.WriteLine ("clicked"); };

try Statements and Exceptions

A try statement specifies a code block subject to error-handling or cleanup code. The try
block must be followed by a catch block, a £inally block, or both. The catch block
executes when an error occurs in the try block. The final1y block executes after execution
leaves the try block (or if present, the catch block), to perform cleanup code, whether or not
an error occurred.

A catch block has access to an Exception object that contains information about the error.
You use a catch block to either compensate for the error or rethrow the exception. You
rethrow an exception if you merely want to log the problem, or if you want to rethrow a new,
higher-level exception type.

A finally block adds determinism to your program: the CLR endeavors to always execute it.
It’s useful for cleanup tasks such as closing network connections.

A try statement looks like this:

try
{

. // exception may get thrown within execution of this block
}

catch (ExceptionA ex)

{
. // handle exception of type ExceptionA

}

catch (ExceptionB ex)

{
. // handle exception of type ExceptionB

}
finally

{

. // cleanup code

}

Consider the following program:

class Test

{
static int Calc (int x) => 10 / x;

static void Main ()

{
int y = Calc (0);
Console.WritelLine (y);

}

Because x is zero, the runtime throws a DivideByZeroException, and our program
terminates. We can prevent this by catching the exception as follows:

class Test

{
static int Calc (int x) => 10 / x;

static void Main ()
{
try
{
int y = Calc (0);

Console.WriteLine (y);

}

catch (DivideByZeroException ex)

{

Console.WriteLine ("x cannot be zero");

}

Console.WriteLine ("program completed");
}
}

OUTPUT:

X cannot be zero
program completed

NOTE

This is a simple example to illustrate exception handling. We could deal with this particular
scenario better in practice by checking explicitly for the divisor being zero before calling calc.

Checking for preventable errors is preferable to relying on try/catch blocks because
exceptions are relatively expensive to handle, taking hundreds of clock cycles or more.

When an exception is thrown, the CLR performs a test: Is execution currently within a try
statement that can catch the exception?

» [f so, execution is passed to the compatible catch block. If the catch block successfully
finishes executing, execution moves to the next statement after the t ry statement (if present,
executing the final1y block first).

= Ifnot, execution jumps back to the caller of the function, and the test is repeated (after
executing any finally blocks that wrap the statement).

If no function takes responsibility for the exception, an error dialog box is displayed to the
user, and the program terminates.

The catch Clause

A catch clause specifies what type of exception to catch. This must either be system
.Exception or a subclass of System.Exception.

Catching system.Exception catches all possible errors. This is useful when:

= Your program can potentially recover regardless of the specific exception type.
= You plan to rethrow the exception (perhaps after logging it).
= Your error handler is the last resort, prior to termination of the program.

More typically, though, you catch specific exception types, in order to avoid having to deal
with circumstances for which your handler wasn’t designed (e.g., an outof

MemoryException).

You can handle multiple exception types with multiple catch clauses (again, this example
could be written with explicit argument checking rather than exception handling):

class Test

{

static void Main (string[] args)
{
try
{
byte b = byte.Parse (args[0]);
Console.WriteLine (b);
}
catch (IndexOutOfRangeException ex)

{

Console.WriteLine ("Please provide at least one argument");

}

catch (FormatException ex)

{

Console.WriteLine ("That's not a number!");

}

catch (OverflowException ex)

{
Console.WriteLine ("You've given me more than a byte!");
}
}
}

Only one catch clause executes for a given exception. If you want to include a safety net to
catch more general exceptions (such as System.Exception) you must put the more specific

handlers first.
An exception can be caught without specifying a variable, if you don’t need to access its
properties:

catch (OverflowException) // no variable

{
}

Furthermore, you can omit both the variable and the type (meaning that all exceptions will be

caught):

catch { ... }

Exception filters (C# 6)

From C# 6.0, you can specify an exception filter in a catch clause by adding a when clause:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{

}

If a webException is thrown in this example, the Boolean expression following the when
keyword is then evaluated. If the result is false, the catch block in question is ignored, and any
subsequent catch clauses are considered. With exception filters, it can be meaningful to catch
the same exception type again:

catch

{ ...
catch

{

WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
WebException ex) when (ex.Status == WebExceptionStatus.SendFailure)

(
}
(
}

The Boolean expression in the when clause can be side-effecting, such as a method that logs the
exception for diagnostic purposes.

The finally Block

A finally block always executes — whether or not an exception is thrown and whether or not
the try block runs to completion. fina11y blocks are typically used for cleanup code.

A finally block executes either:

m After a catch block finishes
» After control leaves the try block because of a jump statement (e.g., return or goto)
m After the try block ends

The only things that can defeat a fina11y block are an infinite loop, or the process ending
abruptly.

A finally block helps add determinism to a program. In the following example, the file that
we open always gets closed, regardless of whether:

m The try block finishes normally.
= Execution returns early because the file is empty (EndofStream).
m An ToException is thrown while reading the file.

static void ReadFile ()
{
StreamReader reader = null; // In System.IO namespace
try
{
reader = File.OpenText ("file.txt");
if (reader.EndOfStream) return;
Console.WritelLine (reader.ReadToEnd()):;

}
finally

{

if (reader != null) reader.Dispose();
}
}

In this example, we closed the file by calling pispose on the StreamReader. Calling Dispose
on an object, within a final1ly block, is a standard convention throughout the .NET
Framework and is supported explicitly in C# through the using statement.

The using statement

Many classes encapsulate unmanaged resources, such as file handles, graphics handles, or
database connections. These classes implement System. IDisposable, which defines a single
parameterless method named pispose to clean up these resources. The using statement
provides an elegant syntax for calling Dispose onan IDisposable object withina finally
block.

The following:

using (StreamReader reader = File.OpenText ("file.txt"))

{
}

is precisely equivalent to:

StreamReader reader = File.OpenText ("file.txt");
try
{

}
finally
{
if (reader != null)
((IDisposable) reader) .Dispose () ;

We cover the disposal pattern in more detail in Chapter 12.

Throwing Exceptions

Exceptions can be thrown either by the runtime or in user code. In this example, pisplay
throws a System.ArgumentNullException:

class Test
{
static void Display (string name)
{
if (name == null)
throw new ArgumentNullException (nameof (name)) ;

Console.WriteLine (name);

}

static void Main ()
{
try { Display (null); }
catch (ArgumentNullException ex)
{
Console.WriteLine ("Caught the exception");

}

throw expressions (C# 7)
Prior to C# 7, throw was always a statement. Now it can also appear as an expression in
expression-bodied functions:

public string Foo() => throw new NotImplementedException();

A throw expression can also appear in a ternary conditional expression:

string ProperCase (string value) =>
value == null ? throw new ArgumentException ("value")
value == """ 2 nn

char.ToUpper (value[0]) + value.Substring (1);

Rethrowing an exception

You can capture and rethrow an exception as follows:

try { R }
catch (Exception ex)

{

// Log error

throw; // Rethrow same exception
}

NOTE

If we replaced throw with throw ex, the example would still work, but the stackTrace
property of the newly propagated exception would no longer reflect the original error.

Rethrowing in this manner lets you log an error without swallowing it. It also lets you back out
of handling an exception should circumstances turn out to be outside what you expected:

using System.Net; // (See Chapter 16)

string s = null;
using (WebClient wc = new WebClient ())

try { s = wc.DownloadString ("http://www.albahari.com/nutshell/"); }
catch (WebException ex)
{
if (ex.Status == WebExceptionStatus.Timeout)
Console.WriteLine ("Timeout");
else

throw; // Can't handle other sorts of WebException, so rethrow

From C# 6.0, this can be written more tersely with an exception filter:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
Console.WriteLine ("Timeout");

}

The other common scenario is to rethrow a more specific exception type. For example:

try
{
. // Parse a DateTime from XML element data
}
catch (FormatException ex)
{
throw new XmlException ("Invalid DateTime", ex);

}

Notice that when we constructed xm1Exception, we passed in the original exception, ex, as
the second argument. This argument populates the TnnerException property of the new
exception and aids debugging. Nearly all types of exception offer a similar constructor.

Rethrowing a /ess specific exception is something you might do when crossing a trust
boundary, so as not to leak technical information to potential hackers.

Key Properties of System.Exception
The most important properties of System.Exception are the following:

StackTrace

A string representing all the methods that are called from the origin of the exception to the
catch block.

Message

A string with a description of the error.

InnerException

The inner exception (if any) that caused the outer exception. This, itself, may have another

InnerException.

NOTE

All exceptions in C# are runtime exceptions — there is no equivalent to Java’s compile-time
checked exceptions.

Common Exception Types

The following exception types are used widely throughout the CLR and .NET Framework. You
can throw these yourself or use them as base classes for deriving custom exception types.

System.ArgumentException

Thrown when a function is called with a bogus argument. This generally indicates a
program bug.

System.ArgumentNullException

Subclass of ArgumentException that’s thrown when a function argument is
(unexpectedly) nu11.

System.ArgumentOutOfRangeException
Subclass of ArgumentException that’s thrown when a (usually numeric) argument is too
big or too small. For example, this is thrown when passing a negative number into a
function that accepts only positive values.

System.InvalidOperationException

Thrown when the state of an object is unsuitable for a method to successfully execute,
regardless of any particular argument values. Examples include reading an unopened file
or getting the next element from an enumerator where the underlying list has been modified
partway through the iteration.

System.NotSupportedException

Thrown to indicate that a particular functionality is not supported. A good example is
calling the Add method on a collection for which 1sReadonly returns true.

System.NotImplementedException
Thrown to indicate that a function has not yet been implemented.

System.ObjectDisposedException
Thrown when the object upon which the function is called has been disposed.
Another commonly encountered exception type is NullReferenceException. The CLR

throws this exception when you attempt to access a member of an object whose value is nu11
(indicating a bug in your code). You can throw a NullReferenceException directly (for

testing purposes) as follows:

throw null;

The TryXXX Method Pattern

When writing a method, you have a choice, when something goes wrong, to return some kind of
failure code or throw an exception. In general, you throw an exception when the error is
outside the normal workflow — or if you expect that the immediate caller won’t be able to
cope with it. Occasionally, though, it can be best to offer both choices to the consumer. An
example of this is the int type, which defines two versions of its Parse method:

public int Parse (string input);
public bool TryParse (string input, out int returnvalue);

If parsing fails, parse throws an exception; TryParse returns false.

You can implement this pattern by having the xxx method call the Tryxxx method as follows:

public return-type XXX (input-type input)
{
return-type returnvValue;
if (!TryXXX (input, out returnvValue))
throw new YYYException (...)
return returnvValue;

}

Alternatives to Exceptions

As with int.TryParse, a function can communicate failure by sending an error code back to
the calling function via a return type or parameter. Although this can work with simple and
predictable failures, it becomes clumsy when extended to all errors, polluting method
signatures and creating unnecessary complexity and clutter. It also cannot generalize to
functions that are not methods, such as operators (e.g., the division operator) or properties. An
alternative is to place the error in a common place where all functions in the call stack can see
it (e.g., a static method that stores the current error per thread). This, though, requires each
function to participate in an error-propagation pattern that is cumbersome and, ironically, itself
error-prone.

Enumeration and Iterators

Enumeration

An enumerator is a read-only, forward-only cursor over a sequence of values. An enumerator
1s an object that implements either of the following interfaces:

B System.Collections.IEnumerator

B System.Collections.Generic.IEnumerator<T>

NOTE

Technically, any object that has a method named Movenext and a property called current is

treated as an enumerator. This relaxation was introduced in C# 1.0 to avoid the
boxing/unboxing overhead when enumerating value type elements, but was made redundant
when generics were introduced in C# 2.

The foreach statement iterates over an enumerable object. An enumerable object is the
logical representation of a sequence. It is not itself a cursor, but an object that produces cursors
over itself. An enumerable object either:

» [mplements TEnumerable OF TEnumerable<T>

m Has a method named GetEnumerator that returns an enumerator

NOTE

IEnumerator and IEnumerable are defhledin,System.Collections.IEnumerator<T> and
IEnumerable<T> are deﬁnedin.System.Collections.Generic

The enumeration pattern is as follows:

class Enumerator // Typically implements IEnumerator or IEnumerator<T>
{

public IteratorVariableType Current { get {...} }

public bool MoveNext () {...}
}

class Enumerable // Typically implements IEnumerable or IEnumerable<T>
{
public Enumerator GetEnumerator() {...}

}

Here is the high-level way of iterating through the characters in the word beer using a foreach
statement:

foreach (char ¢ in "beer")
Console.WriteLine (c);

Here is the low-level way of iterating through the characters in beer without using a foreach
statement:

using (var enumerator = "beer".GetEnumerator())
while (enumerator.MoveNext())
{
var element = enumerator.Current;
Console.WriteLine (element);

If the enumerator implements 1Disposable, the foreach statement also acts as a using
statement, implicitly disposing the enumerator object.

Chapter 7 explains the enumeration interfaces in further detail.

Collection Initializers

You can instantiate and populate an enumerable object in a single step. For example:

using System.Collections.Generic;
List<int> list = new List<int> {1, 2, 3};

The compiler translates this to the following:

using System.Collections.Generic;

List<int> list = new List<int>();
list.Add (1);
list.Add (2);
list.Add (3);

This requires that the enumerable object implements the System.Collections.IEnumerable
interface, and that it has an Add method that has the appropriate number of parameters for the
call. You can similarly initialize dictionaries (see “Dictionaries” in Chapter 7) as follows:

var dict = new Dictionary<int, string>()
{

{ 5, "five" },

{ 10, "ten" }
}i

Or more succinctly:

var dict = new Dictionary<int, string>()

[3] = "three",
[10] = "ten"

The latter is valid not only with dictionaries, but with any type for which an indexer exists.

Iterators

Whereas a foreach statement is a consumer of an enumerator, an iterator is a producer of an
enumerator. In this example, we use an iterator to return a sequence of Fibonacci numbers
(where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

class Test
{
static void Main ()
{
foreach (int fib in Fibs (6))
Console.Write (fib + "™ ");
}

static IEnumerable<int> Fibs (int fibCount)
{
for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
{
yield return prevFib;
int newFib = prevFib+curFib;
prevFib = curFib;
curFib = newFib;

}

OuTPUT: 1 1 2 3 5 8

Whereas a return statement expresses “Here’s the value you asked me to return from this
method,” a yield return statement expresses “Here’s the next element you asked me to yield
from this enumerator.” On each yield statement, control is returned to the caller, but the

callee’s state 1s maintained so that the method can continue executing as soon as the caller
enumerates the next element. The lifetime of this state is bound to the enumerator, such that the
state can be released when the caller has finished enumerating.

NOTE

The compiler converts iterator methods into private classes that implement IEnumerable<T>
and/or TEnumerator<T>. The logic within the iterator block is “inverted” and spliced into the
MoveNext method and current property on the compiler-written enumerator class. This means
that when you call an iterator method, all you’re doing is instantiating the compiler-written
class; none of your code actually runs! Your code runs only when you start enumerating over
the resultant sequence, typically with a foreach statement.

Iterators can be local methods (see “Local methods (C# 7)” in Chapter 3).

Iterator Semantics

An iterator is a method, property, or indexer that contains one or more yield statements. An
iterator must return one of the following four interfaces (otherwise, the compiler will generate
an error):

// Enumerable interfaces
System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>

// Enumerator interfaces
System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An iterator has different semantics, depending on whether it returns an enumerable interface or

an enumerator interface. We describe this in Chapter 7.

Multiple yield statements are permitted. For example:

class Test
{
static void Main ()
{
foreach (string s in Foo())
Console.WriteLine (s); // Prints "One","Two", "Three"

}

static IEnumerable<string> Foo ()
{
yield return "One";
yield return "Two";
yield return "Three";
}
}

yield break

The yield break statement indicates that the iterator block should exit early, without returning
more elements. We can modify Foo as follows to demonstrate:

static IEnumerable<string> Foo (bool breakEarly)
{

yield return "One";

yield return "Two";

if (breakEarly)
yield break;

yield return "Three";

NOTE

A return statement is illegal in an iterator block — you must use a yield break instead.

Iterators and try/catch/finally blocks

A yield return statement cannot appear ina try block that has a catch clause:

IEnumerable<string> Foo ()

{
try { yield return "One"; } // Illegal
catch { ... }

}

Nor can yield return appear ina catch or finally block. These restrictions are due to the
fact that the compiler must translate iterators into ordinary classes with MoveNext, Current,
and pispose members, and translating exception handling blocks would create excessive

complexity.
You can, however, yield within a t ry block that has (only) a final1y block:

IEnumerable<string> Foo ()

{
try { yield return "One"; } // OK
finally { ... }

}

The code inthe final1ly block executes when the consuming enumerator reaches the end of the
sequence or is disposed. A foreach statement implicitly disposes the enumerator if you break
early, making this a safe way to consume enumerators. When working with enumerators
explicitly, a trap is to abandon enumeration early without disposing it, circumventing the
finally block. You can avoid this risk by wrapping explicit use of enumerators in a using
statement:

string firstElement = null;
var sequence = Foo();
using (var enumerator = sequence.GetEnumerator())
if (enumerator.MoveNext ())
firstElement = enumerator.Current;

Composing Sequences

Iterators are highly composable. We can extend our example, this time to output even Fibonacci
numbers only:

using System;
using System.Collections.Generic;

class Test
{
static void Main ()
{
foreach (int fib in EvenNumbersOnly (Fibs(6)))
Console.WriteLine (fib);

}

static IEnumerable<int> Fibs (int fibCount)
{
for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
{
yield return prevFib;
int newFib = prevFib+curFib;
prevFib = curFib;
curFib = newFib;

}

static IEnumerable<int> EvenNumbersOnly (IEnumerable<int> sequence)
{

foreach (int x in sequence)
if ((x % 2) == 0)
yield return x;

Each element is not calculated until the last moment — when requested by a MoveNext ()
operation. Figure 4-1 shows the data requests and data output over time.

[€4— next
3

A0]plelinuae bbuoqgl{

5

¢— next ——

>

[4— next

B

8

»

1 next =——

P

«4— Pulling data —
— Yielding data —p»

Figure 4-1. Composing sequences

rhr.l
>
-
S ..
—
§ next
S
=
8

JAUNSUO)

4—Execution

The composability of the iterator pattern is extremely useful in LINQ; we discuss the subject

again in Chapter 8.

Nullable Types

Reference types can represent a nonexistent value with a null reference. Value types, however,
cannot ordinarily represent null values. For example:

string s = null;
int 1 = null;

// OK, Reference Type
// Compile Error, Value Type cannot be null

To represent null in a value type, you must use a special construct called a nullable type. A
nullable type is denoted with a value type followed by the » symbol:

int? i = null; // OK, Nullable Type
Console.WriteLine (i == null); // True
Nullable<T> Struct

T2 translates into system.Nullable<T>, which is a lightweight immutable structure, having
only two fields, to represent value and Hasvalue. The essence of system.Nullable<T> i8S
very simple:

public struct Nullable<T> where T : struct
{
public T Value {get;}
public bool HasValue {get;}
public T GetValueOrDefault();
public T GetValueOrDefault (T defaultValue);

The code:

int? i = null;
Console.WriteLine (i == null); // True

translates to:

Nullable<int> i = new Nullable<int>();
Console.WriteLine (! i.HasValue); // True

Attempting to retrieve value when Hasvalue is false throws an Invalidoperation
Exception. GetValueOrDefault () returns value if Hasvalue is true; otherwise, it returns
new T () or a specified custom default value.

The default value of T2 is null.

Implicit and Explicit Nullable Conversions

The conversion from T to T2 is implicit, and from T2 to T is explicit. For example:

int? x = 5; // implicit
int y = (int)x; // explicit

The explicit cast is directly equivalent to calling the nullable object’s vaiue property. Hence,
an InvalidOperationException 1S thrownif Hasvalue is false.

Boxing and Unboxing Nullable Values

When 7> is boxed, the boxed value on the heap contains T, not T2. This optimization is
possible because a boxed value is a reference type that can already express null.

C# also permits the unboxing of nullable types with the as operator. The result will be nu11 if
the cast fails:

object o = "string";

int? x = o as int?;
Console.WriteLine (x.HasValue); // False

Operator Lifting

The Nullable<T> struct does not define operators such as <, >, or even ==. Despite this, the
following code compiles and executes correctly:

int? x = 5;
int? y = 10;
bool b = x < y; // true

This works because the compiler borrows or “lifts” the less-than operator from the underlying
value type. Semantically, it translates the preceding comparison expression into this:

bool b = (x.HasValue && y.HasValue) ? (x.Value < y.Value) : false;

In other words, if both x and y have values, it compares via int’s less-than operator;
otherwise, it returns false:

Operator lifting means you can implicitly use T’s operators on T2. You can define operators for
T2 in order to provide special-purpose null behavior, but in the vast majority of cases, it’s best
to rely on the compiler automatically applying systematic nullable logic for you. Here are some
examples:

int? x = 5;
int? y = null;

// Equality operator examples
Console.WritelLine (x == y); // False
Console.WriteLine = null); // False

b
|
|

(
Console.WriteLine (x == 5); // True
Console.WritelLine (y == null); // True
Console.WriteLine (y == 5); // False
Console.WriteLine (y != 5); // True

// Relational operator examples

Console.WriteLine (x < 6); // True
Console.WriteLine (y < 6); // False
Console.WriteLine (y > 6); // False

// All other operator examples
Console.WriteLine (x + 5); // 10
Console.WriteLine (x + y); // null (prints empty line)

The compiler performs null logic differently depending on the category of operator. The
following sections explain these different rules.

Equality operators (= and !=)

Lifted equality operators handle nulls just like reference types do. This means two null values
are equal:

Console.WriteLine (null == null) ; // True
Console.WriteLine ((bool?)null == (bool?)null); // True
Further:

= [fexactly one operand is null, the operands are unequal.

» [fboth operands are non-null, their vaiues are compared.

Relational operators (<, <=, >=,>)

The relational operators work on the principle that it is meaningless to compare null operands.
This means comparing a null value to either a null or a non-null value returns false:

bool b = x < y; // Translation:
bool b = (x.HasValue && y.HasValue)
? (x.Value < y.Value)
: false;

// b is false (assuming x is 5 and y is null)

All other operators (+’ BE) *s /a 0/03 &7 |a Aa <<, >>, +, ++9] !a ~)

These operators return null when any of the operands are null. This pattern should be familiar
to SQL users:

int? ¢ = x + y; // Translation:
int? ¢ = (x.HasValue && y.HasValue)
? (int?) (x.Value + y.Value)
: null;

// ¢ is null (assuming x is 5 and y is null)

An exception is when the s and | operators are applied to boo1?, which we will discuss
shortly.

Mixing nullable and non-nullable operators

You can mix and match nullable and non-nullable types (this works because there is an implicit
conversion from T to T?):

int? a = null;
int b = 2;
int? ¢ = a + b; // ¢ is null - equivalent to a + (int?)b

bool? with & and | Operators

When supplied operands of type boo12 the s and | operators treat null as an unknown value.
So, null | true is true, because:

» [f the unknown value is false, the result would be true.
» [f the unknown value is true, the result would be true.

Similarly, nu11 &« false is false. This behavior would be familiar to SQL users. The
following example enumerates other combinations:

bool? n = null;
bool? f = false;
bool? t = true;

Console.WriteLine (n | n); // (null)
Console.WriteLine (n | f); // (null)
Console.WritelLine (n | t); // True

Console.WriteLine (n & n); // (null)
Console.WritelLine (n & f); // False

Console.WriteLine (n & t); // (null)

Nullable Types and Null Operators

Nullable types work particularly well with the 22 operator (see “Null Coalescing Operator” in
Chapter 2). For example:

int? x = null;
int y = x 2?2 5; // y is 5

int? a = null, b =1, ¢ = 2;
Console.WriteLine (a ?? b ??2 ¢); // 1 (first non-null value)

Using 22 on a nullable value type is equivalent to calling Getvalueorbefault with an explicit
default value, except that the expression for the default value is never evaluated if the variable
is not null.

Nullable types also work well with the null-conditional operator (see “Null-conditional
Operator (C# 6)” in Chapter 2). In the following example, length evaluates to null:

System.Text.StringBuilder sb = null;
int? length sb?.ToString () .Length;

We can combine this with the null coalescing operator to evaluate to zero instead of null:

int length = sb?.ToString() .Length ?? 0; // Evaluates to 0 if sb is null

Scenarios for Nullable Types

One of the most common scenarios for nullable types is to represent unknown values. This
frequently occurs in database programming, where a class is mapped to a table with nullable
columns. If these columns are strings (e.g., an EmailAddress column on a Customer table),
there is no problem, as string is a reference type in the CLR, which can be null. However, most
other SQL column types map to CLR struct types, making nullable types very useful when
mapping SQL to the CLR. For example:

// Maps to a Customer table in a database
public class Customer

{

public decimal? AccountBalance;

}

A nullable type can also be used to represent the backing field of what’s sometimes called an
ambient property. An ambient property, if null, returns the value of its parent. For example:

public class Row

{

Grid parent;
Color? color;

public Color Color
{
get { return color ?? parent.Color; }
set { color = value == parent.Color ? (Color?)null : value; }
}
}

Alternatives to Nullable Types

Before nullable types were part of the C# language (i.e., before C# 2.0), there were many
strategies to deal with nullable value types, examples of which still appear in the NET
Framework for historical reasons. One of these strategies is to designate a particular non-null
value as the “null value”; an example is in the string and array classes. String.Index0Of
returns the magic value of -1 when the character is not found:

int 1 = "Pink".IndexOf ('b');
Console.WriteLine (i); // -1

However, array. Index0f returns -1 only if the index is 0-bounded. The more general formula
is that Tndexof returns 1 less than the lower bound of the array. In the next example, Tndex0f
returns 0 when an element is not found:

// Create an array whose lower bound is 1 instead of O0:

Array a = Array.Createlnstance (typeof (string),

new int[] {2}, new int[] {1});
a.SetValue ("a", 1);
a.SetValue ("b", 2);
Console.Writeline (Array.IndexOf (a, "c")); // O

Nominating a “magic value” is problematic for several reasons:

= [t means that each value type has a different representation of null. In contrast, nullable types
provide one common pattern that works for all value types.

» There may be no reasonable designated value. In the previous example, —1 could not always
be used. The same is true for our earlier example representing an unknown account balance.

» Forgetting to test for the magic value results in an incorrect value that may go unnoticed until
later in execution — when it pulls an unintended magic trick. Forgetting to test Hasvalue on
a null value, however, throws an InvalidoperationException on the spot.

» The ability for a value to be null is not captured in the type. Types communicate the
intention of a program, allow the compiler to check for correctness, and enable a consistent
set of rules enforced by the compiler.

Extension Methods

Extension methods allow an existing type to be extended with new methods without altering the
definition of the original type. An extension method is a static method of a static class, where
the this modifier is applied to the first parameter. The type of the first parameter will be the
type that is extended. For example:

public static class StringHelper
{
public static bool IsCapitalized (this string s)
{
if (string.IsNullOrEmpty(s)) return false;
return char.IsUpper (s[0]);
}
}

The 1scapitalized extension method can be called as though it were an instance method on a
string, as follows:

Console.WriteLine ("Perth".IsCapitalized()):

An extension method call, when compiled, is translated back into an ordinary static method
call:

Console.WriteLine (StringHelper.IsCapitalized ("Perth"));

The translation works as follows:

arg0.Method (argl, arg2, ...); // Extension method call
StaticClass.Method (arg0, argl, arg2, ...); // Static method call

Interfaces can be extended, too:

public static T First<T> (this IEnumerable<T> sequence)
{

foreach (T element in sequence)
return element;

throw new InvalidOperationException ("No elements!");

}

Console.WriteLine ("Seattle".First()); // S

Extension methods were added in C# 3.0.

Extension Method Chaining

Extension methods, like instance methods, provide a tidy way to chain functions. Consider the
following two functions:

public static class StringHelper
{
public static string Pluralize (this string s) {...}
public static string Capitalize (this string s) {...}
}

x and y are equivalent and both evaluate to "sausages", but x uses extension methods,
whereas vy uses static methods:

string x = "sausage".Pluralize () .Capitalize();
string y = StringHelper.Capitalize (StringHelper.Pluralize ("sausage"));

Ambiguity and Resolution

Namespaces

An extension method cannot be accessed unless its class is in scope, typically by its namespace
being imported. Consider the extension method 1scapitalized in the following example:

using System;

namespace Utils

public static class StringHelper
{
public static bool IsCapitalized (this string s)
{
if (string.IsNullOrEmpty(s)) return false;
return char.IsUpper (s[0]);

}

To use 1scapitalized, the following application must import utils, in order to avoid a
compile-time error:

namespace MyApp
{
using Utils;

class Test
{

static void Main() => Console.WriteLine ("Perth".IsCapitalized()):

}

Extension methods versus instance methods

Any compatible instance method will always take precedence over an extension method. In the
following example, Test’s Foo method will always take precedence — even when called with
an argument x of type int:

class Test
{

public void Foo (object x) { } // This method always wins
}

static class Extensions
{

public static void Foo (this Test t, int x) { }
}

The only way to call the extension method in this case is via normal static syntax; in other
WOI'dS, Extensions.Foo(...).

Extension methods versus extension methods

If two extension methods have the same signature, the extension method must be called as an
ordinary static method to disambiguate the method to call. If one extension method has more
specific arguments, however, the more specific method takes precedence.

To illustrate, consider the following two classes:

static class StringHelper

{ public static bool IsCapitalized (this string s) {...}
;tatic class ObjectHelper

{ public static bool IsCapitalized (this object s) {...}
}

The following code calls stringHelper’s IsCapitalized method:

bool testl = "Perth".IsCapitalized();

Classes and structs are considered more specific than interfaces.

Anonymous Types

An anonymous type is a simple class created by the compiler on the fly to store a set of values.
To create an anonymous type, use the new keyword followed by an object initializer, specifying
the properties and values the type will contain. For example:

var dude = new { Name = "Bob", Age = 23 };

The compiler translates this to (approximately) the following:

internal class AnonymousGeneratedTypeName

{
private string name; // Actual field name is irrelevant
private int age; // Actual field name is irrelevant

public AnonymousGeneratedTypeName (string name, int age)
{
this.name = name; this.age = age;

}

public string Name { get { return name;

b}
public int Age { get { return age; } }

// The Equals and GetHashCode methods are overridden (see Chapter 6).
// The ToString method is also overridden.

var dude = new AnonymousGeneratedTypeName ("Bob", 23);

You must use the var keyword to reference an anonymous type, because it doesn’t have a name.

The property name of an anonymous type can be inferred from an expression that is itself an
identifier (or ends with one). For example:

int Age = 23;
var dude = new { Name = "Bob", Age, Age.ToString().Length };

is equivalent to:

var dude = new { Name = "Bob", Age = Age, Length = Age.ToString() .Length };

Two anonymous type instances declared within the same assembly will have the same
underlying type if their elements are named and typed identically:

var al = new { X =2, Y =14 };
var a2 = new { X =2, Y =14 };
Console.WriteLine (al.GetType() == a2.GetType()); // True

Additionally, the Equa1s method is overridden to perform equality comparisons:

Console.WriteLine (al == a2); // False
Console.WritelLine (al.Equals (a2)); // True

You can create arrays of anonymous types as follows:

var dudes = new](]

{
new { Name = "Bob", Age = 30 },
new { Name = "Tom", Age = 40 }

}i

A method cannot (usefully) return an anonymously typed object, because it is illegal to write a
method whose return type is var:

var Foo() => new { Name = "Bob", Age = 30 }; // Not legal!

Instead, you must use object or dynamic and then whoever calls Foo has to rely on dynamic
binding, with loss of static type safety (and IntelliSense in Visual Studio):

dynamic Foo() => new { Name = "Bob", Age = 30 }; // No static type safety.

Anonymous types are used primarily when writing LINQ queries (see Chapter 8), and were
added in C# 3.0.

Tuples (C# 7)

Like anonymous types, tuples provide a simple way to store a set of values. The main purpose
of tuples is to safely return multiple values from a method without resorting to out parameters
(something you cannot do with anonymous types).

NOTE

Tuples in C# 7 do almost everything that anonymous types do and more. Their one
disadvantage — as we’ll see soon — is runtime type erasure with named elements.

The simplest way to create a tuple literal is to list the desired values in parentheses. This
creates a tuple with unnamed elements, which you refer to as 1tem1, I1tem2, and so on:

var bob = ("Bob", 23); // Allow compiler to infer the element types
Console.WriteLine (bob.Iteml):; // Bob
Console.WriteLine (bob.Item2):; // 23

WARNING

C# 7’s tuple functionality relies on a set of supporting generic structs named
System.ValueTuple<...> These are not part of .NET Framework 4.6, and are contained in
an assembly called System. ValueTuple, available in a NuGet package of the same name. If
you’re using Visual Studio with Framework 4.6, you must download this package explicitly.
(If you are using LINQPad, the required assembly is included automatically.)

System.ValueTuple is built into .NET Framework 4.7, in mscorlib.dll.

Tuples are value types, with mutable (read/write) elements:

var joe = bob; // joe is a *copy* of Jjob

joe.Iteml = "Joe"; // Change joe's Iteml from Bob to Joe
Console.WriteLine (bob); // (Bob, 23)

Console.WriteLine (joe); // (Joe, 23)

Unlike with anonymous types, you can specify a tuple type explicitly. Just list each of the
element types in parentheses:

(string,int) bob = ("Bob", 23); // var is not compulsory with tuples!

This means that you can usefully return a tuple from a method:

static (string,int) GetPerson() => ("Bob", 23);

static void Main ()

{
(string,int) person = GetPerson () ; // Could use 'var' here if we want
Console.WriteLine (person.Iteml); // Bob
Console.WriteLine (person.Item?2); // 23

Tuples play well with generics, so the following types are all legal:

Task<(string,int)>
Dictionary<(string, int) ,Uri>
IEnumerable< (int ID, string Name) > // See below for naming elements

Naming Tuple Elements

You can optionally give meaningful names to elements when creating tuple literals:

var tuple = (Name:"Bob", Age:23);

Console.WriteLine (tuple.Name) ; // Bob
Console.WriteLine (tuple.Age); // 23

You can do the same when specifying tuple types:

static (string Name, int Age) GetPerson() => ("Bob", 23);

static void Main ()

{
var person = GetPerson();
Console.WriteLine (person.Name); // Bob
Console.WriteLine (person.Age); // 23

Note that you can still treat the elements as unnamed and refer to them as 1tem1, Ttem2, etc.
(although Visual Studio hides these fields from IntelliSense).

Tuples are type-compatible with one another if their element types match up (in order). Their
element names need not:

(string Name, int Age, char Sex) bobl ("Bob", 23, 'M'");
(string Age, 1int Sex, char Name) bob2 = bobl; // No error!

Our particular example leads to confusing results:

Console.WriteLine (bob2.Name) ; // M
Console.WritelLine (bob2.Age); // Bob
Console.WriteLine (bob2.Sex); // 23

Type erasure

We stated previously that the C# compiler handles anonymous types by building custom classes
with named properties for each of the elements. With tuples, C# works differently and
leverages a pre-existing family of generic structs:

public struct ValueTuple<T1>
public struct ValueTuple<T1l,T2>
public struct ValueTuple<T1,T2,T3>

Each of the valueType<> structs has fields named Iteml, Item2, and so on.

Hence, (string, int) is analias for valueTuple<string, int>, and this means that named
tuple elements have no corresponding property names in the underlying types. Instead, the
names exist only in the source code, and in the imagination of the compiler. At runtime, the
names mostly disappear, so if you decompile a program that refers to named tuple elements,
you’ll see just references to Ttem1, Ttem2, etc. Further, when you examine a tuple variable ina
debugger after having assigned it to an object (or Dump it in LINQPad), the element names
are not there. And for the most part, you cannot use reflection (Chapter 19) to determine a
tuple’s element names at runtime.

NOTE

We said that the names mostly disappear, because there’s an exception. With
methods/properties that return named tuple types, the compiler emits the element names by
applying a custom attribute called TupleFlementNamesattribute (see “Attributes”) to the
member’s return type. This allows named elements to work when calling methods in a
different assembly (for which the compiler does not have the source code).

ValueTuple.Create

You can also create tuples via a factory method on the (nongeneric) valueTuple type:

ValueTuple<string, int> bobl
(string, int) bob?2

ValueTuple.Create ("Bob", 23);
ValueTuple.Create ("Bob", 23);

Named elements cannot be created in this way, as element naming relies on compiler magic.

Deconstructing Tuples
Tuples implicitly support the deconstruction pattern (see “Deconstructors” in Chapter 1), so
you can easily deconstruct a tuple into individual variables. So, instead of doing this:

var bob = ("Bob", 23);

string name = bob.Iteml;
int age = bob.Item2;

you can go:

var bob = ("Bob", 23);

(string name, int age) = bob; // Deconstruct the bob tuple into

// separate variables (name and age).
Console.WriteLine (name);
Console.WriteLine (age);

The syntax for deconstruction is confusingly similar to the syntax for declaring a tuple with
named elements! The following highlights the difference:

(string name, int age) = bob; // Deconstructing a tuple
(string name, int age) bob2 = bob; // Declaring a new tuple

Here’s another example, this time when calling a method, and with type inference (var):

static (string, int, char) GetBob() => ("Bob", 23, 'M');

static void Main ()

{
var (name, age, sex) = GetBob();

Console.WriteLine (name); // Bob
Console.WriteLine (age); // 23
Console.WriteLine (sex); // M
}
Equality Comparison

As with anonymous types, the valueTuple<> types override the Equals method to allow
equality comparisons to work meaningfully:

var tl = ("one", 1);
var t2 = ("one", 1);
Console.WriteLine (tl.Equals (t2)); // True

This also makes it practical to use tuples as keys in dictionaries. We cover equality comparison
in detail in Chapter 6, and dictionaries in Chapter 7.

The valueTuple<> types also implement 1comparable (see “Order Comparison”), making it
possible to use tuples as a sorting key.

The System.Tuple Classes

You’ll find another family of generic types in the system namespace called Tuple (rather than
valueTuple). These were introduced in .NET Framework 4.0, and are classes (whereas the
valueTuple types are structs). Defining tuples as classes was in retrospect considered a
mistake: in the typical scenarios where tuples are used, structs have a slight performance
advantage (in that they avoid unnecessary memory allocations), with almost no downside.
Hence when Microsoft added language support for tuples to C# 7, they ignored the existing
Tuple types in favor of the new valueTuple. You may still come across the Tuple classes in
code written prior to C# 7. They have no special language support, and are used as follows:

Tuple<string, int> t = Tuple.Create ("Bob", 23); // Factory method
Console.WriteLine (t.Iteml); // Bob
Console.WriteLine (t.Item2); // 23

Attributes

You’re already familiar with the notion of attributing code elements of a program with
modifiers, such as virtual or ref. These constructs are built into the language. Attributes are
an extensible mechanism for adding custom information to code elements (assemblies, types,
members, return values, parameters, and generic type parameters). This extensibility is useful
for services that integrate deeply into the type system, without requiring special keywords or
constructs in the C# language.

A good scenario for attributes is serialization — the process of converting arbitrary objects to
and from a particular format. In this scenario, an attribute on a field can specify the translation
between C#’s representation of the field and the format’s representation of the field.

Attribute Classes

An attribute is defined by a class that inherits (directly or indirectly) from the abstract class
system.Attribute. To attach an attribute to a code element, specify the attribute’s type name
in square brackets, before the code element. For example, the following attaches the
ObsoleteAttribute to the Foo class:

[ObsoleteAttribute]
public class Foo {...}

This attribute is recognized by the compiler and will cause compiler warnings if a type or
member marked obsolete is referenced. By convention, all attribute types end in the word
Attribute. C# recognizes this and allows you to omit the suffix when attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the system namespace as follows (simplified for
brevity):

public sealed class ObsoleteAttribute : Attribute {...}

The C# language and the .NET Framework include a number of predefined attributes. We
describe how to write your own attributes in Chapter 19.

Named and Positional Attribute Parameters

Attributes may have parameters. In the following example, we apply xm1ElementaAttribute
to a class. This attribute tells XML serializer (in System.xml.Serialization) how an object
is represented in XML and accepts several attribute parameters. The following attribute maps
the customerEntity class to an XML element named customer, belonging to the
http://oreilly.com namespace

[XmlElement ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional or named. In the preceding
example, the first argument is a positional parameter; the second is a named parameter.
Positional parameters correspond to parameters of the attribute type’s public constructors.

Named parameters correspond to public fields or public properties on the attribute type.

When specifying an attribute, you must include positional parameters that correspond to one of
the attribute’s constructors. Named parameters are optional.

In Chapter 19, we describe the valid parameter types and rules for their evaluation.

Attribute Targets

Implicitly, the target of an attribute is the code element it immediately precedes, which is
typically a type or type member. You can also attach attributes, however, to an assembly. This
requires that you explicitly specify the attribute’s target.

Here is an example of using the cL.scompliant attribute to specify CLS compliance for an
entire assembly:

[assembly:CLSCompliant (true)]

Specifying Multiple Attributes

Multiple attributes can be specified for a single code element. Each attribute can be listed
either within the same pair of square brackets (separated by a comma) or in separate pairs of
square brackets (or a combination of the two). The following three examples are semantically
identical:

[Serializable, Obsolete, CLSCompliant (false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant (false)]
public class Bar {...}

[Serializable, Obsolete]
[CLSCompliant (false)]
public class Bar {...}

Caller Info Attributes

From C# 5, you can tag optional parameters with one of three caller info attributes, which
instruct the compiler to feed information obtained from the caller’s source code into the
parameter’s default value:

® [CallerMemberName] applies the caller’s member name

m [callerFilePath] applies the path to caller’s source code file

m [CallerLineNumber] applies the line number in caller’s source code file
The Foo method in the following program demonstrates all three:

using System;
using System.Runtime.CompilerServices;

class Program
{
static void Main () => Foo();
static void Foo (
[CallerMemberName] string memberName = null,
[CallerFilePath] string filePath = null,

[CallerLineNumber] int lineNumber = 0)

Console.WriteLine (memberName) ;
Console.WriteLine (filePath);
Console.WriteLine (lineNumber) ;

Assuming our program resides in c. \sourceltest\Program.cs, the output would be:

Main
c:\source\test\Program.cs
6

As with standard optional parameters, the substitution is done at the calling site. Hence, our
Main method is syntactic sugar for this:

static void Main() => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for logging — and for implementing patterns such as firing a
single change notification event whenever any property on an object changes. In fact, there’s a
standard interface in the .NET Framework for this called 1NotifyPropertyChanged (in
System.ComponentModel) :

public interface INotifyPropertyChanged
{

event PropertyChangedEventHandler PropertyChanged;
}

public delegate void PropertyChangedEventHandler
(object sender, PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs

{
public PropertyChangedEventArgs (string propertyName) ;
public virtual string PropertyName { get; }

}

Notice that PropertyChangedEventArgs requires the name of the property that changed. By
applying the [CallerMemberName] attribute, however, we can implement this interface and
invoke the event without ever specifying property names:

public class Foo : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged = delegate { };

void RaisePropertyChanged ([CallerMemberName] string propertyName = null)
{

PropertyChanged (this, new PropertyChangedEventArgs (propertyName)) ;
}

string customerName;
public string CustomerName
{
get { return customerName; }
set
{
if (value == customerName) return;
customerName = value;
RaisePropertyChanged() ;
// The compiler converts the above line to:
// RaisePropertyChanged ("CustomerName") ;

Dynamic Binding

Dynamic binding defers binding — the process of resolving types, members, and operations
— from compile time to runtime: Dynamic binding is useful when at compile time you know
that a certain function, member, or operation exists, but the compiler does not. This commonly
occurs when you are interoperating with dynamic languages (such as IronPython) and COM and
in scenarios when you might otherwise use reflection.

A dynamic type is declared with the contextual keyword dynamic:

dynamic d = GetSomeObject () ;
d.Quack () ;

A dynamic type tells the compiler to relax. We expect the runtime type of d to have a Quack
method. We just can’t prove it statically. Since d is dynamic, the compiler defers binding
Quack to d until runtime. To understand what this means requires distinguishing between static
binding and dynamic binding.

Static Binding Versus Dynamic Binding

The canonical binding example is mapping a name to a specific function when compiling an
expression. To compile the following expression, the compiler needs to find the
implementation of the method named Quack:

d.Quack () ;

Let’s suppose the static type of d is buck:

Duck d = ...
d.Quack() ;

In the simplest case, the compiler does the binding by looking for a parameterless method
named Quack on duck. Failing that, the compiler extends its search to methods taking optional
parameters, methods on base classes of buck, and extension methods that take puck as its first
parameter. If no match is found, you’ll get a compilation error. Regardless of what method gets
bound, the bottom line is that the binding is done by the compiler, and the binding utterly
depends on statically knowing the types of the operands (in this case, d). This makes it static
binding.

Now let’s change the static type of d to object:

object d = ...
d.Quack() ;

Calling ouack gives us a compilation error, because although the value stored in d can contain
a method called guack, the compiler cannot know it since the only information it has is the type
of the variable, which in this case is object. But let’s now change the static type of d to

dynamic:

dynamic d = ...
d.Quack() ;

A dynamic type is like object — it’s equally nondescriptive about a type. The difference is
that it lets you use it in ways that aren’t known at compile time. A dynamic object binds at
runtime based on its runtime type, not its compile-time type. When the compiler sees a
dynamically bound expression (which in general is an expression that contains any value of
type dynamic), it merely packages up the expression such that the binding can be done later at
runtime.

At runtime, if a dynamic object implements T1DynamicMetaObjectProvider, that interface is
used to perform the binding. If not, binding occurs in almost the same way as it would have had
the compiler known the dynamic object’s runtime type. These two alternatives are called
custom binding and language binding.

NOTE
COM interop can be considered to use a third kind of dynamic binding (see Chapter 25).

Custom Binding

Custom binding occurs when a dynamic object implements I1DynamicMetaObjectProvider
(IDMOP). Although you can implement IDMOP on types that you write in C#, and that is useful
to do, the more common case is that you have acquired an IDMOP object from a dynamic
language that is implemented in .NET on the DLR, such as IronPython or IronRuby. Objects
from those languages implicitly implement IDMOP as a means by which to directly control the
meanings of operations performed on them.

We will discuss custom binders in greater detail in Chapter 20, but we will write a simple one
now to demonstrate the feature:

using System;
using System.Dynamic;

public class Test
{
static void Main ()
{
dynamic d = new Duck();
d.Quack () ; // Quack method was called
d.Waddle () ; // Waddle method was called
}
}

public class Duck : DynamicObject
{
public override bool TryInvokeMember (
InvokeMemberBinder binder, object[] args, out object result)
{
Console.WriteLine (binder.Name + " method was called");
result = null;
return true;

The puck class doesn’t actually have a guack method. Instead, it uses custom binding to
intercept and interpret all method calls.

Language Binding

Language binding occurs when a dynamic object does not implement I1Dynamic
MetaObjectProvider. Language binding is useful when working around imperfectly designed
types or inherent limitations in the .NET type system (we’ll explore more scenarios in
Chapter 20). A typical problem when using numeric types is that they have no common
interface. We have seen that methods can be bound dynamically; the same is true for operators:

static dynamic Mean (dynamic x, dynamic y) => (x + vy) / 2;

static void Main ()

{
int x = 3, y = 4;
Console.WriteLine (Mean (x, Vy));

}

The benefit is obvious — you don’t have to duplicate code for each numeric type. However,
you lose static type safety, risking runtime exceptions rather than compile-time errors.

NOTE

Dynamic binding circumvents static type safety, but not runtime type safety. Unlike with
reflection (Chapter 19), you can’t circumvent member accessibility rules with dynamic
binding.

By design, language runtime binding behaves as similarly as possible to static binding, had the
runtime types of the dynamic objects been known at compile time. In our previous example, the
behavior of our program would be identical if we hardcoded Mean to work with the int type.
The most notable exception in parity between static and dynamic binding is for extension
methods, which we discuss in “Uncallable Functions”.

NOTE

Dynamic binding also incurs a performance hit. Because of the DLR’s caching mechanisms,
however, repeated calls to the same dynamic expression are optimized — allowing you to
efficiently call dynamic expressions in a loop. This optimization brings the typical overhead
for a simple dynamic expression on today’s hardware down to less than 100 ns.

RuntimeBinderException

If a member fails to bind, a RuntimeBinderException is thrown. You can think of this like a
compile-time error at runtime.

dynamic d = 5;
d.Hello(); // throws RuntimeBinderException

The exception is thrown because the int type has no He11o method.

Runtime Representation of Dynamic

There is a deep equivalence between the dynamic and object types. The runtime treats the
following expression as true:

typeof (dynamic) == typeof (object)
This principle extends to constructed types and array types:

typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an object of any type (except pointer

types):

dynamic x = "hello";
Console.WriteLine (x.GetType () .Name); // String

x = 123; // No error (despite same variable)
Console.WriteLine (x.GetType().Name); // Int32

Structurally, there is no difference between an object reference and a dynamic reference. A
dynamic reference simply enables dynamic operations on the object it points to. You can
convert from object t0 dynamic to perform any dynamic operation you want on an object:

object o = new System.Text.StringBuilder();
dynamic d = o;

d.Append ("hello");

Console.WriteLine (o) ; // hello

NOTE

Reflecting on a type exposing (public) dynamic members reveals that those members are
represented as annotated objects. For example:

public class Test

{
public dynamic Foo;

}
is equivalent to:

public class Test

{
[System.Runtime.CompilerServices.DynamicAttribute]
public object Foo;

}

This allows consumers of that type to know that roo should be treated as dynamic, while
allowing languages that don’t support dynamic binding to fall back to object.

Dynamic Conversions

The dynamic type has implicit conversions to and from all other types:

int 1 = 7;
dynamic d = i;
long j = d; // No cast required (implicit conversion)

For the conversion to succeed, the runtime type of the dynamic object must be implicitly
convertible to the target static type. The preceding example worked because an int is
implicitly convertible to a 1ong.

The following example throws a Runt imeBinderException because an int is not implicitly
convertible to a short:

int 1 = 7;
dynamic d
short j =

= i;
d; // throws RuntimeBinderException

var Versus dynamic
The var and dynamic types bear a superficial resemblance, but the difference is deep:

® var says, “Let the compiler figure out the type.”
® dynamic says, “Let the runtime figure out the type.”

To illustrate:

dynamic x = "hello"; // Static type is dynamic, runtime type is string
var y = "hello"; // Static type is string, runtime type is string
int 1 = x; // Runtime error (cannot convert string to int)
int j = y; // Compile-time error (cannot convert string to int)

The static type of a variable declared with var can be dynamic:

dynamic x = "hello";
var y = X; // Static type of y is dynamic
int z = y; // Runtime error (cannot convert string to int)

Dynamic Expressions

Fields, properties, methods, events, constructors, indexers, operators, and conversions can all
be called dynamically.

Trying to consume the result of a dynamic expression with a void return type is prohibited —
just as with a statically typed expression. The difference is that the error occurs at runtime:

dynamic list = new List<int>();
var result = list.Add (5); // RuntimeBinderException thrown

Expressions involving dynamic operands are typically themselves dynamic, since the effect of
absent type information is cascading:

dynamic

X = 2;
var y = x * 3; // Static type of y is dynamic

There are a couple of obvious exceptions to this rule. First, casting a dynamic expression to a
static type yields a static expression:

dynamic x = 2;
var y = (int)x; // Static type of y is int

Second, constructor invocations always yield static expressions — even when called with

dynamic arguments. In this example, x is statically typed to a StringBuilder:

dynamic capacity = 10;
var x = new System.Text.StringBuilder (capacity):

In addition, there are a few edge cases where an expression containing a dynamic argument is
static, including passing an index to an array and delegate creation expressions.

Dynamic Calls Without Dynamic Receivers

The canonical use case for dynamic involves a dynamic receiver. This means that a dynamic
object is the receiver of a dynamic function call:

dynamic x = ...;
x.Foo () ; // x 1s the receiver

However, you can also call statically known functions with dynamic arguments. Such calls are
subject to dynamic overload resolution, and can include:

= Static methods
» [nstance constructors
= Instance methods on receivers with a statically known type

In the following example, the particular Foo that gets dynamically bound is dependent on the
runtime type of the dynamic argument:

class Program

{
static void Foo (int x) { Console.WriteLine (
static void Foo (string x) { Console.WriteLine (

"l"); }
"2") ;)

v

static void Main ()

{

dynamic x = 5;

dynamic y = "watermelon";
Foo (x); /71
Foo (y); /]2

Because a dynamic receiver is not involved, the compiler can statically perform a basic check
to see whether the dynamic call will succeed. It checks that a function with the right name and
number of parameters exists. If no candidate is found, you get a compile-time error. For
example:

class Program
{
static void Foo (int x) { Console.WriteLine ('
static void Foo (string x) { Console.WriteLine ("

v

1"}
2"y}

static void Main ()

{
dynamic x = 5;
Foo (x, X); // Compiler error — wrong number of parameters
Fook (x); // Compiler error — no such method name

Static Types in Dynamic Expressions

It’s obvious that dynamic types are used in dynamic binding. It’s not so obvious that static types
are also used — wherever possible — in dynamic binding. Consider the following:

class Program

{
static void Foo
static void Foo
static void Foo
static void Foo

Console.WriteLine
Console.WriteLine

object x, object (
(
Console.WriteLine ("so
(

object x, string
string x, object

string x, string Console.WritelLine

(
(
(
(

NSRS

static void Main ()
{
object o = "hello";
dynamic d = "goodbye";
Foo (o, d); // os
}
}

The call to Foo (0, d) 1s dynamically bound because one of its arguments, d, is dynamic. But
since o is statically known, the binding — even though it occurs dynamically — will make use
of that. In this case, overload resolution will pick the second implementation of rFoo due to the
static type of o and the runtime type of d. In other words, the compiler is “as static as it can
possibly be.”

Uncallable Functions
Some functions cannot be called dynamically. You cannot call:

= Extension methods (via extension method syntax)
= Members of an interface, if you need to cast to that interface to do so
= Base members hidden by a subclass

Understanding why this is so is useful in understanding dynamic binding.

Dynamic binding requires two pieces of information: the name of the function to call, and the
object upon which to call the function. However, in each of the three uncallable scenarios, an
additional type is involved, which is known only at compile time. As of C# 6, there’s no way
to specify these additional types dynamically.

When calling extension methods, that additional type is implicit. It’s the static class on which
the extension method is defined. The compiler searches for it given the using directives in
your source code. This makes extension methods compile-time-only concepts, since using
directives melt away upon compilation (after they’ve done their job in the binding process in
mapping simple names to namespace-qualified names).

When calling members via an interface, you specify that additional type via an implicit or
explicit cast. There are two scenarios where you might want to do this: when calling explicitly
implemented interface members, and when calling interface members implemented in a type
internal to another assembly. We can illustrate the former with the following two types:

interface IFoo { void Test () ; }

class Foo : IFoo { void IFoo.Test() {} }

To call the Test method, we must cast to the 1Foo interface. This is easy with static typing:

IFoo f = new Foo(); // Implicit cast to interface
f.Test ()

Now consider the situation with dynamic typing:

IFoo f = new Foo();
dynamic d = f;
d.Test () ; // Exception thrown

The implicit cast shown in bold tells the compiler to bind subsequent member calls on £ to
IFoo rather than Foo — in other words, to view that object through the lens of the 1Foo
interface. However, that lens is lost at runtime, so the DLR cannot complete the binding. The
loss is illustrated as follows:

Console.WriteLine (f.GetType () .Name) ; // Foo

A similar situation arises when calling a hidden base member: you must specify an additional
type via either a cast or the base keyword — and that additional type is lost at runtime.

Operator Overloading

Operators can be overloaded to provide more natural syntax for custom types. Operator
overloading is most appropriately used for implementing custom structs that represent fairly
primitive data types. For example, a custom numeric type is an excellent candidate for operator
overloading.

The following symbolic operators can be overloaded:

+ (unary) - (unary) !~ ++
—— + - %/
% & | ~oL
>> == = > <
>= <=

The following operators are also overloadable:

= Implicit and explicit conversions (with the implicit and explicit keywords).
m The true and false operators (not literals).

The following operators are indirectly overloaded:

» The compound assignment operators (e.g., +=, /=) are implicitly overridden by overriding
the noncompound operators (e.g., +, /).

» The conditional operators s«s and | | are implicitly overridden by overriding the bitwise
operators & and |.

Operator Functions

An operator is overloaded by declaring an operator function. An operator function has the
following rules:

» The name of the function is specified with the operator keyword followed by an operator
symbol.

The operator function must be marked static and public.

The parameters of the operator function represent the operands.

The return type of an operator function represents the result of an expression.

At least one of the operands must be the type in which the operator function is declared.

In the following example, we define a struct called Note representing a musical note, and then
overload the + operator:

public struct Note

{
int value;
public Note (int semitonesFromA) { value = semitonesFromA; }
public static Note operator + (Note x, int semitones)

{

return new Note (x.value + semitones);
}
}

This overload allows us to add an int to a Note:

Note B = new Note (2);
Note CSharp = B + 2;

Overloading an operator automatically overloads the corresponding compound assignment
operator. In our example, since we overrode +, we can use += too:

CSharp += 2;

Just as with methods and properties, C# 6 allows operator functions comprising a single
expression to be written more tersely with expression-bodied syntax:

public static Note operator + (Note x, int semitones)
=> new Note (x.value + semitones);

Overloading Equality and Comparison Operators

Equality and comparison operators are sometimes overridden when writing structs, and in rare
cases when writing classes. Special rules and obligations come with overloading the equality
and comparison operators, which we explain in Chapter 6. A summary of these rules is as
follows:

Pairing

The C# compiler enforces operators that are logical pairs to both be defined. These
operators are (== !=), (< >), and (<= >=).

Equals and GetHashCode

In most cases, if you overload (==) and (! =), you will usually need to override the Equals
and GetHashCode methods defined on object in order to get meaningful behavior. The
C# compiler will give a warning if you do not do this. (See “Equality Comparison” for
more details.)

IComparable and IComparable<T>

If you overload (< >) and (<= >=), you should implement TComparable and
IComparable<T>.

Custom Implicit and Explicit Conversions

Implicit and explicit conversions are overloadable operators. These conversions are typically
overloaded to make converting between strongly related types (such as numeric types) concise
and natural.

To convert between weakly related types, the following strategies are more suitable:

m Write a constructor that has a parameter of the type to convert from.
m Write Toxxx and (static) Fromxxx methods to convert between types.

As explained in the discussion on types, the rationale behind implicit conversions is that they
are guaranteed to succeed and not lose information during the conversion. Conversely, an
explicit conversion should be required either when runtime circumstances will determine
whether the conversion will succeed or if information may be lost during the conversion.

In this example, we define conversions between our musical Note type and a double (which
represents the frequency in hertz of that note):

// Convert to hertz
public static implicit operator double (Note x)
=> 440 * Math.Pow (2, (double) x.value / 12);

// Convert from hertz (accurate to the nearest semitone)
public static explicit operator Note (double x)
=> new Note ((int) (0.5 + 12 * (Math.Log (x/440) / Math.Log(2))));

Note n = (Note)554.37; // explicit conversion
double x = n; // implicit conversion
NOTE

Following our own guidelines, this example might be better implemented with a ToFrequency
method (and a static FromFrequency method) instead of implicit and explicit operators.

WARNING

Custom conversions are ignored by the as and is operators:

Console.WriteLine (554.37 is Note); // False
Note n = 554.37 as Note; // Error

Overloading true and false

The true and false operators are overloaded in the extremely rare case of types that are
Boolean “in spirit,” but do not have a conversion to bool. An example is a type that
implements three-state logic: by overloading t rue and false, such a type can work seamlessly
with conditional statements and operators — namely, i f, do, while, for, &s&, | |, and ?:. The
System.Data.SqlTypes.SglBoolean struct provides this functionality. For example:

SglBoolean a = SglBoolean.Null;
if (a)

Console.WriteLine ("True");
else 1if ('a)

Console.WriteLine ("False");
else

Console.WriteLine ("Null");

OUTPUT:
Null

The following code is a reimplementation of the parts of sq1Boolean necessary to demonstrate
the true and false operators:

public struct SglBoolean
{

public static bool operator true (SglBoolean x)
=> x.m value == True.m value;

public static bool operator false (SglBoolean x)

=> x.m value == False.m value;
public static SglBoolean operator ! (SglBoolean x)
{

if (x.m value == Null.m value) return Null;

if (x.m value == False.m value) return True;

return False;

}

public static readonly SglBoolean Null = new SglBoolean(0);
public static readonly SglBoolean False = new SglBoolean(l);
public static readonly SglBoolean True = new SglBoolean(2);

private SglBoolean (byte value) { m value = value; }
private byte m value;

Unsafe Code and Pointers

C# supports direct memory manipulation via pointers within blocks of code marked unsafe and
compiled with the /unsafe compiler option. Pointer types are primarily useful for
interoperability with C APIs, but may also be used for accessing memory outside the managed
heap or for performance-critical hotspots.

Pointer Basics

For every value type or reference type V, there is a corresponding pointer type V*. A pointer
instance holds the address of a variable. Pointer types can be (unsafely) cast to any other
pointer type. The main pointer operators are:

Operator Meaning

& The address-of operator returns a pointer to the address of a variable
* The dereference operator returns the variable at the address of a pointer
-> The pointer-to-member operator is a syntactic shortcut, in which x->y is equivalent to (*x) .y

Unsafe Code

By marking a type, type member, or statement block with the unsafe keyword, you’re
permitted to use pointer types and perform C++ style pointer operations on memory within that
scope. Here is an example of using pointers to quickly process a bitmap:

unsafe void BlueFilter (int[,] bitmap)
{
int length = bitmap.Length;
fixed (int* b = bitmap)
{
int* p = b;
for (int 1 = 0; i < length; i++)
*p++ &= OxFFE;

Unsafe code can run faster than a corresponding safe implementation. In this case, the code
would have required a nested loop with array indexing and bounds checking. An unsafe C#
method may also be faster than calling an external C function, since there is no overhead
associated with leaving the managed execution environment.

The fixed Statement

The fixed statement is required to pin a managed object, such as the bitmap in the previous
example. During the execution of a program, many objects are allocated and deallocated from
the heap. In order to avoid unnecessary waste or fragmentation of memory, the garbage
collector moves objects around. Pointing to an object is futile if its address could change while
referencing it, so the fixed statement tells the garbage collector to “pin” the object and not
move it around. This may have an impact on the efficiency of the runtime, so fixed blocks
should be used only briefly, and heap allocation should be avoided within the fixed block.

Within a fixed statement, you can get a pointer to any value type, an array of value types, or a
string. In the case of arrays and strings, the pointer will actually point to the first element,
which is a value type.

Value types declared inline within reference types require the reference type to be pinned, as
follows:

class Test

{
int x;
static void Main ()
{

Test test = new Test();

unsafe
{
fixed (int* p = &test.x) // Pins test
{
*p = 9;

}

System.Console.WritelLine (test.x);

We describe the fixed statement further in “Mapping a Struct to Unmanaged Memory”.

The Pointer-to-Member Operator

In addition to the s and * operators, C# also provides the C++ style -> operator, which can be
used on structs:

struct Test
{
int x;
unsafe static void Main ()
{
Test test = new Test():;
Test* p = &test;
p->x = 9;
System.Console.WriteLine (test.x);

Arrays

The stackalloc keyword

Memory can be allocated in a block on the stack explicitly using the stackalloc keyword.
Since it is allocated on the stack, its lifetime is limited to the execution of the method, just as
with any other local variable (whose life hasn’t been extended by virtue of being captured by a
lambda expression, iterator block, or asynchronous function). The block may use the []
operator to index into memory:

’

int* a = stackalloc int [10]
for (int 1 = 0; 1 < 10; ++1i)
)

Console.WriteLine (al[i] // Print raw memory

Fixed-size buffers

The £ixed keyword has another use, which is to create fixed-size buffers within structs:

unsafe struct UnsafeUnicodeString
{

public short Length;

public fixed byte Buffer[30]; // Allocate block of 30 bytes
}

unsafe class UnsafeClass

{

UnsafeUnicodeString uus;

public UnsafeClass (string s)
{
uus.Length = (short)s.Length;
fixed (byte* p = uus.Buffer)
for (int 1 = 0; i < s.Length; i++)
pli] = (byte) sl[i];
}
}
class Test
{

static void Main() { new UnsafeClass ("Christian Troy"); }

The fixed keyword is also used in this example to pin the object on the heap that contains the
buffer (which will be the instance of unsafeclass). Hence, fixed means two different things:
fixed in size, and fixed in place. The two are often used together, in that a fixed-size buffer
must be fixed in place to be used.

void*

A void pointer (voidx) makes no assumptions about the type of the underlying data and is
useful for functions that deal with raw memory. An implicit conversion exists from any pointer
type to void*. A void* cannot be dereferenced, and arithmetic operations cannot be performed
on void pointers. For example:

class Test

{
unsafe static void Main ()
{
short[] a = {1,1,2,3,5,8,13,21,34,55};
fixed (short* p = a)
{
//sizeof returns size of value-type in bytes
Zap (p, a.Length * sizeof (short));
}
foreach (short x in a)
System.Console.WritelLine (x); // Prints all zeros

}

unsafe static void Zap (void* memory, int byteCount)
{
byte* b = (byte*) memory;
for (int 1 = 0; i < byteCount; i++)
*o++ = 0;

Pointers to Unmanaged Code

Pointers are also useful for accessing data outside the managed heap (such as when interacting
with C DLLs or COM), or when dealing with data not in the main memory (such as graphics
memory or a storage medium on an embedded device).

Preprocessor Directives

Preprocessor directives supply the compiler with additional information about regions of code.
The most common preprocessor directives are the conditional directives, which provide a way
to include or exclude regions of code from compilation. For example:

#define DEBUG
class MyClass
{
int x;
void Foo ()
{
#if DEBUG
Console.WriteLine ("Testing: x = {0}", x);
#endif
}

In this class, the statement in Foo is compiled as conditionally dependent upon the presence of
the pEBUG symbol. If we remove the pEBUG symbol, the statement is not compiled.
Preprocessor symbols can be defined within a source file (as we have done), and they can be
passed to the compiler with the /define: symbol command-line option.

With the #1f and #e1if directives, you can use the | |, s&, and ! operators to perform or, and,
and not operations on multiple symbols. The following directive instructs the compiler to
include the code that follows if the TEsTMODE symbol is defined and the pEBUG symbol is not

defined:

#1if TESTMODE &&

! DEBUG

Bear in mind, however, that you’re not building an ordinary C# expression, and the symbols
upon which you operate have absolutely no connection to variables — static or otherwise.

The #error and #warning symbols prevent accidental misuse of conditional directives by
making the compiler generate a warning or error given an undesirable set of compilation
symbols. Table 4-1 lists the preprocessor directives.

Preprocessor
directive

#define symbol
#undef symbol
#1f symbol

[operator
symbol2] ...

#else

#elif symbol
[operator symbol2]

#endif
#warning text
#error text

#pragma warning
[disable | restorel

#line [number
["file"] | hidden]

#region name

#endregion

Table 4-1. Preprocessor directives

Action

Defines symbol
Undefines symbo1

symbol to test

operatorS are ==, !=, s&, and | | followed by #else, #e1if, and #endif
Executes code to subsequent #endif

Combines #else branch and #if test

Ends conditional directives
text of the warning to appear in compiler output
text of the error to appear in compiler output

Disables/restores compiler warning(s)

number specifies the line in source code; file is the filename to appear in computer output; hidden
instructs debuggers to skip over code from this point until the next #1ine directive

Marks the beginning of an outline

Ends an outline region

Conditional Attributes

An attribute decorated with the conditional attribute will be compiled only if a given
preprocessor symbol is present. For example:

// filel.cs
#define DEBUG
using System;

using System.Diagnostics;
[Conditional ("DEBUG")]

public class TestAttribute : Attribute ({}

// file2.cs
#define DEBUG
[Test]
class Foo
{
[Test]
string s;

}

The compiler will only incorporate the [Test] attributes if the pEBUG symbol is in scope for
file2.cs.

Pragma Warning

The compiler generates a warning when it spots something in your code that seems
unintentional. Unlike errors, warnings don’t ordinarily prevent your application from

compiling.
Compiler warnings can be extremely valuable in spotting bugs. Their usefulness, however, is

undermined when you get false warnings. In a large application, maintaining a good signal-to-
noise ratio is essential if the “real” warnings are to get noticed.

To this effect, the compiler allows you to selectively suppress warnings with the #pragma
warning directive. In this example, we instruct the compiler not to warn us about the field
Message not being used:

public class Foo

{

static void Main() { }

#pragma warning disable 414
static string Message = "Hello";
#pragma warning restore 414

}

Omitting the number in the #pragma warning directive disables or restores all warning codes.

If you are thorough in applying this directive, you can compile with the /warnaserror switch
— this tells the compiler to treat any residual warnings as errors.

XML Documentation

A documentation comment is a piece of embedded XML that documents a type or member. A
documentation comment comes immediately before a type or member declaration, and starts
with three slashes:

/// <summary>Cancels a running query.</summary>
public void Cancel() { ... }

Multiline comments can be done either like this:

/// <summary>
/// Cancels a running query
/// </summary>
public void Cancel() { ... }

or like this (notice the extra star at the start):

/**

<summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }

If you compile with the /doc directive (in Visual Studio, go to the Build tab of Project
Properties), the compiler extracts and collates documentation comments into a single XML
file. This has two main uses:

m [fplaced in the same folder as the compiled assembly, Visual Studio (and LINQPad)
automatically read the XML file and use the information to provide IntelliSense member
listings to consumers of the assembly of the same name.

» Third-party tools (such as Sandcastle and NDoc) can transform the XML file into an HTML
help file.

Standard XML Documentation Tags
Here are the standard XML tags that Visual Studio and documentation generators recognize:

<summary>

<summary>...</summary>

Indicates the tool tip that IntelliSense should display for the type or member; typically a
single phrase or sentence.

<remarks>

<remarks>...</remarks>

Additional text that describes the type or member. Documentation generators pick this up
and merge it into the bulk of a type or member’s description.

<param>

<param name="name">...</param>

Explains a parameter on a method.

<returns>

<returns>...</returns>

Explains the return value for a method.

<exception>

<exception [cref="type"]>...</exception>

Lists an exception that a method may throw (cref refers to the exception type).

<permission>

<permission [cref="type"]>...</permission>

Indicates an Trermission type required by the documented type or member.

<example>

<example>...</example>

Denotes an example (used by documentation generators). This usually contains both
description text and source code (source code is typically within a <c> or <code> tag).

<c>

<e>...</e>

Indicates an inline code snippet. This tag is usually used inside an <examp1le> block.

<code>

<code>...</code>

Indicates a multiline code sample. This tag is usually used inside an <examp1e> block.

<see>

<see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML documentation
generators typically convert this to a hyperlink. The compiler emits a warning if the type
or member name is invalid. To refer to generic types, use curly braces; for example,
cref="Foo{T,U}".

<seealso>

<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation generators typically write this
into a separate “See Also” section at the bottom of the page.

<paramref>

<paramref name="name"/>

References a parameter from within a <summary> Or <remarks> tag.

<list>

<list type=[bullet | number | table]>
<listheader>
<term>...</term>
<description>...</description>
</listheader>
<item>
<term>...</term>
<description>...</description>
</item>
</list>

Instructs documentation generators to emit a bulleted, numbered, or table-style list.

<para>

<para>...</para>

Instructs documentation generators to format the contents into a separate paragraph.

<include>

<include file='filename' path='tagpath[@name="id"]"'>...</include>

Merges an external XML file that contains documentation. The path attribute denotes an
XPath query to a specific element in that file.

User-Defined Tags

Little is special about the predefined XML tags recognized by the C# compiler, and you are
free to define your own. The only special processing done by the compiler is on the <param>
tag (in which it verifies the parameter name and that all the parameters on the method are
documented) and the cref attribute (in which it verifies that the attribute refers to a real type or
member and expands it to a fully qualified type or member ID). The cref attribute can also be
used in your own tags and is verified and expanded just as it is in the predefined <exception>,

<permission>, <see>, and <seealso> tags.

Type or Member Cross-References

Type names and type or member cross-references are translated into IDs that uniquely define
the type or member. These names are composed of a prefix that defines what the ID represents
and a signature of the type or member. The member prefixes are:

XML type prefix ID prefixes applied to...

N Namespace

i Type (class, struct, enum, interface, delegate)
F Field

P Property (includes indexers)

M Method (includes special methods)

E Event

! Error

The rules describing how the signatures are generated are well documented, although fairly
complex.

Here is an example of a type and the IDs that are generated:

// Namespaces do not have independent signatures
namespace NS
{
/// T:NS.MyClass
class MyClass
{
/// F:NS.MyClass.aField
string aField;

/// P:NS.MyClass.aProperty
short aProperty {get {...} set {...}}

/// T:NS.MyClass.NestedType
class NestedType {...};

/// M:NS.MyClass.X()
void X () {...}

/// M:NS.MyClass.Y (System.Int32,System.Double@, System.Decimal@)
void Y (int pl, ref double p2, out decimal p3) {...}

/// M:NS.MyClass.Z(System.Char[],System.Single[0:,0:])
void Z(char[] pl, float[,] p2) {...}

/// M:NS.MyClass.op Addition (NS.MyClass,NS.MyClass)
public static MyClass operator+ (MyClass cl, MyClass c2) {...}

/// M:NS.MyClass.op Implicit (NS.MyClass) System.Int32
public static implicit operator int (MyClass c) {...}

/// M:NS.MyClass.#ctor
MyClass () {...}

/// M:NS.MyClass.Finalize
"MyClass () {...}

/// M:NS.MyClass.#cctor
static MyClass() {...}

Chapter S. Framework Overview

Almost all the capabilities of the .NET Framework are exposed via a vast set of managed
types. These types are organized into hierarchical namespaces and packaged into a set of
assemblies, which together with the CLR (Common Language Runtime) comprise the .NET
platform.

Some of the .NET types are used directly by the CLR and are essential for the managed hosting
environment. These types reside in an assembly called mscorlib.dll and include C#’s built-in
types, as well as the basic collection classes, types for stream processing, serialization,
reflection, threading, and native interoperability (“mscorlib” is an abbreviation for “Multi-
language Standard Common Object Runtime Library”).

At a level above this are additional types that “flesh out” the CLR-level functionality,
providing features such as XML, networking, and LINQ. These reside in System.d!l,
System.Xml.dll, and System.Core.dll, and together with mscorlib, they provide a rich
programming environment upon which the rest of the Framework is built. This “core
framework” largely defines the scope of the rest of this book.

The remainder of the NET Framework consists of applied APIs, most of which cover three
areas of functionality:

» User-interface technologies
= Backend technologies
= Distributed system technologies

Table 5-1 shows the history of compatibility between each version of C#, the CLR, and the
NET Framework.

Table 5-1. C#, CLR, and .NET Framework versions

C# version CLR version NET Framework versions
1.0 1.0 1.0

1.2 1.1 1.1

2.0 2.0 2.0,3.0

3.0 2.0 (SP2) 3.5

4.0 4.0 4.0

5.0 4.5 (Patched CLR 4.0) 4.5

6.0 4.6 (Patched CLR 4.0) 4.6

7.0 4.6/4.7 (Patched CLR 4.0) 4.6/4.7

This chapter skims all key areas of the .NET Framework — starting with the core types
covered in this book and finishing with an overview of the applied technologies.

WHAT’S NEW IN .NET FRAMEWORK 4.6

= The Garbage Collector (GC) offers more control over when (not) to collect via new methods

on the GC class. There are also more fine-tuning options when calling cc.collect.
» There’s a brand-new faster 64-bit JIT compiler.

m The system.Numerics namespace now includes hardware-accelerated matrix, vector types,
BigInteger and Complex.

m There’s a new system.AppContext class, designed to give library authors a consistent
mechanism for letting consumers switch new API features in or out.

= Tasks now pick up the current thread’s culture and UI culture when created.
= More collection types now implement TReadonlyCollection<T>.
= WPF has further improvements, including better touch and high-DPI handling.

= ASP.NET now supports HTTP/2 and the Token Binding Protocol in Windows 10.

NOTE

Assemblies and namespaces in the .NET Framework cross-cut. The most extreme examples
are mscorlib.dll and System.Core.dll, both defining types in dozens of namespaces, none of
which is prefixed with mscorlib or System.Core. The less obvious cases are the more
confusing ones, however, such as the types in System. Security.Cryptography. Most types in
this namespace reside in System.dll, except for a handful, which reside in System.Security.dll.
The book’s companion website contains a complete mapping of Framework namespaces to
assemblies (www.albahari.com/nutshell/NamespaceReference.aspx).

Many of the core types are defined in the following assemblies: mscorlib.dll, System.dll, and
System.Core.dll. The first of these, mscorlib.dll, comprises the types required by the runtime
environment itself; System.dll and System.Core.dll contain additional core types required by
you as a programmer. The reason the latter two are separate is historical: when Microsoft
introduced Framework 3.5, they made it additive insofar as it ran as a layer over the existing
CLR 2.0. Therefore, almost all new core types (such as the classes supporting LINQ) went into
a new assembly that Microsoft called System.Core.dl!.

WHAT’S NEW IN .NET FRAMEWORK 4.7

Framework 4.7 is more of a maintenance release than a new-feature release, with numerous bug
fixes and minor improvements. Additionally:

» The system.valueTuple struct is part of Framework 4.7, so you can use tuples in C# 7 without
referencing the System. ValueTuple.dll assembly.

= WPF has better touch support.

» Windows Forms has better support for high-DPI monitors.

NET Standard 2.0

http://www.albahari.com/nutshell/NamespaceReference.aspx

In Chapter 1, we described the three main alternatives to the .NET Framework for cross-
platform development:

s UWP for Windows 10 devices/desktop
m NET Core/ASP.NET Core for Windows, Linux, and MacOS
= Xamarin for mobile devices (i0S, Android, and Windows 10 devices)

The good news is that as of .NET Core 2.0, these frameworks — along with .NET Framework
4.6.1 and later — have converged in their core functionality, and now all offer a base class

library (BCL) with similar types and members. This commonality has been formalized into a
standard called . NET Standard 2.0.

When you write a library in Visual Studio 2017, you can choose to target . NET Standard 2.0
instead of a specific framework. Your library is then portable, and the same assembly will run
without modification on (modern versions of) all four frameworks.

NOTE

NET Standard is not a Framework; it’s merely a specification describing a minimum baseline
of functionality (types and members), which guarantees compatibility with a certain set of
frameworks. The concept is similar to C# interfaces: .NET Standard is like an interface that
concrete types (frameworks) can implement.

This book covers most of what’s in .NET Standard 2.0.

Older .NET Standards

There are also older .NET Standards in use, most notably 1.1, 1.2, 1.3, and 1.6. A higher-
numbered standard is always a strict superset of a lower-numbered standard. For instance, if
you write a library that targets .NET Standard 1.6, you will support not only recent versions of
the four major frameworks, but also .NET Core 1.0. And if you target .NET Standard 1.3, you
support everything we’ve already mentioned plus .NET Framework 4.6.0 (see Table 5-2).

Table 5-2. Older .NET Standards

If you target... You also support...

Standard 1.6 .NET Core 1.0

Standard 1.3 Above plus .NET 4.6.0

Standard 1.2 Above plus .NET 4.5.1, Windows Phone 8.1, WinRT for Windows 8.1
Standard 1.1 Above plus .NET 4.5.0, Windows Phone 8.0, WinRT for Windows 8.0

WARNING

The 1.x standards lack thousands of APIs that are present in 2.0, including much of what we
describe in this book. This can make targeting a 1.x standard significantly more challenging,
especially if you need to integrate existing code or libraries.

If you need to support older frameworks but don’t need cross-platform compatibility, a better

option is to target an older version of a specific framework. In the case of Windows, a good
choice is .NET Framework 4.5 because it’s widely deployed (pre-installed on all machines
running Windows 8 and later), and it contains most of what’s in .NET Framework 4.7.

You can also think of .NET Standard as a lowest common denominator. In the case of .NET
Standard 2.0, the four frameworks that implement it have a similar Base Class Library, so the
lowest common denominator is big and useful. However, if you also want compatibility with
NET Core 1.0 (with its significantly cut-down BCL), the lowest common denominator —
NET Standard 1.x — becomes much smaller and less useful.

Reference Assemblies

When compiling a program, you must reference the assemblies that contain the portions of the
framework that your program consumes. For instance, a simple Console program for .NET
Framework that includes a LINQ-to-XML query would require mscorlib.dll, System.dll,
System. Xml.dll, System.Xml.Ling.dll, and System.Core.dll.

In Visual Studio, this is done by adding references to the project (the ones we just listed are
added automatically when creating projects that target NET Framework 4.x). The assemblies
that you reference, however, only need exist for the benefit of the compiler, and don’t need to
be the same ones that are used at runtime. Hence, it’s permissible to use special reference
assemblies that exist as empty shells, without any compiled code. This is how .NET Standard
works: you add a reference assembly called netstandard.dll, which contains all of the
allowable types and members in .NET Standard 2.0 (but no actual compiled code). Then,
through assembly redirection attributes, the “real” assemblies are loaded at runtime. (The
choice of “real” assemblies will depend on which framework the assembly eventually runs
on.)

Reference assemblies also allow you to target a lower Framework version than is installed on
your machine. For instance, if you’ve installed .NET Framework 4.7 along with Visual Studio
2017, you can still tell your project to target NET Framework 4.0. Thanks to a set of
Framework 4.0 reference assemblies, your project will only be able to see the types/members
of Framework 4.0.

The CLR and Core Framework

System Types

The most fundamental types live directly in the system namespace. These include C#’s built-in
types, the Exception base class, the Enum, Array, and Delegate base classes, and Nullable,
Type, DateTime, TimeSpan, and Guid. The system namespace also includes types for
performing mathematical functions (Math), generating random numbers (Random), and
converting between various types (Convert and BitConverter).

Chapter 6 describes these types — as well as the interfaces that define standard protocols used
across the .NET Framework for such tasks as formatting (1Formattable) and order
comparison (IComparable).

The system namespace also defines the 1pisposable interface and the cc class for interacting
with the garbage collector. These topics are saved for Chapter 12.

Text Processing

The system.Text namespace contains the stringBuilder class (the editable or mutable
cousin of string), and the types for working with text encodings, such as UTF-8 (Encoding
and its subtypes). We cover this in Chapter 6.

The system.Text.RegularExpressions hamespace contains types that perform advanced
pattern-based search-and-replace operations; these are described in Chapter 26.

Collections

The .NET Framework offers a variety of classes for managing collections of items. These
include both list- and dictionary-based structures, and work in conjunction with a set of
standard interfaces that unify their common characteristics. All collection types are defined in
the following namespaces, covered in Chapter 7:

System.Collections // Nongeneric collections

System.Collections.Generic // Generic collections

System.Collections.Specialized // Strongly typed collections

System.Collections.ObjectModel // Bases for your own collections

System.Collections.Concurrent // Thread-safe collection (Chapter 23)
Queries

Language Integrated Query (LINQ) was added in Framework 3.5. LINQ allows you to perform
type-safe queries over local and remote collections (e.g., SQL Server tables) and is described
in Chapters 8 through 10. A big advantage of LINQ is that it presents a consistent querying API
across a variety of domains. The essential types reside in the following namespaces, and are
part of NET Standard 2.0:

System.Ling // LINQ to Objects and PLINQ
System.Ling.Expressions // For building expressions manually
System.Xml.Ling // LINQ to XML

The full NET Framework also includes the following, which we describe in “Backend
Technologies™:

System.Data.Ling // LINQ to SQL
System.Data.Entity // LINQ to Entities (Entity Framework)

XMLis used widely within the NET Framework, and so is supported extensively. Chapter 10
focuses entirely on LINQ to XML — a lightweight XML document object model that can be
constructed and queried through LINQ. Chapter 11 describes the older W3C DOM, as well as
the performant low-level reader/writer classes and the Framework’s support for XML
schemas, stylesheets, and XPath. The XML namespaces are:

System.Xml // XmlReader, XmlWriter + the old W3C DOM
System.Xml.Ling // The LINQ to XML DOM

System.Xml.Schema // Support for XSD

System.Xml.Serialization // Declarative XML serialization for .NET types
System.Xml.XPath // XPath query language

System.Xml.Xsl // Stylesheet support

Diagnostics

In Chapter 13, we cover .NET’s logging and assertion facilities and describe how to interact
with other processes, write to the Windows event log, and use performance counters for
monitoring. The types for this are defined in and under system.Diagnostics. Windows-
specific features are not part of NET Standard, and are available only in the .NET Framework.

Concurrency and Asynchrony

Many modern applications need to deal with more than one thing happening at a time. Since C#
5.0, this has become easier through asynchronous functions and high-level constructs such as
tasks and task combinators. Chapter 14 explains all of this in detail, after starting with the
basics of multithreading. Types for working with threads and asynchronous operations are in
the System.Threading and System.Threading.Tasks namespaces.

Streams and 1/0

The Framework provides a stream-based model for low-level input/output. Streams are
typically used to read and write directly to files and network connections, and can be chained
or wrapped in decorator streams to add compression or encryption functionality. Chapter 15
describes .NET’s stream architecture, as well as the specific support for working with files
and directories, compression, isolated storage, pipes, and memory-mapped files. The NET
stream and I/O types are defined in and under the system. 10 namespace, and the WinRT
types for file I/O are in and under windows . Storage.

Networking

You can directly access standard network protocols such as HTTP, FTP, TCP/IP, and SMTP
via the types in system.Net. In Chapter 16, we demonstrate how to communicate using each of
these protocols, starting with simple tasks such as downloading from a web page, and finishing
with using TCP/IP directly to retrieve POP3 email. Here are the namespaces we cover:

System.Net

System.Net.Http // HttpClient
System.Net.Mail // For sending mail via SMTP
System.Net.Sockets // TCP, UDP, and IP

The latter two namespaces are unavailable to Windows Store applications if you’re targeting
Windows 8/8.1 (WinRT), but are available to Windows 10 Store apps (UWP) as part of the
NET Standard 2.0 contract. For WinRT apps, use third-party libraries for sending mail, and
the WinRT types in windows.Networking.Sockets for working with sockets.

Serialization

The Framework provides several systems for saving and restoring objects to a binary or text
representation. Such systems are required for distributed application technologies, such as
WCEF, Web Services, and Remoting, and also to save and restore objects to a file. In

Chapter 17, we cover the three major serialization engines: the data contract serializer, the
binary serializer, and the XML serializer. (There is also a JSON serializer now available in the
NET Framework.) The types for serialization reside in the following namespaces:

System.Runtime.Serialization
System.Xml.Serialization

Assemblies, Reflection, and Attributes

The assemblies into which C# programs compile comprise executable instructions (stored as
intermediate language or IL) and metadata, which describes the program’s types, members, and
attributes. Through reflection, you can inspect this metadata at runtime, and do such things as
dynamically invoke methods. With Reflection.Emit, you can construct new code on the fly.

In Chapter 18, we describe the makeup of assemblies and how to sign them, use the global
assembly cache (GAC) and resources, and resolve file references. In Chapter 19, we cover
reflection and attributes — describing how to inspect metadata, dynamically invoke functions,
write custom attributes, emit new types, and parse raw IL. The types for using reflection and
working with assemblies reside in the following namespaces:

System
System.Reflection
System.Reflection.Emit // .NET Framework only

Dynamic Programming

In Chapter 20, we look at some of the patterns for dynamic programming and leveraging the
Dynamic Language Runtime, which has been a part of the CLR since Framework 4.0. We
describe how to implement the Visitor pattern, write custom dynamic objects, and interoperate
with IronPython. The types for dynamic programming are in System.Dynamic.

Security

The .NET Framework provides its own security layer, allowing you to both sandbox other
assemblies and be sandboxed yourself. In Chapter 21, we cover code access, role, and identity
security, and the transparency model introduced in CLR 4.0. We then describe cryptography in
the Framework, covering encryption, hashing, and data protection. The types for this are
defined in:

System.Security
System.Security.Permissions
System.Security.Policy
System.Security.Cryptography

Advanced Threading

C#’s asynchronous functions make concurrent programming significantly easier because they
lessen the need for lower-level techniques. However, there are still times when you need
signaling constructs, thread-local storage, reader/writer locks, and so on. Chapter 22 explains
this in depth. Threading types are in the System. Threading namespace.

Parallel Programming

In Chapter 23, we cover in detail the libraries and types for leveraging multicore processors,
including APIs for task parallelism, imperative data parallelism, and functional parallelism
(PLINQ).

Application Domains

The CLR provides an additional level of isolation within a process, called an application
domain. In Chapter 24, we examine the properties of an application domain with which you
can interact, and demonstrate how to create and use additional application domains within the
same process for such purposes as unit testing. We also describe how to use Remoting to
communicate with these application domains.

Creating separate application domains is not part of NET Standard 2.0, although you can
interact with the current domain via the Appbomain class in the system namespace.

Native and COM Interoperability

You can interoperate with both native and COM code. Native interoperability allows you to
call functions in unmanaged DLLs, register callbacks, map data structures, and interoperate
with native data types. COM interoperability allows you to call COM types and expose .NET
types to COM. The types that support these functions are in
System.Runtime.InteropServices, and we cover them in Chapter 25.5

Applied Technologies

User-Interface APIs

User-interface—based applications can be divided into two categories: thin client, which
amounts to a website, and rich client, which is a program the end user must download and
install on a computer or mobile device.

For thin client applications, .NET provides ASP.NET and ASP.NET Core.

For rich-client applications that target Windows 7/8/10 desktop, .NET provides the WPF and
Windows Forms APIs. For rich-client apps that target i0S, Android, and Windows Phone,
there’s Xamarin, and for writing rich-client store apps for Windows 10 desktop and devices,
there’s UWP (see Table 1-1 in Chapter 1).

Finally, there’s a hybrid technology called Silverlight, which has been largely abandoned since
the rise of HTMLS.

ASP.NET

Applications written using ASP.NET host under Windows IIS and can be accessed from any
web browser. Here are the advantages of ASP.NET over rich-client technologies:

» There is zero deployment at the client end.
m Clients can run a non-Windows platform.
» Updates are easily deployed.

Further, because most of what you write in an ASP.NET application runs on the server, you
design your data access layer to run in the same application domain — without limiting
security or scalability. In contrast, a rich client that does the same is not generally as secure or
scalable. (The solution, with the rich client, is to insert a middle tier between the client and
database. The middle tier runs on a remote application server [often alongside the database

server| and communicates with the rich clients via WCF, Web Services, or Remoting,)

In writing your web pages, you can choose between the traditional Web Forms and the newer
MVC (Model-View-Controller) API. Both build on the ASP.NET infrastructure. Web Forms
has been part of the Framework since its inception; MVC was written much later in response to
the success of Ruby on Rails and MonoRail. It provides, in general, a better programming
abstraction than Web Forms; it also allows more control over the generated HTML. What you
lose over Web Forms is a designer. This makes Web Forms still a good choice for web pages
with predominately static content.

The limitations of ASP.NET are largely a reflection of the limitations of thin client systems in
general:

= While a web browser can offer a rich compelling interface with HTMLS5 and AJAX, it’s
still inferior to a native rich-client API such as WPF in capability and performance.

= Maintaining state on the client — or on behalf of the client — can be cumbersome.

The types for writing ASP.NET applications are in the system.Web.UT namespace and its
subnamespaces, and are in the System. Web.dll assembly. ASP.NET 5 is available on NuGet.

ASP.NET Core

A relatively recent addition, ASP.NET Core is similar to ASP.NET, but runs on both .NET
Framework and .NET Core (allowing for cross-platform deployment). ASP.NET Core features
a lighter-weight modular architecture, with the ability to self-host in a custom process, and an
open source license. Unlike its predecessors, ASP.NET Core is not dependent on System.Web
and the historical baggage of Web Forms. It’s particularly suitable for micro-services and
deployment inside containers.

Windows Presentation Foundation (WPF)

WPF was introduced in Framework 3.0 for writing rich-client applications. The benefits of
WPF over its predecessor, Windows Forms, are as follows:

= [t supports sophisticated graphics, such as arbitrary transformations, 3D rendering,
multimedia, and true transparency. Skinning is supported through styles and templates.

= [ts primary measurement unit is not pixel-based, so applications display correctly at any
DPI (dots per inch) setting.

= |t has extensive and flexible layout support, which means you can localize an application
without danger of elements overlapping.

» Rendering uses DirectX and is fast, taking good advantage of graphics hardware
acceleration.

m [t offers reliable data binding.

= User interfaces can be described declaratively in XAML files that can be maintained
independently of the “code-behind” files — this helps to separate appearance from
functionality.

WPEF’s size and complexity, however, create a big learning curve.

The types for writing WPF applications are in the system.Windows namespace and all
subnamespaces except for System.Windows.Forms.

Windows Forms

Windows Forms is a rich-client API that’s as old as the .NET Framework. Compared to WPF,
Windows Forms is a relatively simple technology that provides most of the features you need
in writing a typical Windows application. It also has significant relevancy in maintaining
legacy applications. It has a number of drawbacks, though, compared to WPF:

m Controls are positioned and sized in pixels, making it easy to write applications that break
on clients whose DPI settings differ from the developer’s (although this has improved
somewhat in Framework 4.7).

» The API for drawing nonstandard controls is GDI+, which, although reasonably flexible, is
slow in rendering large areas (and without double buffering, may flicker).

m Controls lack true transparency.

= Most controls are noncompositional. For instance, you can’t put an image control inside a
tab control header. Customizing list views and combo boxes is time-consuming and painful.

= Dynamic layout is difficult to get right reliably.

The last point is an excellent reason to favor WPF over Windows Forms — even if you're
writing a business application that needs just a user interface and not a “user experience.” The
layout elements in WPF, such as crid, make it easy to assemble labels and text boxes such that
they always align — even after language-changing localization — without messy logic and
without any flickering. Further, you don’t have to bow to the lowest common denominator in
screen resolution — WPF layout elements have been designed from the outset to adapt
properly to resizing.

On the positive side, Windows Forms is relatively simple to learn and still has a good number
of third-party controls.

The Windows Forms types are in the system.wWindows.Forms (in System. Windows.Forms.dll)
and system.Drawing (in System.Drawing.dll) namespaces. The latter also contains the GDI+
types for drawing custom controls.

Xamarin
Xamarin, now owned by Microsoft, lets you write mobile apps in C# that target 10S and
Android, as well as Windows Phone. Being cross-platform, this runs not on the .NET

Framework, but its own framework (a derivation of the open source Mono framework). See
https://www.xamarin.com for more information.

UWP (Universal Windows Platform)

UWP is for writing apps that target Windows 10 desktop and devices, distributed via the
Windows Store. Its rich-client API is designed for writing touch-first user interfaces, and was
inspired by WPF and uses XAML for layout. The namespaces are windows.UI and
Windows.UI.Xaml.

Silverlight

https://www.xamarin.com

Silverlight is also distinct from the .NET Framework, and lets you write a graphical Ul that
runs in a web browser, much like Macromedia’s Flash. With the rise of HTMLS5, Microsoft has
abandoned Silverlight.

Backend Technologies

ADO.NET

ADO.NET is the managed data access APIL. Although the name is derived from the 1990s-era
ADO (ActiveX Data Objects), the technology is completely different. ADO.NET contains two
major low-level components:

Provider layer

The provider model defines common classes and interfaces for low-level access to
database providers. These interfaces comprise connections, commands, adapters, and
readers (forward-only, read-only cursors over a database). The Framework ships with
native support for Microsoft SQL Server, and numerous third-party drivers are available
for other databases.

DataSet model

A DataSet is a structured cache of data. It resembles a primitive in-memory database,
which defines SQL constructs such as tables, rows, columns, relationships, constraints,
and views. By programming against a cache of data, you can reduce the number of trips to
the server, increasing server scalability and the responsiveness of a rich-client user
interface. DataSets are serializable and are designed to be sent across the wire between
client and server applications.

Sitting above the provider layer are three APIs that offer the ability to query databases via
LINQ:

» Entity Framework (.NET Framework only)
» Entity Framework Core (.NET Framework and .NET Core)
= LINQ to SQL (.NET Framework only)

All three technologies include object/relational mappers (ORMs), meaning they automatically
map objects (based on classes that you define) to rows in the database. This allows you to
query those objects via LINQ (instead of writing SQL seLECT statements) — and update them
without manually writing SQL 1NsERT/DELETE/UPDATE statements. This cuts the volume of
code in an application’s data access layer (particularly the “plumbing” code) and provides
strong static type safety. These technologies also avoid the need for DataSets as receptacles of
data — although DataSets still provide the unique ability to store and serialize state changes
(something particularly useful in multitier applications). You can use Entity Framework or
LINQ to SQL in conjunction with DataSets, although the process is somewhat clumsy and
DataSets are inherently ungainly. In other words, there’s no straightforward out-of-the-box
solution for writing n-tier applications with Microsoft’s ORMs as yet.

LINQ to SQL is simpler than Entity Framework, and has historically produced better SQL
(although Entity Framework has benefited from numerous updates). Entity Framework is more
flexible in that you can create elaborate mappings between the database and the classes that

you query (Entity Data Model), and offers a model that allows third-party support for
databases other than SQL Server.

Entity Framework Core (EF Core) is a rewrite of Entity Framework with a simpler design
inspired by LINQ to SQL. It abandons the complex Entity Data Model and runs on both .NET
Framework and .NET Core.

NOTE

NET Standard 2.0 includes the common interfaces in the provider layer, as well as DataSets,
but excludes SQL Server-specific types and the object-relational mappers.

Windows Workflow (.NET Framework only)

Windows Workflow is a framework for modeling and managing potentially long-running
business processes. Workflow targets a standard runtime library, providing consistency and
interoperability. Workflow also helps reduce coding for dynamically controlled decision-
making trees.

Windows Workflow is not strictly a backend technology — you can use it anywhere (an
example is page flow, in the UI).

Workflow came originally with .NET Framework 3.0, with its types defined in the
System.WorkFlow namespace. Workflow was substantially revised in Framework 4.0; the new
types live in and under the system.Activities namespace.

COM+ and MSMQ (.NET Framework only)

The Framework allows you to interoperate with COM+ for services such as distributed
transactions, via types inthe System.EnterpriseServices namespace. It also supports
MSMQ (Microsoft Message Queuing) for asynchronous, one-way messaging through types in

System.Messaging.

Distributed System Technologies

Windows Communication Foundation (WCF)

WCF is a sophisticated communications infrastructure introduced in Framework 3.0. WCF is
flexible and configurable enough to make both of its predecessors — Remoting and (.ASMX)
Web Services — mostly redundant.

WCF, Remoting, and Web Services are all alike in that they implement the following basic
model in allowing a client and server application to communicate:

= On the server, you indicate what methods you’d like remote client applications to be able to
call.

= On the client, you specify or infer the signatures of the server methods you’d like to call.

= On both the server and the client, you choose a transport and communication protocol (in
WCF, this is done through a binding).

m The client establishes a connection to the server.

» The client calls a remote method, which executes transparently on the server.

WCF further decouples the client and server through service contracts and data contracts.
Conceptually, the client sends an (XML or binary) message to an endpoint on a remote service,
rather than directly invoking a remote method. One of the benefits of this decoupling is that
clients have no dependency on the .NET platform or on any proprietary communication
protocols.

WCF is highly configurable and provides extensive support for standardized SOAP-based
messaging protocols (Simple Object Access Protocol), including the WS-* extensions for
security. This lets you communicate with parties running different software — possibly on
different platforms — while still supporting advanced features such as encryption. In practice,
however, the complexity of these protocols has limited their adoption across other platforms,
and the best option right now for interoperable messaging is REST over HTTP, which
Microsoft supports through the Web API layer over ASP.NET.

For .NET-to-.NET communication, however, WCF offers richer serialization and better tooling
than with REST APIs. It’s also potentially faster as it’s not tied to HTTP and can use binary
serialization.

The types for communicating with WCF are in, and below, the system.serviceModel
namespace.

Web API

Web API runs over ASP.NET/ASP.NET Core and is architecturally similar to Microsoft’s
MVC API, except that it’s designed to expose services and data instead of web pages. Its
advantage over WCEF is in allowing you to follow popular REST-over-HTTP conventions,
offering easy interoperability with the widest range of platforms.

REST implementations are internally simpler than the SOAP and WS- protocols that WCF
relies on for interoperability. REST APIs are also architecturally more elegant for loosely-
coupled systems, building on de-facto standards and making excellent use of what HTTP
already provides.

Remoting and .ASMX Web Services (NET Framework only)

Remoting and . ASMX Web Services are WCF’s predecessors. Remoting is almost redundant in
WCF’s wake, and .ASMX Web Services has become entirely redundant.

Remoting’s remaining niche is in communicating between application domains within the same
process (see Chapter 24). Remoting is geared toward tightly coupled applications. A typical
example is when the client and server are both NET applications written by the same company
(or companies sharing common assemblies). Communication typically involves exchanging
potentially complex custom .NET objects that the Remoting infrastructure serializes and
deserializes without needing intervention.

The types for Remoting are in or under system.Runtime.Remoting; the types for Web
Services are under System.Web.Services.

Chapter 6. Framework Fundamentals

Many of the core facilities that you need when programming are provided not by the C#
language, but by types in the NET Framework. In this chapter, we cover the Framework’s role
in fundamental programming tasks, such as virtual equality comparison, order comparison, and
type conversion. We also cover the basic Framework types, such as string, DateTime, and

Enum.
The types in this section reside in the system namespace, with the following exceptions:

m StringBuilder is defined in system.Text, as are the types for text encodings.
m CultureInfo and associated types are defined in System.Globalization.

m XmlConvert i8S defined in System.Xml.

String and Text Handling

Char

A C# char represents a single Unicode character and aliases the System.cChar struct. In
Chapter 2, we described how to express char literals. For example:

char ¢ = 'A'";
char newLine = '\n';

system.Char defines a range of static methods for working with characters, such as Toupper,
ToLower, and IsWhiteSpace. You can call these through either the system.char type or its
char alias:

Console.WritelLine (System.Char.ToUpper ('c')); // C
Console.WriteLine (char.IsWhiteSpace ('\t')); // True

ToUpper and ToLower honor the end user’s locale, which can lead to subtle bugs. The
following expression evaluates to false in Turkey:

char.ToUpper ('i') == 'I'

because in Turkey, char.ToUpper ('i') is 'I' (notice the dot on top!). To avoid this
problem, system.Char (and System.String) also provides culture-invariant versions of
ToUpper and ToLower ending with the word Invariant. These always apply English culture
rules:

Console.WriteLine (char.ToUpperInvariant ('i')); // I

This is a shortcut for:

Console.WriteLine (char.ToUpper ('i', CultureInfo.InvariantCulture))

For more on locales and culture, see “Formatting and parsing”.

Most of char’s remaining static methods are related to categorizing characters and are listed in

Table 6-1.

Static method

IsLetter

IsUpper

IsLower

IsDigit
IsLetterOrDigit
IsNumber
IsSeparator

IsWhiteSpace

IsPunctuation

IsSymbol

IsControl

Table 6-1. Static methods for categorizing characters

Characters included

A-Z, a—z, and letters of other alphabets

Uppercase letters

Lowercase letters

0-9 plus digits of other alphabets

Letters plus digits

All digits plus Unicode fractions and Roman numeral symbols
Space plus all Unicode separator characters

All separators plus \n, \r, \t, \f, and \v

Symbols used for punctuation in Western and other alphabets

Most other printable symbols

Nonprintable “control” characters below 0x20, such as \r, \n, \t, \0, and

characters between 0x7F and 0x9A

Unicode categories
included

UpperCaseletter
LowerCaseLetter
TitleCaseletter
ModifierLetter
OtherLetter

UpperCaseletter
LowerCaseLetter
DecimalDigitNumber
(IsLetter,IsDigit)

DecimalDigitNumber
LetterNumber
OtherNumber

LineSeparator
ParagraphSeparator

LineSeparator
ParagraphSeparator

DashPunctuation
ConnectorPunctuation
InitialQuotePunctuation
FinalQuotePunctuation

MathSymbol
ModifierSymbol
OtherSymbol

(None)

For more granular categorization, char provides a static method called GetUnicodecCategory;
this returns a UnicodeCategory enumeration whose members are shown in the rightmost
column of Table 6-1.

NOTE

By explicitly casting from an integer, it’s possible to produce a char outside the allocated
Unicode set. To test a character’s validity, call char.GetUnicodecategory: if the result is
UnicodeCategory.OtherNotAssigned, the character is invalid.

A char 1s 16 bits wide — enough to represent any Unicode character in the Basic Multilingual
Plane. To go outside this, you must use surrogate pairs: we describe the methods for doing this
in “Text Encodings and Unicode”.

String

A C# string (== System.String) is an immutable (unchangeable) sequence of characters. In
Chapter 2, we described how to express string literals, perform equality comparisons, and

concatenate two strings. This section covers the remaining functions for working with strings,
exposed through the static and instance members of the system.String class.

Constructing strings

The simplest way to construct a string is to assign a literal, as we saw in Chapter 2:

string sl = "Hello";
string s2 = "First Line\r\nSecond Line";
string s3 = @"\\server\fileshare\helloworld.cs";

To create a repeating sequence of characters, you can use string’s constructor:

Console.Write (new string ('*', 10)); VAR A E AR AR

You can also construct a string from a char array. The Tochararray method does the reverse:

char[] ca = "Hello".ToCharArray() ;
string s = new string (ca); // s = "Hello"

string’s constructor is also overloaded to accept various (unsafe) pointer types, in order to
create strings from types such as char*.

Null and empty strings

An empty string has a length of zero. To create an empty string, you can use either a literal or
the static string.Empty field; to test for an empty string, you can either perform an equality
comparison or test its Length property:

string empty = "";

Console.WriteLine (empty == ""); // True
Console.WritelLine (empty == string.Empty); // True
Console.WriteLine (empty.Length == 0); // True

Because strings are reference types, they can also be nui1:

string nullString = null;

Console.WriteLine (nullString == null); // True

Console.WriteLine (nullString == ""); // False
Console.WriteLine (nullString.Length == 0); // NullReferenceException

The static string.IsNullorEmpty method is a useful shortcut for testing whether a given
string is either null or empty.

Accessing characters within a string

A string’s indexer returns a single character at the given index. As with all functions that
operate on strings, this is zero-indexed:

string str = "abcde";
char letter = str[l]; // letter == 'b'

string also implements TEnumerable<char>, SO you can foreach over its characters:

foreach (char c¢ in "123") Console.Write (c + ","); // 1,2,3,

Searching within strings

The simplest methods for searching within strings are startswith, EndsWith and Contains.
These all return true or false:

Console.WriteLine ("quick brown fox".EndsWith ("fox")); // True
Console.WriteLine ("quick brown fox".Contains ("brown")):; // True

startsWith and Endswith are overloaded to let you specify a stringComparison enumor a
CultureInfo objectto control case and culture sensitivity (see “Ordinal versus culture
comparison”). The default is to perform a case-sensitive match using rules applicable to the
current (localized) culture. The following instead performs a case-insensitive search using the
invariant culture’s rules:

"abcdef".StartsWith ("aBc", StringComparison.InvariantCultureIgnoreCase)

The contains method doesn’t offer the convenience of this overload, although you can achieve
the same result with the 1ndexof method.

IndexOf is more powerful: it returns the first position of a given character or substring (or -1
if the substring isn’t found):

Console.WriteLine ("abcde".IndexOf ("cd")); // 2

IndexOf 1s also overloaded to accepta startPosition (anindex from which to begin
searching), as well as a stringComparison enum:

Console.WriteLine ("abcde abcde".IndexOf ("CD", 6,
StringComparison.CurrentCulturelIgnoreCase)) ; // 8
LastIndexoOf 18 like Indexof, but works backward through the string.

IndexOfAny returns the first matching position of any one of a set of characters:

Console.Write ("ab,cd ef".IndexOfAny (new char[] {'" ', ','})); // 2
Console.Write ("pas5wOrd".IndexOfAny ("0123456789".ToCharArray())); // 3

LastIndexOfAny does the same in the reverse direction.

Manipulating strings

Because string is immutable, all the methods that “manipulate” a string return a new one,
leaving the original untouched (the same goes for when you reassign a string variable).

Substring extracts a portion of a string:

string left3 "12345".Substring (0, 3); // left3 = "123";
string mid3 = "12345".Substring (1, 3); // mid3 = "234";

If you omit the length, you get the remainder of the string:

string end3 = "12345".Substring (2); // end3 = "345";

Insert and Remove insert or remove characters at a specified position:

string sl = "helloworld".Insert (5, ", "); // sl = "hello, world"
string s2 = sl.Remove (5, 2); // s2 = "helloworld";

padLeft and PadRight pad a string to a given length with a specified character (or a space if
unspecified):

Console.WriteLine ("12345".PadLeft (9, '*')); // ****x12345
Console.WriteLine ("12345".PadLeft (9)); // 12345

If the input string is longer than the padding length, the original string is returned unchanged.

TrimStart and TrimEnd remove specified characters from the beginning or end of a string;
Trim does both. By default, these functions remove whitespace characters (including spaces,
tabs, new lines, and Unicode variations of these):

Console.WriteLine (" abc \t\r\n ".Trim() .Length); // 3
Replace replaces all (nonoverlapping) occurrences of a particular character or substring:

// to | be | done
// tobedone

Console.WriteLine ("to be done".Replace (" ", " | "))
Console.WriteLine ("to be done".Replace (" ", ""))

7
’

ToUpper and ToLower return upper- and lowercase versions of the input string. By default,
they honor the user’s current language settings; ToUpperInvariant and ToLowerInvariant
always apply English alphabet rules.

Splitting and joining strings

split divides a string up into pieces:

string[] words = "The quick brown fox".Split();

foreach (string word in words)
Console.Write (word + "|"); // The|quick|brown|fox|

By default, sp1it uses whitespace characters as delimiters; it’s also overloaded to accept a
params array of char or string delimiters. sp1it also optionally accepts a
StringSplitOptions enum, which has an option to remove empty entries: this is useful when
words are separated by several delimiters in a row.

The static Join method does the reverse of sp1it. It requires a delimiter and string array:

string[] words = "The quick brown fox".Split();
string together = string.Join (" ", words); // The quick brown fox

The static concat method is similar to Join but accepts only a params string array and applies
no separator. Concat is exactly equivalent to the + operator (the compiler, in fact, translates +
to Concat):

string sentence string.Concat ("The", " quick", " brown", " fox");
string sameSentence = "The" + " quick" + " brown" + " fox";

String.Format and composite format strings

The static Format method provides a convenient way to build strings that embed variables.

The embedded variables (or values) can be of any type; the Format simply calls Tostring on
them.

The master string that includes the embedded variables is called a composite format string.
When calling string.Format, you provide a composite format string followed by each of the
embedded variables. For example:

string composite = "It's {0} degrees in {1} on this {2} morning";
string s = string.Format (composite, 35, "Perth", DateTime.Now.DayOfWeek) ;

// s == "It's 35 degrees in Perth on this Friday morning"

(And that’s Celsius!)
From C# 6, we can use interpolated string literals to the same effect (see “String Type™). Just

precede the string with the $ symbol and put the expressions in braces:

string s = $"It's hot this {DateTime.Now.DayOfWeek} morning";

Each number in curly braces is called a format item. The number corresponds to the argument
position and is optionally followed by:

» A comma and a minimum width to apply
= A colonand a format string

The minimum width is useful for aligning columns. If the value is negative, the data is left-
aligned; otherwise, it’s right-aligned. For example:
string composite = "Name={0,-20} Credit Limit={1,15:C}";

Console.WritelLine (string.Format (composite, "Mary", 500));
Console.WriteLine (string.Format (composite, "Elizabeth", 20000));

Here’s the result:

Name=Mary Credit Limit= $500.00
Name=Elizabeth Credit Limit= $20,000.00

The equivalent without using string.Format is this:

string s = "Name=" + "Mary".PadRight (20) +
" Credit Limit=" + 500.ToString ("C").PadLeft (15);

The credit limit is formatted as currency by virtue of the "c" format string. We describe format
strings in detail in “Formatting and parsing”.

Comparing Strings

In comparing two values, the .NET Framework differentiates the concepts of equality
comparison and order comparison. Equality comparison tests whether two instances are
semantically the same; order comparison tests which of two (if any) instances comes first when
arranging them in ascending or descending sequence.

NOTE

Equality comparison is not a subset of order comparison; the two systems have different
purposes. It’s legal, for instance, to have two unequal values in the same ordering position.
We resume this topic in “Equality Comparison”.

For string equality comparison, you can use the == operator or one of string’s Equals
methods. The latter are more versatile because they allow you to specify options such as case
insensitivity.

WARNING

Another difference is that == does not work reliably on strings if the variables are cast to the
object type. We explain why this is so in “Equality Comparison”.

For string order comparison, you can use either the compareTo instance method or the static
Compare and compareordinal methods: these return a positive or negative number, or zero,
depending on whether the first value comes after, before, or alongside the second.

Before going into the details of each, we need to examine .NET’s underlying string comparison
algorithms.

Ordinal versus culture comparison

There are two basic algorithms for string comparison: ordinal and culture-sensitive. Ordinal
comparisons interpret characters simply as numbers (according to their numeric Unicode
value); culture-sensitive comparisons interpret characters with reference to a particular
alphabet. There are two special cultures: the “current culture,” which is based on settings
picked up from the computer’s control panel, and the “invariant culture,” which is the same on
every computer (and closely matches American culture).

For equality comparison, both ordinal and culture-specific algorithms are useful. For ordering,
however, culture-specific comparison is nearly always preferable: to order strings
alphabetically, you need an alphabet. Ordinal relies on the numeric Unicode point values,
which happen to put English characters in alphabetical order — but even then not exactly as
you might expect. For example, assuming case sensitivity, consider the strings “Atom”, “atom”,
and “Zamia”. The invariant culture puts them in the following order:

"atom", "Atom", "Zamia"

Ordinal arranges them instead as follows:

"Atom", "Zamia", "atom"

This is because the invariant culture encapsulates an alphabet, which considers uppercase
characters adjacent to their lowercase counterparts (aAbBcCdD...). The ordinal algorithm,
however, puts all the uppercase characters first, and then all lowercase characters (A...Z, a...z).
This is essentially a throwback to the ASCII character set invented in the 1960s.

String equality comparison

Despite ordinal’s limitations, string’s == operator always performs ordinal case-sensitive
comparison. The same goes for the instance version of st ring.Equals when called without
arguments; this defines the “default” equality comparison behavior for the string type.

NOTE

The ordinal algorithm was chosen for string’s == and Equals functions because it’s both
highly efficient and deterministic. String equality comparison is considered fundamental and
is performed far more frequently than order comparison.

A “strict” notion of equality is also consistent with the general use of the == operator.

The following methods allow culture-aware or case-insensitive comparisons:

public bool Equals(string value, StringComparison comparisonType) ;

public static bool Equals (string a, string b,
StringComparison comparisonType) ;

The static version is advantageous in that it still works if one or both of the strings are nu11.
StringComparison 1S an enum defined as follows:

public enum StringComparison

{

CurrentCulture, // Case-sensitive
CurrentCultureIgnoreCase,
InvariantCulture, // Case-sensitive
InvariantCultureIgnoreCase,
Ordinal, // Case-sensitive
OrdinalIgnoreCase

}

For example:
Console.WritelLine (string.Equals ("foo", "FOO",
StringComparison.OrdinalIgnoreCase)) ; // True
Console.WriteLine ("4" == "a4"); // False

Console.WriteLine (string.Equals ("a", "a",
StringComparison.CurrentCulture)) ; //?

(The result of the third example is determined by the computer’s current language settings.)

String order comparison

String’s CompareTo instance method performs culture-sensitive, case-sensitive order
comparison. Unlike the == operator, CompareTo does not use ordinal comparison: for ordering,
a culture-sensitive algorithm is much more useful.

Here’s the method’s definition:

public int CompareTo (string strB);

NOTE

The compareTo instance method implements the generic 1comparable interface, a standard
comparison protocol used across the .NET Framework. This means string’s CompareTo
defines the default ordering behavior of strings, in such applications as sorted collections, for
instance. For more information on 1comparabile, see “Order Comparison”.

For other kinds of comparison, you can call the static Compare and Compareordinal methods:

public static int Compare (string strA, string strB,
StringComparison comparisonType) ;

public static int Compare (string strA, string strB, bool ignoreCase,
CultureInfo culture);

public static int Compare (string strA, string strB, bool ignoreCase);

public static int CompareOrdinal (string strA, string strB);

The last two methods are simply shortcuts for calling the first two methods.

All of the order comparison methods return a positive number, a negative number, or zero,
depending on whether the first value comes after, before, or alongside the second value:

Console.WriteLine ("Boston".CompareTo ("Austin")); // 1
Console.WriteLine ("Boston".CompareTo ("Boston")); // 0
Console.WriteLine ("Boston".CompareTo ("Chicago")); // -1
Console.WritelLine ("4".CompareTo ("G")); // 0
Console.WriteLine ("foo".CompareTo ("FOO")); // -1

The following performs a case-insensitive comparison using the current culture:

Console.WritelLine (string.Compare ("foo", "FOO", true)); // 0

By supplying a cultureInfo object, you can plug in any alphabet:

// CultureInfo is defined in the System.Globalization namespace

CultureInfo german = CultureInfo.GetCultureInfo ("de-DE");
int 1 = string.Compare ("Miiller", "Muller", false, german);

StringBuilder

The stringBuilder class (system.Text namespace) represents a mutable (editable) string.
With a stringBuilder, you can Append, Insert, Remove, and Replace substrings without
replacing the whole stringBuilder.

stringBuilder’s constructor optionally accepts an initial string value, as well as a starting
size for its internal capacity (default is 16 characters). If you go above this, stringBuilder
automatically resizes its internal structures to accommodate (at a slight performance cost) up to
its maximum capacity (default is int .Maxvalue).

A popular use of stringBuilder is to build up a long string by repeatedly calling Append.
This approach is much more efficient than repeatedly concatenating ordinary string types:

StringBuilder sb = new StringBuilder();

for (int 1 = 0; i < 50; i++) sb.Append (i + ",");
To get the final result, call Tostring ():

Console.WriteLine (sb.ToString());

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

NOTE

In our example, the expression i + "," means that we’re still repeatedly concatenating
strings. However, this incurs only a small performance cost in that the strings in question are
small and don’t grow with each loop iteration. For maximum performance, however, we
could change the loop body to this:

{ sb.Append (i); sb.Append (","); }

AppendLine performs an Append that adds a new line sequence ("\r\n" in Windows).
AppendFormat accepts a composite format string, just like string.Format.

As well as the Tnsert, Remove, and Replace methods (Replace works like string’s Replace),
StringBuilder defines a Length property and a writable indexer for getting/setting
individual characters.

To clear the contents of a StringBuilder, either instantiate a new one or set its Length to
ZETO.

WARNING

Setting a StringBuilder’s Length to zero doesn’t shrink its internal capacity. So, if the
StringBuilder previously contained one million characters, it will continue to occupy around
2 MB of memory after zeroing its Length. If you want to release the memory, you must
create a new StringBuilder and allow the old one to drop out of scope (and be garbage-
collected).

Text Encodings and Unicode

A character set is an allocation of characters, each with a numeric code or code point. There
are two character sets in common use: Unicode and ASCII. Unicode has an address space of
approximately one million characters, of which about 100,000 are currently allocated. Unicode
covers most spoken world languages, as well as some historical languages and special
symbols. The ASCII set is simply the first 128 characters of the Unicode set, which covers
most of what you see on a US-style keyboard. ASCII predates Unicode by 30 years and is still
sometimes used for its simplicity and efficiency: each character is represented by one byte.

The .NET type system is designed to work with the Unicode character set. ASCII is implicitly
supported, though, by virtue of being a subset of Unicode.

A text encoding maps characters from their numeric code point to a binary representation. In
NET, text encodings come into play primarily when dealing with text files or streams. When

you read a text file into a string, a text encoder translates the file data from binary into the
internal Unicode representation that the char and string types expect. A text encoding can
restrict what characters can be represented, as well as impacting storage efficiency.

There are two categories of text encoding in .NET:

» Those that map Unicode characters to another character set
» Those that use standard Unicode encoding schemes

The first category contains legacy encodings such as IBM’s EBCDIC and 8-bit character sets
with extended characters in the upper-128 region that were popular prior to Unicode
(identified by a code page). The ASCII encoding is also in this category: it encodes the first
128 characters and drops everything else. This category contains the nonlegacy GB18030 as
well, which is the mandatory standard for applications written in China — or sold to China —
since 2000.

In the second category are UTF-8, UTF-16, and UTF-32 (and the obsolete UTF-7). Each
differs in space efficiency. UTF-8 is the most space-efficient for most kinds of text: it uses
between I and 4 bytes to represent each character. The first 128 characters require only a
single byte, making it compatible with ASCII. UTF-8 is the most popular encoding for text files
and streams (particularly on the Internet), and it is the default for stream I/O in .NET (in fact,
it’s the default for almost everything that implicitly uses an encoding).

UTF-16 uses one or two 16-bit words to represent each character, and is what .NET uses
internally to represent characters and strings. Some programs also write files in UTF-16.

UTF-32 is the least space-efficient: it maps each code point directly to 32 bits, so every
character consumes 4 bytes. UTF-32 is rarely used for this reason. It does, however, make
random access very easy because every character takes an equal number of bytes.

Obtaining an Encoding object

The Encoding class in system. Text 1s the common base type for classes that encapsulate text
encodings. There are several subclasses — their purpose is to encapsulate families of
encodings with similar features. The easiest way to instantiate a correctly configured class is to
call Encoding.GetEncoding with a standard IANA (Internet Assigned Numbers Authority)
Character Set name:

Encoding utf8 = Encoding.GetEncoding ("utf-8");
Encoding chinese = Encoding.GetEncoding ("GB18030");

The most common encodings can also be obtained through dedicated static properties on

Encoding:

Encoding name Static property on Encoding

UTEF-8 Encoding.UTF8
UTE-16 Encoding.Unicode (10t UTF16)
UTEF-32 Encoding.UTF32
ASCII Encoding.ASCII

The static GetEncodings method returns a list of all supported encodings, with their standard
ITANA names:

foreach (EncodingInfo info in Encoding.GetEncodings())
Console.WriteLine (info.Name) ;

The other way to obtain an encoding is to directly instantiate an encoding class. Doing so
allows you to set various options via constructor arguments, including:

= Whether to throw an exception if an invalid byte sequence is encountered when decoding.
The default is false.

s Whether to encode/decode UTF-16/UTF-32 with the most significant bytes first (big
endian) or the least significant bytes first (/ittle endian). The default is /ittle endian, the
standard on the Windows operating system.

= Whether to emit a byte-order mark (a prefix that indicates endianness).

Encoding for file and stream I/O

The most common application for an Encoding object is to control how text is read and written

to a file or stream. For example, the following writes “Testing...” to a file called data.txt in
UTF-16 encoding:

System.IO.File.WriteAllText ("data.txt", "testing", Encoding.Unicode);

If you omit the final argument, writeallText applies the ubiquitous UTF-8 encoding.

NOTE
UTEF-8 is the default text encoding for all file and stream 1/O.

We resume this subject in Chapter 15, in “Stream Adapters”.

Encoding to byte arrays

You can also use an Encoding object to go to and from a byte array. The cetBytes method
converts from string to byte [] with the given encoding; GetString converts frombyte[] to

string:

byte[] utf8Bytes = System.Text.Encoding.UTF8.GetBytes ("0123456789") ;
byte[] utflé6Bytes = System.Text.Encoding.Unicode.GetBytes ("0123456789");
byte[] utf32Bytes = System.Text.Encoding.UTF32.GetBytes ("0123456789") ;

Console.WriteLine (utf8Bytes.Length); // 10
Console.WriteLine (utfl6Bytes.Length); // 20
)

Console.WriteLine (utf32Bytes.Length); // 40

string originall = System.Text.Encoding.UTF8.GetString (utf8Bytes) ;
string original2 = System.Text.Encoding.Unicode.GetString (utfl6Bytes);
string original3 = System.Text.Encoding.UTF32.GetString (utf32Bytes) ;
Console.WriteLine (originall); // 0123456789
Console.WriteLine (original2); // 0123456789
Console.WriteLine (original3); // 0123456789

UTF-16 and surrogate pairs
Recall that .NET stores characters and strings in UTF-16. Because UTF-16 requires one or

two 16-bit words per character, and a char is only 16 bits in length, some Unicode characters
require two chars to represent. This has a couple of consequences:

m A string’s Length property may be greater than its real character count.
= Assingle char is not always enough to fully represent a Unicode character.

Most applications ignore this, because nearly all commonly used characters fit into a section of
Unicode called the Basic Multilingual Plane (BMP), which requires only one 16-bit word in
UTF-16. The BMP covers several dozen world languages and includes more than 30,000
Chinese characters. Excluded are characters of some ancient languages, symbols for musical
notation, and some less common Chinese characters.

If you need to support two-word characters, the following static methods in char convert a 32-
bit code point to a string of two chars, and back again:

string ConvertFromUtf32 (int utf32)
int ConvertToUt£f32 (char highSurrogate, char lowSurrogate)

Two-word characters are called surrogates. They are easy to spot because each word is in the
range 0xD800 to O0xDFFF. You can use the following static methods in char to assist:

bool IsSurrogate (char c)

bool IsHighSurrogate (char c)

bool IsLowSurrogate (char c)
(

bool IsSurrogatePair (char highSurrogate, char lowSurrogate)

The stringInfo class inthe system.Globalization namespace also provides a range of
methods and properties for working with two-word characters.

Characters outside the BMP typically require special fonts and have limited operating system
support.

Dates and Times

Three immutable structs in the system namespace do the job of representing dates and times:
DateTime, DateTimeOffset, and Timespan. C# doesn’t define any special keywords that map
to these types.

TimeSpan

A TimeSpan represents an interval of time — or a time of the day. In the latter role, it’s simply
the “clock” time (without the date), which is equivalent to the time since midnight, assuming no
daylight saving transition. A TimeSpan has a resolution of 100 ns, has a maximum value of
about 10 million days, and can be positive or negative.

There are three ways to construct a TimeSpan:

» Through one of the constructors
= By calling one of the static From... methods

= By subtracting one pateTime from another

Here are the constructors:

public TimeSpan (int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds,

int milliseconds);
public TimeSpan (long ticks); // Each tick = 100ns

The static From... methods are more convenient when you want to specify an interval in just a
single unit, such as minutes, hours, and so on:

public static TimeSpan FromDays (double value);

public static TimeSpan FromHours (double wvalue);

public static TimeSpan FromMinutes (double value);
public static TimeSpan FromSeconds (double value);
public static TimeSpan FromMilliseconds (double value);

For example:
Console.WritelLine (new TimeSpan (2, 30, 0)); // 02:30:00
Console.WriteLine (TimeSpan.FromHours (2.5)); // 02:30:00
Console.WritelLine (TimeSpan.FromHours (-2.5)); // -02:30:00

TimeSpan overloads the < and > operators, as well as the + and - operators. The following
expression evaluates to a TimeSpan of 2.5 hours:

TimeSpan.FromHours (2) + TimeSpan.FromMinutes (30);
The next expression evaluates to one second short of 10 days:
TimeSpan.FromDays (10) - TimeSpan.FromSeconds (1) ; // 9.23:59:59

Using this expression, we can illustrate the integer properties bays, Hours, Minutes, Seconds,
and Milliseconds:

TimeSpan nearlyTenDays = TimeSpan.FromDays (10) - TimeSpan.FromSeconds (1) ;
Console.WritelLine (nearlyTenDays.Days) ; /79

Console.WriteLine (nearlyTenDays.Hours); // 23

Console.WritelLine (nearlyTenDays.Minutes); // 59

Console.Writeline (nearlyTenDays.Seconds) ; // 59

Console.WritelLine (nearlyTenDays.Milliseconds); // 0O

In contrast, the Total... properties return values of type double describing the entire time
span:

Console.WriteLine (nearlyTenDays.TotalDays) ; // 9.99998842592593
Console.WriteLine (nearlyTenDays.TotalHours); // 239.999722222222
Console.WriteLine (nearlyTenDays.TotalMinutes); // 14399.9833333333
Console.Writeline (nearlyTenDays.TotalSeconds) ; // 863999
Console.WriteLine (nearlyTenDays.TotalMilliseconds); // 863999000

The static parse method does the opposite of Tostring, converting a string to a TimeSpan.
TryParse does the same, but returns false rather than throwing an exception if the conversion
fails. The xm1convert class also provides TimeSpan/string conversion methods that follow
standard XML formatting protocols.

The default value for a TimeSpan is TimeSpan.Zero.

TimeSpan can also be used to represent the time of the day (the elapsed time since midnight).
To obtain the current time of day, call pateTime.Now.TimeOfDay.

DateTime and DateTimeOffset

DateTime and DateTimeOf fset are immutable structs for representing a date, and optionally,
a time. They have a resolution of 100 ns, and a range covering the years 0001 through 9999.

DateTimeOffset was added in Framework 3.5 and is functionally similar to bateTime. Its
distinguishing feature is that it also stores a UTC offset; this allows more meaningful results
when comparing values across different time zones.

NOTE

An excellent article on the rationale behind the introduction of pDateTimeOffset is available on
the MSDN BCL blogs. The title is “A Brief History of DateTime,” by Anthony Moore.

Choosing between DateTime and Date Time Offset

DateTime and DateTimeOf fset differ in how they handle time zones. A pateTime
incorporates a three-state flag indicating whether the pateTime is relative to:

» The local time on the current computer

» UTC (the modern equivalent of Greenwich Mean Time)

» Unspecified
A DateTimeOffset is more specific — it stores the offset from UTC as a TimeSpan:

July 01 2017 03:00:00 -06:00

This influences equality comparisons, which is the main factor in choosing between bateTime
and pateTimeOffset. Specifically:

m DateTime ignores the three-state flag in comparisons and considers two values equal if they
have the same year, month, day, hour, minute, and so on.

m DateTimeOffset considers two values equal if they refer to the same point in time.

WARNING

Daylight saving time can make this distinction important even if your application doesn’t need
to handle multiple geographic time zones.

So, pateTime considers the following two values different, whereas pateTimeOffset
considers them equal:

July 01 2017 09:00:00 +00:00 (GMT)

July 01 2017 03:00:00 -06:00 (local time, Central America)

In most cases, pateTimeOf fset’s equality logic is preferable. For example, in calculating
which of two international events is more recent, a DateTimeOf fset implicitly gives the right
answer. Similarly, a hacker plotting a distributed denial of service attack would reach for a
DateTimeOffset! To do the same with pateTime requires standardizing on a single time zone
(typically UTC) throughout your application. This is problematic for two reasons:

» To be friendly to the end user, UTC pateTimes require explicit conversion to local time
prior to formatting,

m [t’s easy to forget and incorporate a local pateTime.

DateTime 1S better, though, at specifying a value relative to the local computer at runtime —
for example, if you want to schedule an archive at each of your international offices for next
Sunday, at 3 A.M. local time (when there’s least activity). Here, bateTime would be more
suitable because it would respect each site’s local time.

NOTE

Internally, pateTimeoffset uses a short integer to store the UTC offset in minutes. It doesn’t
store any regional information, so there’s nothing present to indicate whether an offset of
+08:00, for instance, refers to Singapore time or Perth time.

We revisit time zones and equality comparison in more depth in “Dates and Time Zones”.

NOTE

SQL Server 2008 introduced direct support for pateTimeoffset through a new data type of
the same name.

Constructing a Date Time

pateTime defines constructors that accept integers for the year, month, and day — and
optionally, the hour, minute, second, and millisecond:

public DateTime (int year, int month, int day);

public DateTime (int year, int month, int day,
int hour, int minute, int second, int millisecond);

If you specify only a date, the time is implicitly set to midnight (0:00).

The pateTime constructors also allow you to specify a DateTimeKind — an enum with the
following values:

Unspecified, Local, Utc

This corresponds to the three-state flag described in the preceding section. Unspecified is the
default, and it means that the DateTime 1s time-zone-agnostic. Local means relative to the

local time zone on the current computer. A local pateTime does not include information about
which particular time zone it refers to, nor, unlike pateTimeof fset, the numeric offset from
UTC.

A DateTime’s Kind property returns its DateTimeKind.

DateTime’s constructors are also overloaded to accept a calendar object as well — this
allows you to specify a date using any of the calendar subclasses defined in
System.Globalization. For example

DateTime d = new DateTime (5767, 1, 1,
new System.Globalization.HebrewCalendar()):;

Console.WriteLine (d); // 12/12/2006 12:00:00 AM

(The formatting of the date in this example depends on your computer’s control panel settings.)
A pateTime always uses the default Gregorian calendar — this example, a one-time
conversion, takes place during construction. To perform computations using another calendar,
you must use the methods on the calendar subclass itself.

You can also construct a bateTime With a single ticks value of type 1ong, where ticks is the
number of 100 ns intervals from midnight 01/01/0001.

For interoperability, pateTime provides the static FromFileTime and FromFileTimeUtc
methods for converting from a Windows file time (specified as a 1ong) and FromoaDate for
converting from an OLE automation date/time (specified as a doub1le).

To construct a ateTime from a string, call the static Parse or ParseExact method. Both
methods accept optional flags and format providers; parseExact also accepts a format string.
We discuss parsing in greater detail in “Formatting and parsing”.

Constructing a DateTimeOffset

DateTimeOffset has a similar set of constructors. The difference is that you also specify a
UTC offset as a TimeSpan:

public DateTimeOffset (int year, int month, int day,
int hour, int minute, int second,
TimeSpan offset);
public DateTimeOffset (int year, int month, int day,
int hour, int minute, int second, int millisecond,
TimeSpan offset);
The TimeSpan must amount to a whole number of minutes, or an exception is thrown.

DateTimeOffset also has constructors that accept a calendar object, a 1ong ticks value, and
static Parse and ParseExact methods that accept a string.

You can construct a DateTimeOf fset from an existing bateTime either by using these
constructors:

public DateTimeOffset (DateTime dateTime) ;
public DateTimeOffset (DateTime dateTime, TimeSpan offset);

or with an implicit cast:

DateTimeOffset dt = new DateTime (2000, 2, 3);

NOTE

The implicit cast from pateTime to DateTimeOffset is handy because most of the .NET
Framework supports pateTime — NoOt DateTimeOffset.

If you don’t specify an offset, it’s inferred from the pateTime value using these rules:

m Ifthe DateTime has a bateTimekind of Utc, the offset is zero.

m [fthe DateTime has a DateTimeKind 0f Local or Unspecified (the default), the offset is
taken from the current local time zone.

To convert in the other direction, pateTime0f fset provides three properties that return values
of type DateTime:

m The UtcbateTime property returns a bateTime in UTC time.

m The LocalDateTime property returns a bateTime in the current local time zone (converting
it if necessary).

m The pateTime property returns a DateTime in Whatever zone it was specified, with a kind
of Unspecified (i.e., it returns the UTC time plus the offset).

The current Date Time/Date Time Offset

Both pateTime and DateTimeOf fset have a static Now property that returns the current date
and time:

Console.WriteLine (DateTime.Now) ; // 11/11/2015 1:23:45 PM
Console.WriteLine (DateTimeOffset.Now) ; // 11/11/2015 1:23:45 PM -06:00

DateTime also provides a Today property that returns just the date portion:
Console.WriteLine (DateTime.Today) ; // 11/11/2015 12:00:00 AM
The static utcNow property returns the current date and time in UTC:

Console.WriteLine (DateTime.UtcNow) ; // 11/11/2015 7:23:45 AM
Console.WriteLine (DateTimeOffset.UtcNow); // 11/11/2015 7:23:45 AM +00:00

The precision of all these methods depends on the operating system and is typically in the 10—
20 ms region.

Working with dates and times

DateTime and DateTimeOf fset provide a similar set of instance properties that return various
date/time elements:

DateTime dt = new DateTime (2000, 2, 3,

Console.WriteLine

10, 20, 30);
Console.WriteLine (dt.Year); // 2000
Console.WriteLine (dt.Month); // 2
Console.WritelLine (dt.Day); // 3
(

dt.DayOfWeek) ; // Thursday

Console.WriteLine (dt.DayOfYear); // 34

Console.WriteLine (dt.Hour); // 10

Console.WriteLine (dt.Minute); // 20

Console.WriteLine (dt.Second); // 30

Console.WritelLine (dt.Millisecond); // O

Console.Writeline (dt.Ticks); // 630851700300000000
Console.WriteLine (dt.TimeOfDay) ; // 10:20:30 (returns a TimeSpan)

DateTimeOffset also has an offset property of type TimeSpan.

Both types provide the following instance methods to perform computations (most accept an
argument of type double Or int):

AddYears AddMonths AddDays
AddHours AddMinutes AddSeconds AddMilliseconds AddTicks

These all return a new DateTime Or DateTimeOffset, and they take into account such things
as leap years. You can pass in a negative value to subtract.

The Add method adds a TimeSpan to @ DateTime Or DateTimeOffset. The + operator is
overloaded to do the same job:

TimeSpan ts = TimeSpan.FromMinutes (90);
Console.WriteLine (dt.Add (ts)):;
Console.WriteLine (dt + ts); // same as above

You can also subtract a TimeSpan froma DateTime/DateTimeOffset and subtract one
DateTime/DateTimeOffset from another. The latter gives youa TimeSpan:

DateTime thisYear = new DateTime (2015, 1, 1);
DateTime nextYear = thisYear.AddYears (1);
TimeSpan oneYear = nextYear - thisYear;

Formatting and parsing

Calling Tostring ona DateTime formats the result as a short date (all numbers) followed by
a long time (including seconds). For example:

11/11/2015 11:50:30 AM

The operating system’s control panel, by default, determines such things as whether the day,
month, or year comes first, the use of leading zeros, and whether 12- or 24-hour time is used.

Calling Tostring ona DateTimeOffset 1s the same, except that the offset is returned also:

11/11/2015 11:50:30 AM -06:00

The Toshortbatestring and ToLongDatesString methods return just the date portion. The
long date format is also determined by the control panel; an example is “Wednesday, 11
November 2015”. ToshortTimeString and ToLongTimeString return just the time portion,
such as 17:10:10 (the former excludes seconds).

These four methods just described are actually shortcuts to four different format strings.
ToString 1S overloaded to accept a format string and provider, allowing you to specify a wide
range of options and control how regional settings are applied. We describe this in “Formatting
and parsing”.

WARNING

DateTimeS and DateTimeOffsets can be misparsed if the culture settings differ from those in
force when formatting takes place. You can avoid this problem by using ToString in
conjunction with a format string that ignores culture settings (such as “0”):

DateTime dtl = DateTime.Now;
string cannotBeMisparsed = dtl.ToString ("o");
DateTime dt2 = DateTime.Parse (cannotBeMisparsed) ;

The static Parse/TryParse and ParseExact/TryParseExact methods do the reverse of
ToString, converting a string to a DateTime Or DateTimeOf fset. These methods are also
overloaded to accept a format provider. The Try* methods return fa1se instead of throwing a

FormatException.

Null Date Time and Date Time Offset values

Because pateTime and DateTimeOffset are structs, they are not intrinsically nullable. When
you need nullability, there are two ways around this:

m Use aNullable type (i.e., DateTime? Of DateTimeOffset?).

» Use the static field pateTime.MinvValue Or DateTimeOffset.MinvValue (the default
values for these types).

A nullable type is usually the best approach because the compiler helps to prevent mistakes.
DateTime.MinValue is useful for backward compatibility with code written prior to C# 2.0
(when nullable types were introduced).

WARNING

Calling ToUniversalTime OF ToLocalTime ON @ DateTime.MinValue can result in it no longer
being pateTime.Minvalue (depending on which side of GMT you are on). If you’re right on
GMT (England, outside daylight saving), the problem won’t arise at all because local and
UTC times are the same. This is your compensation for the English winter!

Dates and Time Zones

In this section, we examine in more detail how time zones influence pateTime and
DateTimeOffset. We also look at the TimeZone and TimezoneInfo types, which provide
information on time zone offsets and daylight saving time.

DateTime and Time Zones

DateTime 1S simplistic in its handling of time zones. Internally, it stores a DateTime using two
pieces of information:

= A 62-bit number, indicating the number of ticks since 1/1/0001

= A 2-bit enum, indicating the DateTimeKind (Unspecified, Local, Of Utc)

When you compare two DateTime instances, only their ticks values are compared; their
DateTimeKinds are ignored:

DateTime dtl = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Local):;
DateTime dt2 = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Utc);
Console.WriteLine (dtl == dt2); // True

DateTime local = DateTime.Now;

DateTime utc = local.ToUniversalTime () ;

Console.WriteLine (local == utc); // False

The instance methods ToUniversalTime/ToLocalTime convert to universal/local time. These
apply the computer’s current time zone settings and return a new bateTime with a
DateTimeKind of Utc Or Local. No conversion happens if you call TouniversalTime ona
DateTime that’s already Utc, Or ToLocalTime ona DateTime that’s already Local. You will
get a conversion, however, if you call TouniversalTime Or ToLocalTime Ona DateTime
that’s Unspecified.

You can construct a bateTime that differs from another only in xind with the static
DateTime.SpecifyKind method:

DateTime d = new DateTime (2015, 12, 12); // Unspecified
DateTime utc = DateTime.SpecifyKind (d, DateTimeKind.Utc);
Console.WriteLine (utc); // 12/12/2015 12:00:00 AM

DateTimeOffset and Time Zones

Internally, DateTimeOf fset comprises a DateTime field whose value is always in UTC, and a
16-bit integer field for the UTC offset in minutes. Comparisons look only at the (UTC)
DateTime; the Offset is used primarily for formatting.

The TouniversalTime/ToLocalTime methods return a bateTimeOf fset representing the
same point in time, but with a UTC or local offset. Unlike with pateTime, these methods don’t
affect the underlying date/time value, only the offset:

DateTimeOffset local = DateTimeOffset.Now;

DateTimeOffset utc = local.ToUniversalTime () ;

Console.WriteLine (local.Offset); // —-06:00:00 (in Central America)
Console.WriteLine (utc.Offset); // 00:00:00

Console.WriteLine (local == utc); // True

To include the offset in the comparison, you must use the EqualsExact method:

Console.WriteLine (local.EqualsExact (utc)); // False

TimeZone and TimeZonelnfo

The Timezone and TimeZoneInfo classes provide information on time zone names, UTC
offsets, and daylight saving time rules. TimeZoneInfo is the more powerful of the two and was
introduced in Framework 3.5.

The biggest difference between the two types is that Timezone lets you access only the current
local time zone, whereas TimeZoneInfo provides access to all the world’s time zones.
Further, TimezoneInfo exposes a richer (although at times, more awkward) rules-based model
for describing daylight saving time.

TimeZone
The static TimeZone.CurrentTimezone method returns a TimeZone object based on the

current local settings. The following demonstrates the result if run in California:

TimeZone zone = TimeZone.CurrentTimeZone;
Console.WriteLine (zone.StandardName) ; // Pacific Standard Time
Console.WriteLine (zone.DaylightName) ; // Pacific Daylight Time

The IspaylightSavingTime and GetUtcOffset methods work as follows:

DateTime dtl = new DateTime (2015, 1, 1);
DateTime dt2 = new DateTime (2015, 6, 1);

Console.WriteLine (zone.IsDaylightSavingTime (dtl)); // True
Console.WriteLine (zone.IsDaylightSavingTime (dt2)); // False
Console.WriteLine (zone.GetUtcOffset (dtl)); // 08:00:00
Console.WriteLine (zone.GetUtcOffset (dt2)); // 09:00:00

The GetDaylightChanges method returns specific daylight saving time information for a
given year:

DaylightTime day = zone.GetDaylightChanges (2015);

Console.WriteLine (day.Start.ToString ("M")); // 08 March

Console.Writeline (day.End.ToString ("M")); // 01 November

Console.WritelLine (day.Delta); // 01:00:00
Time ZoneInfo

The TimezoneInfo class works in a similar manner. TimeZoneInfo.Local returns the current
local time zone:

TimeZoneInfo zone = TimeZonelInfo.Local;
Console.WriteLine (zone.StandardName) ; // Pacific Standard Time
Console.WriteLine (zone.DaylightName) ; // Pacific Daylight Time

TimeZoneInfo also provides IsDaylightSavingTime and GetUtcOffset methods — the
difference is that they accept either a DateTime Or a DateTimeOffset.

You can obtaina TimezoneInfo for any of the world’s time zones by calling
FindSystemTimeZoneById With the zone ID. This feature is unique to TimeZoneInfo, as is
everything else that we demonstrate from this point on. We’ll switch to Western Australia for
reasons that will soon become clear:

TimeZoneInfo wa = TimeZoneInfo.FindSystemTimeZoneById
("W. Australia Standard Time");

Console.WriteLine (wa.Id); // W. Australia Standard Time
Console.WriteLine (wa.DisplayName) ; // (GMT+08:00) Perth
Console.WritelLine (wa.BaseUtcOffset); // 08:00:00

Console.WriteLine (wa.SupportsDaylightSavingTime) ; // True

The 14 property corresponds to the value passed to FindSystemTimeZoneById. The static
GetSystemTimeZones method returns all world time zones; hence, you can list all valid zone
ID strings as follows:

foreach (TimeZoneInfo z in TimeZoneInfo.GetSystemTimeZones ())
Console.WriteLine (z.Id);

NOTE

You can also create a custom time zone by calling TimeZoneInfo.CreateCustomTimeZone.
Because TimezoneInfo is immutable, you must pass in all the relevant data as method
arguments.

You can serialize a predefined or custom time zone to a (semi) human-readable string by
calling Toserializedstring — and deserialize it by calling

TimeZoneInfo.FromSerializedString.

The static convertTime method converts a bateTime Or DateTimeOf fset from one time zone
to another. You can include either just a destination TimeZoneInfo, or both source and
destination TimeZoneInfo objects. You can also convert directly from or to UTC with the
methods convertTimeFromUtc and ConvertTimeToUtc.

For working with daylight saving time, TimezoneInfo provides the following additional
methods:

® IsInvalidTime returns true ifa bateTime is within the hour (or delta) that’s skipped
when the clocks move forward.

® IsAmbiguousTime returns true ifa DateTime Or DateTimeOffset is within the hour (or
delta) that’s repeated when the clocks move back.

® GetAmbiguousTimeOffsets returns an array of Timespans representing the valid offset
choices for an ambiguous DateTime Of DateTimeOffset.

Unlike with Timezone, you can’t obtain simple dates froma TimezoneInfo indicating the start
and end of daylight saving time. Instead, you must call GetAdjustmentRules, which returns a
declarative summary of all daylight saving rules that apply to all years. Each rule has a
DateStart and DateEnd indicating the date range within which the rule is valid:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
Console.WriteLine ("Rule: applies from " + rule.DateStart +
" to " + rule.DateEnd);

Western Australia first introduced daylight saving time in 2006, midseason (and then rescinded
itin 2009). This required a special rule for the first year; hence, there are two rules:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM

Each adjustmentRule has a DaylightDelta property of type Timespan (this is one hour in
almost every case) and properties called baylightTransitionStart and
DaylightTransitionEnd. The latter two are of type TimeZoneInfo.TransitionTime,
which has the following properties:

public bool IsFixedDateRule { get; }
public DayOfWeek DayOfWeek { get; }
public int Week { get; }

public int Day { get; }

public int Month { get; }

public DateTime TimeOfDay { get; }

A transition time is somewhat complicated in that it needs to represent both fixed and floating
dates. An example of a floating date is “the last Sunday in March.” Here are the rules for
interpreting a transition time:

1. If, for an end transition, IsFixedDateRule 1S true, Day 1S 1, Month 18 1, and TimeOfDay
1S DateTime.MinValue, there is no end to daylight saving time in that year (this can
happen only in the southern hemisphere, upon the initial introduction of daylight saving
time to a region).

2. Otherwise, if TsFixedDateRule 1S true, the Month, Day, and TimeofDay properties
determine the start or end of the adjustment rule.

3. Otherwise, if IsFixedDateRule IS false, the Month, DayOfWeek, Week, and TimeOfDay
properties determine the start or end of the adjustment rule.

In the last case, week refers to the week of the month, with “5” meaning the last week. We can
demonstrate this by enumerating the adjustment rules for our wa time zone:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
{
Console.WriteLine ("Rule: applies from " + rule.DateStart +
" to " + rule.DateEnd);

Console.WriteLine (" Delta: " + rule.DaylightDelta);

Console.WriteLine (" Start: " 4+ FormatTransitionTime
(rule.DaylightTransitionStart, false));

Console.WriteLine (" End: " + FormatTransitionTime
(rule.DaylightTransitionEnd, true));
Console.WriteLine () ;

In FormatTransitionTime, we honor the rules just described:

static string FormatTransitionTime (TimeZoneInfo.TransitionTime tt,
bool endTime)
{
if (endTime && tt.IsFixedDateRule
&& tt.Day == 1 && tt.Month ==
&& tt.TimeOfDay == DateTime.MinValue)
return "-";

string s;
if (tt.IsFixedDateRule)
s = tt.Day.ToString();

else
s = "The " +
"first second third fourth last".Split() [tt.Week - 1] +
" " + tt.DayOfWeek + " in";
return s + " " + DateTimeFormatInfo.CurrentInfo.MonthNames [tt.Month-1]

+ " at " + tt.TimeOfDay.TimeOfDay;

The result with Western Australia is interesting in that it demonstrates both fixed and floating
date rules — as well as an absent end date:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Delta: 01:00:00
Start: 3 December at 02:00:00

End: -

Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM
Delta: 01:00:00
Start: The last Sunday in October at 02:00:00
End: The last Sunday in March at 03:00:00

NOTE

Western Australia is actually unique in this regard. Here’s how we found it:

from zone in TimeZoneInfo.GetSystemTimeZones ()
let rules = zone.GetAdjustmentRules /()
where
rules.Any
(r => r.DaylightTransitionEnd.IsFixedDateRule) &&
rules.Any
(r => !r.DaylightTransitionEnd.IsFixedDateRule)
select zone

Daylight Saving Time and DateTime

Ifyouuse a pateTimeoffset or a UTC DateTime, equality comparisons are unimpeded by the
effects of daylight saving time. But with local pateTimes, daylight saving can be problematic.

The rules can be summarized as follows:

= Daylight saving impacts local time but not UTC time.

» When the clocks turn back, comparisons that rely on time moving forward will break if (and
only if) they use local pateTimes.

= You can always reliably round-trip between UTC and local times (on the same computer)
— even as the clocks turn back.

The TspaylightSavingTime tells you whether a given local pateTime is subject to daylight
saving time. UTC times always return false:

Console.Write (DateTime.Now.IsDaylightSavingTime ()) ; // True or False
Console.Write (DateTime.UtcNow.IsDaylightSavingTime()); // Always False

Assuming dto is a DateTimeOffset, the following expression does the same:

dto.LocalDateTime.IsDaylightSavingTime

The end of daylight saving time presents a particular complication for algorithms that use local
time. When the clocks go back, the same hour (or more precisely, belta) repeats itself. We can
demonstrate this by instantiating a bateTime right in the “twilight zone” on your computer, and
then subtracting pe1ta (this example requires that you practice daylight saving time to be
interesting!):

DaylightTime changes = TimeZone.CurrentTimeZone.GetDaylightChanges (2010);
TimeSpan halfDelta = new TimeSpan (changes.Delta.Ticks / 2);

DateTime utcl = changes.End.ToUniversalTime () - halfDelta;

DateTime utc2 = utcl - changes.Delta;

Converting these variables to local times demonstrates why you should use UTC and not local
time if your code relies on time moving forward:

DateTime locl = utcl.ToLocalTime(); // (Pacific Standard Time)
DateTime loc2 = utc2.ToLocalTime () ;

Console.WriteLine (locl); // 2/11/2010 1:30:00 AM
Console.WriteLine (loc2); // 2/11/2010 1:30:00 AM
Console.WriteLine (locl == loc2); // True

Despite 10c1 and 10c2 reporting as equal, they are different inside. bateTime reserves a
special bit for indicating on which side of the twilight zone an ambiguous local date lies! This
bit is ignored in comparison — as we just saw — but comes into play when you format the
DateTime unambiguously:

Console.Write (locl.ToString ("o")); // 2010-11-02T02:30:00.0000000-08:00
Console.Write (loc2.ToString ("o")); // 2010-11-02T02:30:00.0000000-07:00

This bit also is read when you convert back to UTC, ensuring perfect round-tripping between
local and UTC times:

Console.WriteLine (locl.ToUniversalTime () == utcl); // True
Console.WriteLine (loc2.ToUniversalTime () == utc2); // True
NOTE

You can reliably compare any two pateTimes by first calling TouniversalTime on each. This
strategy fails if (and only if) exactly one of them has a pateTimexind of Unspecified. This
potential for failure is another reason for favoring pateTimeoffset.

Formatting and Parsing

Formatting means converting 7o a string; parsing means converting from a string. The need to
format or parse arises frequently in programming, in a variety of situations. Hence, the .NET
Framework provides a variety of mechanisms:

ToString and Parse

These methods provide default functionality for many types.

Format providers

These manifest as additional Tostring (and parse) methods that accept a format string
and/or a format provider. Format providers are highly flexible and culture-aware. The
NET Framework includes format providers for the numeric types and
DateTime/DateTimeOffset.

XmlConvert

This is a static class with methods that format and parse while honoring XML standards.
XxmlConvert is also useful for general-purpose conversion when you need culture
independence or you want to preempt misparsing. xm1Convert supports the numeric
Qpes,bool,DateTime,DateTimeOffset,TimeSpan,andGuid.

TBype converters

These target designers and XAML parsers.

In this section, we discuss the first two mechanisms, focusing particularly on format providers.
In the section following, we describe xm1convert and type converters, as well as other
conversion mechanisms.

ToString and Parse

The simplest formatting mechanism is the Tost ring method. It gives meaningful output on all
simple value types (bool, DateTime, DateTimeOffset, TimeSpan, Guid, and all the numeric
types).For the reverse operation, each of these types defines a static parse method. For
example:

string s = true.ToString() ; // s "True"
bool b = bool.Parse (s); // b = true

If the parsing fails, a FormatException is thrown. Many types also define a Tryparse
method, which returns false if the conversion fails, rather than throwing an exception:

int 1i;
bool failure = int.TryParse ("qwerty", out 1i);
bool success = int.TryParse ("123", out 1i);

If you anticipate an error, calling Tryparse is faster and more elegant than calling parse in an
exception handling block.

The parse and TryParse methods on bateTime(0ffset) and the numeric types respect local
culture settings; you can change this by specifying a cultureInfo object. Specifying invariant
culture is often a good idea. For instance, parsing “1.234” into a double gives us 1234 in
Germany:

Console.WriteLine (double.Parse ("1.234")); // 1234 (In Germany)

This is because in Germany, the period indicates a thousands separator rather than a decimal
point. Specifying invariant culture fixes this:

double x = double.Parse ("1.234", CulturelInfo.InvariantCulture)

The same applies when calling Tostring ():

string x = 1.234.ToString (CultureInfo.InvariantCulture);

Format Providers

Sometimes you need more control over how formatting and parsing take place. There are
dozens of ways to format a bateTime(0f fset), for instance. Format providers allow extensive
control over formatting and parsing, and are supported for numeric types and date/times.
Format providers are also used by user interface controls for formatting and parsing.

The gateway to using a format provider is TFormattable. All numeric types — and
DateTime(Offset) — implement this interface:

public interface IFormattable

{

string ToString (string format, IFormatProvider formatProvider);

}

The first argument is the format string; the second is the format provider. The format string
provides instructions; the format provider determines how the instructions are translated. For
example:

NumberFormatInfo f = new NumberFormatInfo();
f.CurrencySymbol = "$$";
Console.WriteLine (3.ToString ("C", £)); // $$ 3.00

Here, "c" is a format string that indicates currency, and the NumberFormatInfo objectis a
format provider that determines how currency — and other numeric representations — are
rendered. This mechanism allows for globalization.

NOTE

All format strings for numbers and dates are listed in “Standard Format Strings and Parsing
Flags”.

If you specify a nu11 format string or provider, a default is applied. The default format
provider is CultureInfo.CurrentCulture, Which, unless reassigned, reflects the computer’s
runtime control panel settings. For example, on this computer:

Console.WriteLine (10.3.ToString ("C", null)); // $10.30
For convenience, most types overload Tostring such that you can omit a nu11 provider:

Console.WriteLine (10.3.ToString ("C"))
Console.WriteLine (10.3.ToString ("F4")

; // $10.30
)i // 10.3000 (Fix to 4 D.P.)

Calling Tostring ona DateTime(Offset) Or a numeric type with no arguments is equivalent
to using a default format provider, with an empty format string.

The .NET Framework defines three format providers (all of which implement

IFormatProvider):

NumberFormatInfo
DateTimeFormatInfo
CulturelInfo

NOTE

All enun types are also formattable, though there’s no special 1FormatpProvider class.

Format providers and CultureInfo

Within the context of format providers, cultureInfo acts as an indirection mechanism for the
other two format providers, returning a NunberFormatInfo Of DateTimeFormatInfo object
applicable to the culture’s regional settings.

In the following example, we request a specific culture (english language in Great Britain):

CultureInfo uk = Culturelnfo.GetCulturelInfo ("en-GB");
Console.WriteLine (3.ToString ("C", uk)); // £3.00
This executes using the default NumberFormatInfo object applicable to the en-GB culture.

The next example formats a bateTime with invariant culture. Invariant culture is always the
same, regardless of the computer’s settings:

DateTime dt = new DateTime (2000, 1, 2);

CultureInfo iv = Culturelnfo.InvariantCulture;

Console.WriteLine (dt.ToString (iv)); // 01/02/2000 00:00:00
Console.WriteLine (dt.ToString ("d", iv)); // 01/02/2000

NOTE

Invariant culture is based on American culture, with the following differences:

= The currency symbol is ¥¥ instead of $.
= Dates and times are formatted with leading zeros (though still with the month first).

= Time uses the 24-hour format rather than an AM/PM designator.

Using NumberFormatInfo or Date Time FormatInfo

In the next example, we instantiate a NumberFormatInfo and change the group separator from
a comma to a space. We then use it to format a number to three decimal places:

NumberFormatInfo f = new NumberFormatInfo ();
f .NumberGroupSeparator = " ";
Console.WriteLine (12345.6789.ToString ("N3", f)); // 12 345.679

The initial settings for a NumberFormatInfo Of DateTimeFormatInfo are based on the
invariant culture. Sometimes, however, it’s more useful to choose a different starting point. To
do this, you can c1one an existing format provider:

NumberFormatInfo f = (NumberFormatInfo)
CultureInfo.CurrentCulture.NumberFormat.Clone () ;

A cloned format provider is always writable — even if the original was read-only.

Composite formatting

Composite format strings allow you to combine variable substitution with format strings. The
static string.Format method accepts a composite format string — we illustrated this in
“String.Format and composite format strings”:

string composite = "Credit={0:C}";
Console.WriteLine (string.Format (composite, 500)); // Credit=$500.00

The console class itself overloads its write and writeLine methods to accept composite
format strings, allowing us to shorten this example slightly:

Console.WriteLine ("Credit={0:C}", 500); // Credit=$500.00

You can also append a composite format string to a StringBuilder (Via AppendFormat), and
to a Textwriter for I/O (see Chapter 15).

string.Format accepts an optional format provider. A simple application for this is to call
ToString on an arbitrary object while passing in a format provider. For example:

string s = string.Format (CultureInfo.InvariantCulture, "{0}", someObject);

This is equivalent to:

string s;
if (someObject is IFormattable)
s = ((IFormattable)someObject) .ToString (null,
CultureInfo.InvariantCulture) ;
else if (someObject == null)
s ="";
else
s = someObject.ToString() ;

Parsing with format providers

There’s no standard interface for parsing through a format provider. Instead, each participating
type overloads its static Parse (and TryParse) method to accept a format provider, and
optionally, a NumberStyles Of DateTimeStyles enum.

NumberStyles and DateTimeStyles control how parsing work: they let you specify such
things as whether parentheses or a currency symbol can appear in the input string. (By default,
the answer to both of these questions is no.) For example:

int error = int.Parse ("(2)"); // Exception thrown
int minusTwo = int.Parse (" (2)", NumberStyles.Integer |
NumberStyles.AllowParentheses) ; // OK

decimal fivePointTwo = decimal.Parse ("£5.20", NumberStyles.Currency,
CultureInfo.GetCultureInfo ("en-GB")):;

The next section lists all NumbersStyles and DateTimeStyles members — as well as the
default parsing rules for each type.

IFormatProvider and ICustomFormatter

All format providers implement IFormatProvider:

public interface IFormatProvider { object GetFormat (Type formatType); }

The purpose of this method is to provide indirection — this is what allows cultureInfo to
defer to an appropriate NumberFormatInfo Of DateTimeInfo object to do the work.

By implementing 1FormatProvider — along with ICustomFormatter — you can also write
your own format provider that works in conjunction with existing types. ICustomFormatter
defines a single method as follows:

string Format (string format, object arg, IFormatProvider formatProvider);

The following custom format provider writes numbers as words:

// Program can be downloaded from http://www.albahari.com/nutshell/

public class WordyFormatProvider : IFormatProvider, ICustomFormatter
{
static readonly string[] numberWords =
"zero one two three four five six seven eight nine minus point".Split();

IFormatProvider parent; // Allows consumers to chain format providers

public WordyFormatProvider () : this (CulturelInfo.CurrentCulture) { }
public WordyFormatProvider (IFormatProvider parent)
{

_parent = parent;

}

public object GetFormat (Type formatType)

{
if (formatType == typeof (ICustomFormatter)) return this;
return null;

}

public string Format (string format, object arg, IFormatProvider prov)
{
// If it's not our format string, defer to the parent provider:
if (arg == null || format != "W")
return string.Format (parent, "{0:" + format + "}", arqg);

StringBuilder result = new StringBuilder();
string digitList = string.Format (CultureInfo.InvariantCulture,
"{0}", arg);
foreach (char digit in digitList)
{
int 1 = "0123456789-.".Index0Of (digit);
if (i == -1) continue;
if (result.Length > 0) result.Append (' ');
result.Append (numberWords([i]);
}

return result.ToString();

Notice that in the Format method, we used string.Format to convert the input number to a
string— with Invariantculture. It would have been much simpler just to call Tostring ()
on arg, but then currentculture would have been used instead. The reason for needing the
invariant culture is evident a few lines later:

int 1 = "0123456789-.".IndexOf (digit);

It’s critical here that the number string comprises only the characters 0123456789-. and not
any internationalized versions of these.

Here’s an example of using wordyFormatProvider:

double n = -123.45;
IFormatProvider fp = new WordyFormatProvider () ;
Console.WritelLine (string.Format (fp, "{0:C} in words is {0:W}", n));

// -$123.45 in words is minus one two three point four five

Custom format providers can be used only in composite format strings.

Standard Format Strings and Parsing Flags

The standard format strings control how a numeric type or DateTime/DateTimeOffset 1S
converted to a string. There are two kinds of format strings:

Standard format strings

With these, you provide general guidance. A standard format string consists of a single
letter, followed, optionally, by a digit (whose meaning depends on the letter). An example
iS "C" Or IIE‘2II.

Custom format strings

With these, you micromanage every character with a template. An example is
"O:#.000E+00".

Custom format strings are unrelated to custom format providers.

Numeric Format Strings

Table 6-2 lists all standard numeric format strings.

Table 6-2. Standard numeric format strings

Letter Meaning Sample Result Notes
input
corg “General” 1.2345, 1.2345 Switches to exponential notation for small or large
;G;OOO 1E‘85 numbers
. 1, 1e-05 . - L
g 1623 G3 limits precision to three digits in total (before + after
0.00001, 1.23E04 point)
ngn
1.2345,
ngaw
12345,
ng3w
F Fixed point 2345.678, 2345.68 F2 rounds to two decimal places
DFRT 2345.60
2345.6,
wpon
N Fixed point with group 2345.678, 2,345.68 As above, with group (1000s) separator (details from
separator (“Numeric”) 22‘?5 ; 2,345.60 format provider)
o
D Pad with leading zeros 123, "D5" 00123 For integral types only
123, "Dp1" 123 D5 pads left to five digits; does not truncate
Eore Force exponential notation 56789, 5.678900E+004 Six-digit default precision
Rl 5.678900e+004
56789, 5.68E+004
nan
56789,
nEom
o Currency 1.2, "c" $1.20 c with no digit uses default number of D.P. from format
1.2, "C4" $1.2000 provider
P Percent .503, "P" 50.30 % Uses symbol and layout from format provider
-583r 50 % Decimal places can optionally be overridden
npgn
x or x Hexadecimal 47, "X" 2F x for uppercase hex digits; x for lowercase hex digits
47, "x" = 2f Integrals o
47, "X4" 002F grals only
R Or Round-trip 1f / 3f, 0.333333343 For the float and double types, R or G17 squeeze out

G17 "R" all digits to ensure exact round-tripping

Supplying no numeric format string (or a null or blank string) is equivalent to using the "G
standard format string followed by no digit. This exhibits the following behavior:

= Numbers smaller than 10-* or larger than the type’s precision are expressed in exponential
(scientific) notation.

» The two decimal places at the limit of f1oat or double’s precision are rounded away to
mask the inaccuracies inherent in conversion to decimal from their underlying binary form.

NOTE

The automatic rounding just described is usually beneficial and goes unnoticed. However, it
can cause trouble if you need to round-trip a number; in other words, convert it to a string

and back again (maybe repeatedly) while preserving value equality. For this reason, the "r"
and "c17" format strings exist to circumvent this implicit rounding.

In Framework 4.6, "r" and "G17" do the same thing; in prior Frameworks, "r" is essentially a
buggy version of "c17" and should not be used.

Table 6-3 lists custom numeric format strings.

Table 6-3. Custom numeric format strings

Specifier Meaning Sample Result Notes
input
Digit 12.345, 12.35 Limits digits after D.P.
placeholder - ##" 12.345
12.345,
LR EET
0 Zero 12.345, 12.35 As above, but also pads with zeros before and after D.P.
placeholder 0o 12.3450
12.345, 099.00
".0000"
99,
"000.00"
Decimal point Indicates D.P.

Actual symbol comes from NumberFormatInfo

; Group 1234, 1,234 Symbol comes from NumberFormatInfo
separator ", 4, T 0,001,234
1234,
"0,000,000"
, Multiplier 1000000, 1000 If comma is at end or before D.P., it acts as a multiplier —
(as above) E 1 dividing result by 1,000, 1,000,000, etc.
1000000,
¥,
S Percent 0.6, "00%" 60% First multiplies by 100 and then substitutes percent symbol
notation obtained from NumberFormatInfo
EO, e0, E+0, e+0 Exponent 1234, "OEO" 1E3
E-0, e-0 notation 1234, 1E+3
"OE+0" 1.23E03
1234, 1.23e03
"0.00E00"
1234,
"0.00e00"
\ Literal 50, @"\#0" #50 Use in conjunction with an @ prefix on the string — or use \\
character
quote
Txx''xx' Literal string 50, "0 50 ...

' (K1l

quote

Section 15, "#; 15 (If positive)

separator (#) ; zero"
-5, "#; (5) (If negative)
(#) ; zero"
0, "#; zero (If zero)
(#) 7 zero"
Any other char Literal 35.2, "$0 . $35 . 20c
00c"
NumberStyles

Each numeric type defines a static parse method that accepts a NumbersStyles argument.
NumberStyles is a flags enum that lets you determine how the string is read as it’s converted
to a numeric type. It has the following combinable members:

AllowLeadingWhite AllowTrailingWhite
AllowLeadingSign AllowTrailingSign
AllowParentheses AllowDecimalPoint
AllowThousands AllowExponent

AllowCurrencySymbol AllowHexSpecifier

NumberStyles also defines these composite members:

None Integer Float Number HexNumber Currency Any

Except for none, all composite values include A11owlLeadingwhite and
AllowTrailingWhite. Their remaining makeup is shown in Figure 6-1, with the most useful
three emphasized.

S
S & S/ &
SAETA VS NS
_éﬁ’\“@&@‘ S/S/ /S

Integer
Float

v

v v
Number [V/[V V|V

v v

v v

HexNumber

Currency
Any

SIS
SIS

Figure 6-1. Composite NumberStyles

When you call parse without specifying any flags, the defaults in Figure 6-2 are applied.

S N & é@\
%rb _Q) N S _Q.r
&S T S
$ SIS/ S/S/S/S/E/$
S /S S/E
& S/SISISISISIS/S
< \NVATVEATA VAT ATATA
Integral types Integer v

Float |

doubleand float AllowThousands v vVIVIV

decimal Number v IV v |V

Figure 6-2. Default parsing flags for numeric types

If you don’t want the defaults shown in Figure 6-2, you must explicitly specify Numberstyles:

int thousand
int minusTwo

int.Parse ("3E8", NumberStyles.HexNumber) ;

int.Parse (" (2)", NumberStyles.Integer |
NumberStyles.AllowParentheses) ;

double aMillion = double.Parse ("1,000,000", NumberStyles.Any);

decimal threeMillion = decimal.Parse ("3e6", NumberStyles.Any);

decimal fivePointTwo decimal.Parse ("$5.20", NumberStyles.Currency);

Because we didn’t specify a format provider, this example works with your local currency
symbol, group separator, decimal point, and so on. The next example is hardcoded to work
with the euro sign and a blank group separator for currencies:

NumberFormatInfo ni = new NumberFormatInfo();

ni.CurrencySymbol = "€";

ni.CurrencyGroupSeparator = " ";

double million = double.Parse ("€l 000 000", NumberStyles.Currency, ni);

Date/Time Format Strings

Format strings for bateTime/DateTime0Offset can be divided into two groups, based on
whether they honor culture and format provider settings. Those that do are listed in Table 6-4;
those that don’t are listed in Table 6-5. The sample output comes from formatting the following
DateTime (With invariant culture, in the case of Table 6-4):

new DateTime (2000, 1, 2, 17, 18, 19);

Table 6-4. Culture-sensitive date/time format strings

Format string Meaning Sample output

d Short date 01/02/2000

D Long date Sunday, 02 January 2000

t Short time 17:18

7 Long time 17:18:19

f Long date + short time sunday, 02 January 2000 17:18

F Long date + long time Sunday, 02 January 2000 17:18:19
g Short date + short time 01/02/2000 17:18

G (default) Short date + long time 01/02/2000 17:18:19

m, M Month and day 02 January

vy, Y Year and month January 2000

Table 6-5. Culture-insensitive date/time format strings

Format Meaning Sample output Notes

string

o Round-trippable 2000-01-02717:18:19.0000000 Will append time zone information unless DateTimeKind is

Unspecified

r,R RFC 1123 Sun, 02 Jan 2000 17:18:19 You must explicitly convert to UTC with
standard GMT DateTime.ToUniversalTime

s Sortable; ISO 2000-01-02T17:18:19 Compatible with text-based sorting
8601

u “Universal” 2000-01-02 17:18:192 Similar to above; must explicitly convert to UTC
sortable

U UTC Sunday, 02 January 2000 Long date + short time, converted to UTC

17:18:19

The format strings "r", "rR", and "u" emit a suffix that implies UTC; yet they don’t
automatically convert a local to a UTC pateTime (so you must do the conversion yourself).
Ironically, "u" automatically converts to UTC, but doesn’t write a time zone suffix! In fact, "o"
is the only format specifier in the group that can write an unambiguous DateTime without
intervention.

DateTimeFormatInfo also supports custom format strings: these are analogous to numeric
custom format strings. The list is fairly exhaustive and you can find it in the MSDN. An
example of a custom format string is:

yyyy-MM-dd HH:mm:ss

Parsing and misparsing Date Times

Strings that put the month or day first are ambiguous and can easily be misparsed —
particularly if you or any of your customers live outside the United States. This is not a
problem in user interface controls because the same settings are in force when parsing as when
formatting. But when writing to a file, for instance, day/month misparsing can be a real
problem. There are two solutions:

= Always state the same explicit culture when formatting and parsing (e.g., invariant culture).

m Format pateTime and DateTimeOffsets in a manner independent of culture.

The second approach is more robust — particularly if you choose a format that puts the four-
digit year first: such strings are much harder to misparse by another party. Further, strings
formatted with a standards-compliant year-first format (such as "o") can parse correctly
alongside locally formatted strings — rather like a “universal donor.” (Dates formatted with
"s" or "u" have the further benefit of being sortable.)

To illustrate, suppose we generate a culture-insensitive DateTime string s as follows:

string s = DateTime.Now.ToString ("o");

NOTE

The "o format string includes milliseconds in the output. The following custom format string
gives the same result as "o, but without milliseconds:

yyyy-MM-ddTHH:mm:ss K

We can reparse this in two ways. ParseExact demands strict compliance with the specified
format string:

DateTime dtl = DateTime.ParseExact (s, "o", null);

(You can achieve a similar result with xm1Convert’s ToString and ToDateTime methods.)

Parse, however, implicitly accepts both the "o format and the currentculture format:

DateTime dt2 = DateTime.Parse (s);

This works with both DateTime and DateTimeOffset.

NOTE

ParseExact i usually preferable if you know the format of the string that you’re parsing. It
means that if the string is incorrectly formatted, an exception will be thrown — which is
usually better than risking a misparsed date.

DateTimeStyles
DateTimeStyles is a flags enum that provides additional instructions when calling Parse on a

DateTime(Offset). Here are its members:

None,

AllowLeadingWhite, AllowTrailingWhite, AllowInnerWhite,
Assumelocal, AssumeUniversal, AdjustToUniversal,
NoCurrentDateDefault, RoundTripKind

There 1s also a composite member, AllowWhiteSpaces:

AllowWhiteSpaces = AllowLeadingWhite | AllowTrailingWhite | AllowInnerWhite

The default is None. This means that extra whitespace is normally prohibited (whitespace that’s
part of a standard pateTime pattern is exempt).

AssumeLocal and AssumeUniversal apply if the string doesn’t have a time zone suffix (such
as 7z or +9:00). AdjustToUniversal still honors time zone suffixes, but then converts to UTC
using the current regional settings.

If you parse a string comprising a time but no date, today’s date is applied by default. If you
apply the Nocurrentbatepefault flag, however, it instead uses 1st January 0001.

Enum Format Strings

In “Enums”, we describe formatting and parsing enum values. Table 6-6 lists each format string
and the result of applying it to the following expression:

Console.WriteLine (System.ConsoleColor.Red.ToString (formatString)):;

Table 6-6. Enum format strings

Format Meaning Sample Notes

string output

Gorg “General” Red Default

FOr £ Treat as though r1ags attribute were Red Works on combined members even if enum has no rlags
present attribute

pord Decimal value 12 Retrieves underlying integral value

X Or x Hexadecimal value 0000000C Retrieves underlying integral value

Other Conversion Mechanisms

In the previous two sections, we covered format providers — .NET’s primary mechanism for
formatting and parsing. Other important conversion mechanisms are scattered through various
types and namespaces. Some convert to and from st ring, and some do other kinds of
conversions. In this section, we discuss the following topics:

m The convert class and its functions:

Real to integral conversions that round rather than truncate
Parsing numbers in base 2, 8, and 16
Dynamic conversions
Base 64 translations
m xmlConvert and its role in formatting and parsing for XML
m Type converters and their role in formatting and parsing for designers and XAML

® BitConverter, for binary conversions

Convert

The .NET Framework calls the following types base types:

B bool, char, string, System.DateTime, and System.DateTimeOffset

m All of the C# numeric types

The static convert class defines methods for converting every base type to every other base
type. Unfortunately, most of these methods are useless: either they throw exceptions or they are
redundant alongside implicit casts. Among the clutter, however, are some useful methods, listed
in the following sections.

NOTE

All base types (explicitly) implement 1convertible, which defines methods for converting to
every other base type. In most cases, the implementation of each of these methods simply
calls a method in convert. On rare occasions, it can be useful to write a method that accepts
an argument of type Iconvertible.

Rounding real to integral conversions

In Chapter 2, we saw how implicit and explicit casts allow you to convert between numeric
types. In summary:

= Implicit casts work for nonlossy conversions (€.g., int t0 double).
» Explicit casts are required for lossy conversions (e.g., double to int).

Casts are optimized for efficiency; hence, they truncate data that won’t fit. This can be a
problem when converting from a real number to an integer, because often you want to round
rather than truncate. convert’s numerical conversion methods address just this issue; they
always round:

double d = 3.9;
int 1 = Convert.ToInt32 (d); // 1 == 4

convert uses banker’s rounding, which snaps midpoint values to even integers (this avoids
positive or negative bias). If banker’s rounding is a problem, first call Math.Round on the real
number: this accepts an additional argument that allows you to control midpoint rounding.

Parsing numbers in base 2, 8, and 16
Hidden among the To (integral-type) methods are overloads that parse numbers in another
base:

int thirty
uint five

Convert.ToInt32 ("1E", 16); // Parse in hexadecimal
Convert.ToUInt32 ("101", 2); // Parse in binary

The second argument specifies the base. It can be any base you like — as long as it’s 2, 8, 10,
or 16!

Dynamic conversions

Occasionally, you need to convert from one type to another — but you don’t know what the

types are until runtime. For this, the convert class provides a changeType method:

public static object ChangeType (object value, Type conversionType) ;

The source and target types must be one of the “base” types. changeType also accepts an
optional TFormatProvider argument. Here’s an example:

Type targetType = typeof (int);
object source = "42";

object result = Convert.ChangeType (source, targetType);

Console.WriteLine (result); // 42
Console.WriteLine (result.GetType()): // System.Int32

An example of when this might be useful is in writing a deserializer that can work with
multiple types. It can also convert any enum to its integral type (see “Enums”).

A limitation of changeType is that you cannot specify a format string or parsing flag.

Base 64 conversions

Sometimes you need to include binary data such as a bitmap within a text document such as an
XML file or email message. Base 64 is a ubiquitous means of encoding binary data as readable
characters, using 64 characters from the ASCII set.

Convert’s ToBase64String method converts from a byte array to base 64;
FromBase64String does the reverse.

XmlConvert

If you’re dealing with data that’s originated from or destined for an XML file, xm1convert (in
the system.xml namespace) provides the most suitable methods for formatting and parsing.
The methods in xm1convert handle the nuances of XML formatting without needing special
format strings. For instance, t rue in XML is “true” and not “True”. The .NET Framework
internally uses xm1convert extensively. xmlconvert is also good for general-purpose culture-
independent serialization.

The formatting methods in xm1convert are all provided as overloaded Tostring methods; the
parsing methods are called ToBoolean, ToDateTime, and so on. For example:

string s = XmlConvert.ToString (true); // s = "true"
bool isTrue = XmlConvert.ToBoolean (s);

The methods that convert to and from bateTime accept an xm1DateTimeSerializationMode
argument. This is an enum with the following values:

Unspecified, Local, Utc, RoundtripKind

Local and utc cause a conversion to take place when formatting (if the pateTime is not
already in that time zone). The time zone is then appended to the string;

2010-02-22T14:08:30.9375 // Unspecified
2010-02-22T14:07:30.9375+09:00 // Local
2010-02-22T05:08:30.9375Z // Utc

Unspecified strips away any time zone information embedded in the pateTime (i.e.,
DateTimeKind) before formatting. Roundtripkind honors the bateTime’s DateTimeKind —
so when it’s reparsed, the resultant bateTime struct will be exactly as it was originally.

Type Converters

Type converters are designed to format and parse in design-time environments. They also parse
values in XAML (Extensible Application Markup Language) documents — as used in
Windows Presentation Foundation and Workflow Foundation.

In the .NET Framework, there are more than 100 type converters — covering such things as
colors, images, and URIs. In contrast, format providers are implemented for only a handful of
simple value types.

Type converters typically parse strings in a variety of ways — without needing hints. For
instance, in an ASP.NET application in Visual Studio, if you assign a control a BackColor by
typing "Beige" into the property window, color’s type converter figures out that you're
referring to a color name and not an RGB string or system color. This flexibility can sometimes
make type converters useful in contexts outside of designers and XAML documents.

All type converters subclass TypeConverter in System.ComponentModel. To obtain a
TypeConverter, call TypeDescriptor.GetConverter. The following obtains a
TypeConverter for the Color type (inthe System.Drawing namespace, System.Drawing.dll):

TypeConverter cc = TypeDescriptor.GetConverter (typeof (Color));

Among many other methods, Typeconverter defines methods to convertTostring and
ConvertFromString. We can call these as follows:

Color beige = (Color) cc.ConvertFromString ("Beige");
Color purple = (Color) cc.ConvertFromString ("#800080");
Color window = (Color) cc.ConvertFromString ("Window");

By convention, type converters have names ending in Converter and are usually in the same
namespace as the type they’re converting. A type links to its converter via a
TypeConverterAttribute, allowing designers to pick up converters automatically.

Type converters can also provide design-time services such as generating standard value lists
for populating a drop-down list in a designer or assisting with code serialization.

BitConverter

Most base types can be converted to a byte array, by calling BitConverter.GetBytes:

foreach (byte b in BitConverter.GetBytes (3.5))
Console.Write (b + " "); // 000000 12 64
BitConverter also provides methods, such as Toboub1e, for converting in the other direction.

The decimal and pateTime(0ffset) types are not supported by BitcConverter. You can,
however, convert a decimal to an int array by calling decimal.GetBits. To go the other
way around, decimal provides a constructor that accepts an int array.

In the case of bateTime, you can call ToBinary on an instance — this returns a 1ong (upon

which you can then use BitConverter). The static DateTime.FromBinary method does the
reverse.

Globalization
There are two aspects to internationalizing an application: globalization and localization.
Globalization is concerned with three tasks (in decreasing order of importance):

1. Making sure that your program doesn’t break when run in another culture
2. Respecting a local culture’s formatting rules — for instance, when displaying dates

3. Designing your program so that it picks up culture-specific data and strings from satellite
assemblies that you can later write and deploy

Localization means concluding that last task by writing satellite assemblies for specific
cultures. This can be done after writing your program — we cover the details in “Resources
and Satellite Assemblies” in Chapter 18.

The .NET Framework helps you with the second task by applying culture-specific rules by
default. We’ve already seen how calling Tostring ona DateTime or number respects local
formatting rules. Unfortunately, this makes it easy to fail the first task and have your program
break because you’re expecting dates or numbers to be formatted according to an assumed
culture. The solution, as we’ve seen, is either to specify a culture (such as the invariant culture)
when formatting and parsing, or to use culture-independent methods such as those in

XmlConvert.

Globalization ChecKlist

We’ve already covered the important points in this chapter. Here’s a summary of the essential
work required:

» Understand Unicode and text encodings (see “Text Encodings and Unicode™).

m» Be mindful that methods such as ToUpper and ToLower on char and string are culture-
sensitive: use ToUpperInvariant/ToLowerInvariant unless you want culture sensitivity.

= Favor culture-independent formatting and parsing mechanisms for pateTime and
DateTimeOffsets such as ToString ("o") and XmlConvert.

» Otherwise, specify a culture when formatting/parsing numbers or date/times (unless you
want local-culture behavior).

Testing

You can test against different cultures by reassigning Thread’s CurrentCulture property (in
System.Threading). The following changes the current culture to Turkey:

Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo ("tr-TR");

Turkey is a particularly good test case because:

m "i" ToUpper () != "I" and "I".ToLower () != "i

m Dates are formatted as day.month.year (note the period separator).

» The decimal point indicator is a comma instead of a period.

You can also experiment by changing the number and date formatting settings in the Windows

Control Panel: these are reflected in the default culture (CultureInfo.CurrentCulture).

CultureInfo.GetCultures () returns an array of all available cultures.

NOTE

Thread and cultureInfo also support a CurrentuUIculture property. This is concerned more
with localization: we cover this in Chapter 18.

Working with Numbers

Conversions

We covered numeric conversions in previous chapters and sections; Table 6-7 summarizes all

the options.

Table 6-7. Summary of numeric conversions

Task

Parsing base 10 numbers

Parsing from base 2, 8, or 16
Formatting to hexadecimal

Lossless numeric conversion

Truncating numeric conversion

Functions

Parse

TryParse
Convert.Tolntegral
ToString ("X")

Implicit cast

Explicit cast

Rounding numeric conversion (real to integral) convert.Tolntegral

Math

Examples

double d = double.Parse ("3.5");

int 1i;

bool ok = int.TryParse ("3", out 1i);
int i = Convert.ToInt32 ("1lE", 16);

string hex = 45.ToString ("X");

int 1 = 23;
double d = 1i;

double d = 23.5;
int 1 = (int) d;

double d = 23.5;
int i = Convert.ToInt32 (d);

Table 6-8 lists the members of the static Math class. The trigonometric functions accept

arguments of type doub1le; other methods such as max are overloaded to operate on all numeric

types. The mMath class also defines the mathematical constants £ (e) and pr1.

Table 6-8. Methods in the static Math class

Category
Rounding

Maximum/minimum

Methods

Round, Truncate,

Max, Min

Absolute value and sign abs, Sign

Floor, Ceiling

Square root Sqrt

Raising to a power Pow, Exp
Logarithm Log, Logl0
Trigonometric Sin, Cos, Tan

Sinh, Cosh, Tanh

Asin, Acos, Atan

The rRound method lets you specify the number of decimal places with which to round, as well
as how to handle midpoints (away from zero, or with banker’s rounding). F1oor and ceiling
round to the nearest integer: Floor always rounds down and ceiling always rounds up —
even with negative numbers.

Max and Min accept only two arguments. If you have an array or sequence of numbers, use the
Max and Min extension methods in System.Ling.Enumerable.

BigInteger

The BigInteger struct is a specialized numeric type introduced in .NET Framework 4.0. It
lives in the new system.Numerics namespace in System.Numerics.dll and allows you to
represent an arbitrarily large integer without any loss of precision.

C# doesn’t provide native support for BigInteger, so there’s no way to represent
BigInteger literals. You can, however, implicitly convert from any other integral type to a
BigInteger. For instance:

BigInteger twentyFive = 25; // implicit conversion from integer

To represent a bigger number, such as one googol (10'%%), you can use one of BigInteger’s
static methods, such as pow (raise to the power):

BigInteger googol = BiglInteger.Pow (10, 100);
Alternatively, you can Parse a string;

BigInteger googol = BigInteger.Parse ("1".PadRight (100, '0'"));
Calling Tostring () on this prints every digit:

Console.WritelLine (googol.ToString()); // 10000000000000000000000000000
000

You can perform potentially lossy conversions between BigInteger and the standard numeric
types with the explicit cast operator:

double g2 = (double) googol; // Explicit cast
BigInteger g3 = (BiglInteger) g2; // Explicit cast
Console.WriteLine (g3);

The output from this demonstrates the loss of precision:

9999999999999999673361688041166912. ..

BigInteger overloads all the arithmetic operators including remainder (%), as well as the
comparison and equality operators.

You can also construct a BigInteger from a byte array. The following code generates a 32-
byte random number suitable for cryptography and then assigns itto a BigInteger:

// This uses the System.Security.Cryptography namespace:
RandomNumberGenerator rand = RandomNumberGenerator.Create();

byte[] bytes = new byte [32];

rand.GetBytes (bytes);

var bigRandomNumber = new BigInteger (bytes); // Convert to BigInteger

The advantage of storing such a number in a BigInteger over a byte array is that you get
value-type semantics. Calling ToByteArray converts a BigInteger back to a byte array.

Complex

The comp1ex struct is another specialized numeric type new to Framework 4.0, and is for
representing complex numbers with real and imaginary components of type double. Complex
resides in the System. Numerics.dll assembly (along with BigInteger).

To use complex, instantiate the struct, specifying the real and imaginary values:

var cl = new Complex (2, 3.5);
var c2 = new Complex (3, 0);

There are also implicit conversions from the standard numeric types.

The complex struct exposes properties for the real and imaginary values, as well as the phase
and magnitude:

Console.WriteLine (cl.Real); // 2

Console.WritelLine (cl.Imaginary); // 3.5

Console.WriteLine (cl.Phase); // 1.05165021254837
(

Console.WriteLine (cl.Magnitude); // 4.03112887414927

You can also construct a comp1ex number by specifying magnitude and phase:
Complex c3 = Complex.FromPolarCoordinates (1.3, 5);
The standard arithmetic operators are overloaded to work on comp1ex numbers:

Console.WriteLine (cl + c2); // (5, 3.5)
Console.WriteLine (cl * c2); // (6, 10.5)

The complex struct exposes static methods for more advanced functions, including:

» Trigonometric (sin, Asin, Sinh, Tan, etc.)
» [ogarithms and exponentiations
B Conjugate

Random

The rRandom class generates a pseudorandom sequence of random bytes, integers, or

doubles.

To use Random, you first instantiate it, optionally providing a seed to initiate the random
number series. Using the same seed guarantees the same series of numbers (if run under the
same CLR version), which is sometimes useful when you want reproducibility:

Random rl = new Random (1) ;
Random r2 = new Random (1) ;
Console.WriteLine (rl.Next (100) + ", " + rl.Next (100)); // 24, 11
Console.WriteLine (r2.Next (100) + ", " + r2.Next (100)); // 24, 11

If you don’t want reproducibility, you can construct Random with no seed — then it uses the
current system time to make one up.

WARNING

Because the system clock has limited granularity, two rRandom instances created close together
(typically within 10 ms) will yield the same sequence of values. A common trap is to
instantiate a new rRandom object every time you need a random number, rather than reusing
the same object.

A good pattern is to declare a single static Random instance. In multithreaded scenarios,
however, this can cause trouble because random objects are not thread-safe. We describe a
workaround in “Thread-Local Storage” in Chapter 22.

Calling Next (n) generates a random integer between 0 and n-1. NextDouble generates a
random double between 0 and 1. NextBytes fills a byte array with random values.

Random is not considered random enough for high-security applications, such as cryptography.
For this, the NET Framework provides a cryptographically strong random number generator,
inthe system.Security.Cryptography namespace. Here’s how it’s used:

var rand = System.Security.Cryptography.RandomNumberGenerator.Create () ;
byte[] bytes = new byte [32];
rand.GetBytes (bytes); // Fill the byte array with random numbers.

The downside is that it’s less flexible: filling a byte array is the only means of obtaining
random numbers. To obtain an integer, you must use BitConverter:

byte[] bytes = new byte [4];
rand.GetBytes (bytes);
int i = BitConverter.ToInt32 (bytes, 0);

Enums

In Chapter 3, we described C#’s enum type, and showed how to combine members, test
equality, use logical operators, and perform conversions. The Framework extends C#’s support
for enums through the system.Enum type. This type has two roles:

= Providing type unification for all enum types

= Defining static utility methods

Type unification means you can implicitly cast any enum member to a System.Enum instance:

enum Nut { Walnut, Hazelnut, Macadamia }
enum Size { Small, Medium, Large }

static void Main ()

{
Display (Nut.Macadamia); // Nut.Macadamia
Display (Size.Large); // Size.Large

}

static void Display (Enum value)
{

Console.WriteLine (value.GetType () .Name + "." + value.ToString()):;

}

The static utility methods on system.Enum are primarily related to performing conversions and
obtaining lists of members.

Enum Conversions
There are three ways to represent an enum value:

= As an enum member

» As its underlying integral value

= As a string

In this section, we describe how to convert between each.

Enum to integral conversions

Recall that an explicit cast converts between an enum member and its integral value. An
explicit cast is the correct approach if you know the enum type at compile time:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

int 1 = (int) BorderSides.Top; // 1 ==
BorderSides side = (BorderSides) i; // side == BorderSides.Top

You can cast a System.Enum instance to its integral type in the same way. The trick is to first
cast to an object, and then the integral type:

static int GetlIntegralValue (Enum anyEnum)
{
return (int) (object) anyEnum;

}

This relies on you knowing the integral type: the method we just wrote would crash if passed
an enum whose integral type was 1ong. To write a method that works with an enum of any
integral type, you can take one of three approaches. The first is to call convert.Tobecimal:

static decimal GetAnyIntegralValue (Enum anyEnum)
{
return Convert.ToDecimal (anyEnum) ;

}

This works because every integral type (including u1ong) can be converted to decimal without
loss of information. The second approach is to call Enum.GetUnderlyingType in order to
obtain the enum’s integral type, and then call convert.cChangeType:

static object GetBoxedIntegralValue (Enum anyEnum)

{
Type integralType = Enum.GetUnderlyingType (anyEnum.GetType())
return Convert.ChangeType (anyEnum, integralType);

}

This preserves the original integral type, as the following example shows:

object result = GetBoxedIntegralValue (BorderSides.Top);
Console.WriteLine (result); // 4
Console.WriteLine (result.GetType()): // System.Int32

NOTE

Our GetBoxedIntegralType method in fact performs no value conversion; rather, it reboxes
the same value in another type. It translates an integral value in enum-type clothing to an
integral value in integral-type clothing. We describe this further in “How Enums Work™.

The third approach is to call Format or Tostring specifying the "d" or "p" format string. This
gives you the enum’s integral value as a string, and it is useful when writing custom
serialization formatters:

static string GetIntegralValueAsString (Enum anyEnum)
{
return anyEnum.ToString ("D"); // returns something like "4"

}

Integral to enum conversions

Enum.ToObject converts an integral value to an enum instance of the given type:

object bs = Enum.ToObject (typeof (BorderSides), 3);
Console.WriteLine (bs); // Left, Right

This is the dynamic equivalent of this:

BorderSides bs = (BorderSides) 3;

ToObject 1s overloaded to accept all integral types, as well as object. (The latter works with
any boxed integral type.)

String conversions

To convert an enum to a string, you can either call the static Enum.Format method or call
ToString on the instance. Each method accepts a format string, which can be "¢ for default
formatting behavior, "p" to emit the underlying integral value as a string, "x" for the same in
hexadecimal, or "r" to format combined members of an enum without the F1ags attribute. We
listed examples of these in “Standard Format Strings and Parsing Flags™.

Enum.Parse converts a string to an enum. It accepts the enum type and a string that can include

multiple members:

BorderSides leftRight = (BorderSides) Enum.Parse (typeof (BorderSides),
"Left, Right");

An optional third argument lets you perform case-insensitive parsing. An ArgumentException
is thrown if the member is not found.

Enumerating Enum Values

Enum.GetValues returns an array comprising all members of a particular enum type:

foreach (Enum value in Enum.GetValues (typeof (BorderSides)))
Console.WriteLine (value);
Composite members such as LeftRight = Left | Right are included, too.

Enum.GetNames performs the same function, but returns an array of strings.

NOTE

Internally, the CLR implements Getvalues and cetnames by reflecting over the fields in the
enum’s type. The results are cached for efficiency.

How Enums Work

The semantics of enums are enforced largely by the compiler. In the CLR, there’s no runtime
difference between an enum instance (when unboxed) and its underlying integral value. Further,
an enum definition in the CLR is merely a subtype of system.Enum with static integral-type
fields for each member. This makes the ordinary use of an enum highly efficient, with a runtime
cost matching that of integral constants.

The downside of this strategy is that enums can provide static but not strong type safety. We
saw an example of this in Chapter 3:

public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
BorderSides b = BorderSides.Left;

b += 1234; // No error!

When the compiler is unable to perform validation (as in this example), there’s no backup from
the runtime to throw an exception.

What we said about there being no runtime difference between an enum instance and its integral
value might seem at odds with the following:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
Console.WriteLine (BorderSides.Right.ToString()); // Right

Console.WriteLine (BorderSides.Right.GetType () .Name) ; // BorderSides

Given the nature of an enum instance at runtime, you’d expect this to print 2 and 1nt32! The
reason for its behavior is down to some more compile-time trickery. C# explicitly boxes an

enum instance before calling its virtual methods — such as Tostring or GetType. And when
an enum instance is boxed, it gains a runtime wrapping that references its enum type.

The Guid Struct

The Guid struct represents a globally unique identifier: a 16-byte value that, when generated, is
almost certainly unique in the world. cuids are often used for keys of various sorts — in
applications and databases. There are 2!28 or 3.4 x 108 unique Guids.

The static Guid.NewGuid method generates a unique Guid:

Guid g = Guid.NewGuid ();
Console.WriteLine (g.ToString()); // 0d57629c-7d6e-4847-97cb-9e2fc25083fe

To instantiate an existing value, you use one of the constructors. The two most useful
constructors are:

public Guid (bytel] b)
public Guid (string g)

// BAccepts a l6-byte array
// Accepts a formatted string

’
’

When represented as a string, a Guid is formatted as a 32-digit hexadecimal number, with
optional hyphens after the 8th, 12th, 16th, and 20th digits. The whole string can also be
optionally wrapped in brackets or braces:

Guid gl = new Guid ("{0d57629c-7d6e-4847-97cb-9e2fc25083fe}");
Guid g2 = new Guid ("0d57629c7d6e484797cb9%2fc25083fe") ;
Console.WriteLine (gl == g2); // True

Being a struct, a Guid honors value-type semantics; hence, the equality operator works in the
preceding example.

The ToByteArray method converts a Guid to a byte array.

The static Guid.Empty property returns an empty Guid (all zeros). This is often used in place
of nu1l.

Equality Comparison

Until now, we’ve assumed that the == and ! = operators are all there is to equality comparison.
The issue of equality, however, is more complex and subtler, sometimes requiring the use of
additional methods and interfaces. This section explores the standard C# and .NET protocols
for equality, focusing particularly on two questions:

m When are == and ! = adequate — and inadequate — for equality comparison, and what are
the alternatives?

= How and when should you customize a type’s equality logic?

But before exploring the details of equality protocols and how to customize them, we must first
look at the preliminary concept of value versus referential equality.

Value Versus Referential Equality

There are two kinds of equality:

Value equality
Two values are equivalent in some sense.

Referential equality
Two references refer to exactly the same object.

By default:

» Value types use value equality.
m Reference types use referential equality.

Value types, in fact, can only use value equality (unless boxed). A simple demonstration of
value equality is to compare two numbers:

int x = 5, y = 5;
Console.WriteLine (x == vy); // True (by virtue of value equality)

A more elaborate demonstration is to compare two bateTimeOffset structs. The following
prints True because the two DateTimeoffsets refer to the same point in time and so are
considered equivalent:

var dtl = new DateTimeOffset (2010, 1, 1, 1, 1, 1, TimeSpan.FromHours(8));
var dt2 = new DateTimeOffset (2010, 1, 1, 2, 1, 1, TimeSpan.FromHours(9));
Console.WriteLine (dtl == dt2); // True

NOTE

DateTimeOffset IS a struct whose equality semantics have been tweaked. By default, structs
exhibit a special kind of value equality called structural equality, where two values are
considered equal if all of their members are equal. (You can see this by creating a struct and
calling its Fquals method; more on this later.)

Reference types exhibit referential equality by default. In the following example, £1 and £2 are
not equal — despite their objects having identical content:

class Foo { public int X; }
Foo fl = new Foo { X =5 };

Foo f2 = new Foo { X =5 };
Console.WriteLine (fl == f2); // False

In contrast, £3 and £1 are equal because they reference the same object:

Foo f3 = f1;
Console.WriteLine (fl == £3); // True

We’ll explain later in this section how reference types can be customized to exhibit value
equality. An example of this is the uri class in the system namespace:

Uri uril = new Uri ("http://www.lingpad.net");
Uri uri2 = new Uri ("http://www.lingpad.net");

Console.WriteLine (uril == uri2); // True

Standard Equality Protocols
There are three standard protocols that types can implement for equality comparison:

m The == and ! = operators
m The virtual Equals method in object
m The 1Equatable<T> interface

In addition, there are the pluggable protocols and the TstructuralEquatable interface,
which we describe in Chapter 7.

We’ve already seen in many examples how the standard == and ! = operators perform
equality/inequality comparisons. The subtleties with == and ! = arise because they are
operators, and so are statically resolved (in fact, they are implemented as static functions).
So, when you use == or !=, C# makes a compile-time decision as to which type will perform
the comparison, and no virtual behavior comes into play. This is normally desirable. In the
following example, the compiler hard-wires == to the int type because x and y are both int:

int x 5;
int y 5;
Console.Writeline (x == y); // True

But in the next example, the compiler wires the == operator to the object type:

object x = 5;
object y = 5;
Console.Writeline (x == y); // False

Because object is a class (and so a reference type), object’s == operator uses referential
equality to compare x and y. The resultis false, because x and y each refer to different boxed
objects on the heap.

The virtual Object.Equals method

To correctly equate x and y in the preceding example, we can use the virtual Equals method.
Equals is defined in system.Object, and so is available to all types:

object x 5;
object y 5;
Console.WritelLine (x.Equals (y)); // True

Equals is resolved at runtime — according to the object’s actual type. In this case, it calls
Int32’s Equals method, which applies value equality to the operands, returning t rue. With
reference types, Equals performs referential equality comparison by default; with structs,
Equals performs structural comparison by calling Equals on each of'its fields.

WHY THE COMPLEXITY?
You might wonder why the designers of C# didn’t avoid the problem by making == virtual, and so

functionally identical to Equals. There are three reasons for this:

n [f the first operand is null, £quais fails with a Nul1referenceException; a static operator does
not.

= Because the == operator is statically resolved, it executes extremely quickly. This means that
you can write computationally intensive code without penalty — and without needing to learn
another language such as C++.

= Sometimes it can be useful to have == and £quals apply different definitions of equality. We
describe this scenario later in this section.

Essentially, the complexity of the design reflects the complexity of the situation: the concept of
equality covers a multitude of scenarios.

Hence, Equals is suitable for equating two objects in a type-agnostic fashion. The following
method equates two objects of any type:

public static bool AreEqual (object objl, object obj2)
=> objl.Equals (obj2);

There is one case, however, in which this fails. If the first argument is nu11, you get a
NullReferenceException. Here’s the fix:

public static bool AreEqual (object objl, object obj2)
{

if (objl == null) return obj2 == null;

return objl.Equals (obj2);
}

Or more succinctly:

public static bool AreEqual (object objl, object obj2)
=> objl == null ? obj2 == null : objl.Equals (obj2);

The static object.Equals method

The object class provides a static helper method that does the work of aAreEqual in the
preceding example. Its name is Equals — just like the virtual method — but there’s no conflict
because it accepts two arguments:

public static bool Equals (object objA, object objB)

This provides a null-safe equality comparison algorithm for when the types are unknown at
compile time. For example:

object x = 3, y = 3;
Console.WriteLine (object.Equals (x, y)); // True
x = null;
Console.WriteLine (object.Equals (x, y)); // False
y = null;
Console.WriteLine (object.Equals (x, y)); // True

A useful application is when writing generic types. The following code will not compile if
object.Equals is replaced with the == or != operator:

class Test <T>

{
T value;
public void SetValue (T newValue)
{
if ('object.Equals (newValue, _value))
{
_value = newValue;
OnValueChanged() ;
}
}
protected virtual void OnValueChanged() { ... }
}

Operators are prohibited here because the compiler cannot bind to the static method of an
unknown type.

NOTE

A more elaborate way to implement this comparison is with the EqualityComparer<T> class.
This has the advantage of avoiding boxing;

if (!EqualityComparer<T>.Default.Equals (newValue, value))

We discuss EqualityComparer<T> in more detail in Chapter 7 (see “Plugging in Equality and
Order”).

The static object.Reference Equals method

Occasionally, you need to force referential equality comparison. The static
object.ReferenceEquals method does just this:

class Widget { ... }

class Test
{
static void Main ()
{
Widget wl = new Widget () ;
Widget w2 = new Widget () ;

Console.WriteLine (object.ReferenceEquals (wl, w2)); // False
}
}

You might want to do this because it’s possible for widget to override the virtual Equals
method, such that w1 .Equals (w2) would return true. Further, it’s possible for widget to
overload the == operator so that w1==w2 would also return t rue. In such cases, calling
object.ReferenceEquals guarantees normal referential equality semantics.

NOTE

Another way to force referential equality comparison is to cast the values to object and then
apply the == operator.

The IEquatable<T> interface

A consequence of calling object .Equals is that it forces boxing on value types. This is
undesirable in highly performance-sensitive scenarios because boxing is relatively expensive
compared to the actual comparison. A solution was introduced in C# 2.0, with the
IEquatable<T> interface:

public interface IEquatable<T>

{
bool Equals (T other);
}

The idea is that TEquatable<T>, when implemented, gives the same result as calling object’s
virtual Equals method — but more quickly. Most basic .NET types implement
IEquatable<T>. YOU can use IEquatable<T> as a constraint in a generic type:

class Test<T> where T : IEquatable<T>

{
public bool IsEqual (T a, T b)

{
return a.Equals (b); // No boxing with generic T
}
}

If we remove the generic constraint, the class would still compile, but a.Equals (b) would
instead bind to the slower object.Equals (slower assuming T was a value type).

When Equals and == are not equal

We said earlier that it’s sometimes useful for == and Equais to apply different definitions of
equality. For example:

double x = double.NaN;
Console.WriteLine (x == X); // False
Console.WriteLine (x.Equals (x)); // True

The doub1e type’s == operator enforces that one NaN can never equal anything else — even
another NaN. This is most natural from a mathematical perspective, and it reflects the
underlying CPU behavior. The Equals method, however, is obliged to apply reflexive equality;
in other words:

x.Equals (x) must always return true.

Collections and dictionaries rely on Equals behaving this way; otherwise, they could not find
an item they previously stored.

Having Equals and == apply different definitions of equality is actually quite rare with value
types. A more common scenario is with reference types, and happens when the author
customizes Equals so that it performs value equality while leaving == to perform (default)
referential equality. The stringBuilder class does exactly this:

var sbl = new StringBuilder ("foo");

var sb2 = new StringBuilder ("foo");

Console.WriteLine (sbl == sb2); // False (referential equality)
Console.WriteLine (sbl.Equals (sb2)); // True (value equality)

Let’s now look at how to customize equality.

Equality and Custom Types
Recall default equality comparison behavior:

m Value types use value equality.
m Reference types use referential equality.

Further:

m A struct’s Equals method applies structural value equality by default (i.e., it compares
each field in the struct).

Sometimes it makes sense to override this behavior when writing a type. There are two cases
for doing so:

= To change the meaning of equality
= To speed up equality comparisons for structs

Changing the meaning of equality

Changing the meaning of equality makes sense when the default behavior of == and Equals is
unnatural for your type and is not what a consumer would expect. An example is
DateTimeOffset, a struct with two private fields: a UTC pateTime and a numeric integer
offset. If you were writing this type, you’d probably want to ensure that equality comparisons
considered only the UTC pateTime field and not the offset field. Another example is numeric
types that support Nan values such as f1oat and double. If you were implementing such types
yourself, you’d want to ensure that Nan-comparison logic was supported in equality
comparisons.

With classes, it’s sometimes more natural to offer value equality as the default instead of
referential equality. This is often the case with small classes that hold a simple piece of data
—such as system.Uri (Or System.String).

Speeding up equality comparisons with structs

The default structural equality comparison algorithm for structs is relatively slow. Taking
over this process by overriding Equals can improve performance by a factor of five.
Overloading the == operator and implementing TEquatable<T> allows unboxed equality
comparisons, and this can speed things up by a factor of five again.

NOTE

Overriding equality semantics for reference types doesn’t benefit performance. The default
algorithm for referential equality comparison is already very fast because it simply compares
two 32- or 64-bit references.

There’s actually another, rather peculiar case for customizing equality, and that’s to improve a
struct’s hashing algorithm for better performance in a hashtable. This comes of the fact that
equality comparison and hashing are joined at the hip. We’ll examine hashing in a moment.

How to override equality semantics

Here is a summary of the steps:

1. Override GetHashCode () and Equals ().
2. (Optionally) overload != and ==.
3. (Optionally) implement 1Equatable<T>.

Overriding GetHashCode

It might seem odd that system.object — with its small footprint of members — defines a
method with a specialized and narrow purpose. GetHashCode is a virtual method in object
that fits this description — it exists primarily for the benefit of just the following two types:

System.Collections.Hashtable
System.Collections.Generic.Dictionary<TKey, TValue>

These are hashtables — collections where each element has a key used for storage and
retrieval. A hashtable applies a very specific strategy for efficiently allocating elements based
on their key. This requires that each key have an 1nt 32 number, or hash code. The hash code
need not be unique for each key, but should be as varied as possible for good hashtable
performance. Hashtables are considered important enough that Get Hashcode is defined in
System.Object — so that every type can emit a hash code.

NOTE

We describe hashtables in detail in “Dictionaries” in Chapter 7.

Both reference and value types have default implementations of GetHashCode, meaning you
don’t need to override this method — unless you override Equals. (And if you override
GetHashCode, you will almost certainly want to also override Equals.)

Here are the other rules for overriding object.GetHashCode:

» [t must return the same value on two objects for which Equa1s returns true (hence,
GetHashCode and Equals are overridden together).

= [t must not throw exceptions.

= [t must return the same value if called repeatedly on the same object (unless the object has
changed).

For maximum performance in hashtables, GetHashcode should be written so as to minimize the
likelihood of two different values returning the same hashcode. This gives rise to the third
reason for overriding Equals and GetHashCode on structs, which is to provide a more
efficient hashing algorithm than the default. The default implementation for structs is at the
discretion of the runtime and may be based on every field in the struct.

In contrast, the default GetHashCcode implementation for c/asses is based on an internal object
token, which is unique for each instance in the CLR’s current implementation.

WARNING

If an object’s hashcode changes after it’s been added as a key to a dictionary, the object will
no longer be accessible in the dictionary. You can preempt this by basing hashcode
calculations on immutable fields.

A complete example illustrating how to override GetHashcode is listed shortly.

Overriding Equals
The axioms for object.Equals are as follows:

= An object cannot equal nu11 (unless it’s a nullable type).

Equality is reflexive (an object equals itself).

Equality is commutative (if a.Equals (b), thenb.Equals (a)).

Equality is transitive (if a.Equals (b) and b.Equals (c), then a.Equals (c)).

Equality operations are repeatable and reliable (they don’t throw exceptions).

Overloading == and !=

In addition to overriding Equals, you can optionally overload the equality and inequality
operators. This is nearly always done with structs, because the consequence of not doing so is
that the == and ! = operators will simply not work on your type.

With classes, there are two ways to proceed:

m [eave == and ! = alone — so that they apply referential equality.
m Overload == and != in line with Equals.

The first approach is most common with custom types — especially mutable types. It ensures
that your type follows the expectation that == and ! = should exhibit referential equality with
reference types and this avoids confusing consumers. We saw an example earlier:

var sbl = new StringBuilder ("foo");

var sb2 = new StringBuilder ("foo");

Console.WriteLine (sbl == sb2); // False (referential equality)
Console.WriteLine (sbl.Equals (sb2)); // True (value equality)

The second approach makes sense with types for which a consumer would never want
referential equality. These are typically immutable — such as the string and system.Uri
classes — and are sometimes good candidates for structs.

NOTE

Although it’s possible to overload != such that it means something other than ! (==), this is
almost never done in practice, except in cases such as comparing float.Nan.

Imple menting IEquatable<T>

For completeness, it’s also good to implement 1Equatable<T> when overriding Equals. Its
results should always match those of the overridden object’s Equa1s method. Implementing
IEquatable<T> comes at no programming cost if you structure your Equals method
implementation, as in the following example.

An example: The Area struct

Imagine we need a struct to represent an area whose width and height are interchangeable. In
other words, 5 x 10 is equal to 10 x 5. (Such a type would be suitable in an algorithm that
arranges rectangular shapes.)

Here’s the complete code:

public struct Area : IEquatable <Area>
{

public readonly int Measurel;
public readonly int Measure2;

public Area (int ml, int m2)
{
Measurel = Math.Min (ml, m2);
Measure2 = Math.Max (ml, m2);
}

public override bool Equals (object other)

{

if (! (other is Area)) return false;
return Equals ((Area) other); // Calls method below

}

public bool Equals (Area other) // Implements IEquatable<Area>
=> Measurel == other.Measurel && Measure2 == other.Measure2;

public override int GetHashCode ()

=> Measure2 * 31 + Measurel; // 31 = some prime number
public static bool operator == (Area al, Area a2) => al.Equals (a2);
public static bool operator != (Area al, Area a2) => l!al.Equals (a2);
}
NOTE

Here’s another way to implement the Equals method, leveraging nullable types:

Area? otherArea = other as Area?;
return otherArea.HasValue && Equals (otherArea.Value);

In implementing GetHashcode, we’ve helped to improve the likelihood of uniqueness by
multiplying the larger measure by some prime number (ignoring any overflow) before adding
the two together. When there are more than two fields, the following pattern, suggested by Josh
Bloch, gives good results while being performant:

int hash = 17; // 17 = some prime number
hash = hash * 31 + fieldl.GetHashCode () ; // 31 = another prime number
hash = hash * 31 + field2.GetHashCode () ;

hash = hash * 31 + field3.GetHashCode () ;

return hash;

(See http://albahari.com/hashprimes for a link to a discussion on primes and hashcodes.)

Here’s a demo of the area struct:

Area al = new Area (5, 10);
Area a2 = new Area (10, 5);
Console.WriteLine (al.Equals (a2)); // True
Console.WriteLine (al == a2); // True

Pluggable equality comparers

If you want a type to take on different equality semantics just for a particular scenario, you can
use a pluggable TEqualityComparer. This is particularly useful in conjunction with the
standard collection classes, and we describe it in the following chapter, in “Plugging in
Equality and Order”.

Order Comparison

As well as defining standard protocols for equality, C# and .NET define standard protocols for
determining the order of one object relative to another. The basic protocols are:

u TheIComparableinwfﬁceS(IComparableandIComparable<T>)
» The > and < operators

The 1comparable interfaces are used by general-purpose sorting algorithms. In the following
example, the static Array.sort method works because system.string implements the
IComparable interfaces:

string[] colors = { "Green", "Red", "Blue" };
Array.Sort (colors);
foreach (string c in colors) Console.Write (c + " "); // Blue Green Red

The < and > operators are more specialized, and they are intended mostly for numeric types.
Because they are statically resolved, they can translate to highly efficient bytecode, suitable for
computationally intensive algorithms.

The .NET Framework also provides pluggable ordering protocols, via the 1comparer
interfaces. We describe these in the final section of Chapter 7.

IComparable

The 1comparable interfaces are defined as follows:

public interface IComparable { int CompareTo (object other); }
public interface IComparable<in T> { int CompareTo (T other); }

The two interfaces represent the same functionality. With value types, the generic type-safe
interface is faster than the nongeneric interface. In both cases, the compareTo method works as
follows:

m [fa comes after b, a.CompareTo (b) returns a positive number.

http://albahari.com/hashprimes

m [fa is the same as b, a.CompareTo (b) returns o.

m [fa comes before b, a.CompareTo (b) returns a negative number.

For example:
Console.WriteLine ("Beck".CompareTo ("Anne")); // 1
Console.WriteLine ("Beck".CompareTo ("Beck")):; // 0
Console.WriteLine ("Beck".CompareTo ("Chris")); // -1

Most of the base types implement both Tcomparabile interfaces. These interfaces are also
sometimes implemented when writing custom types. An example is given shortly.

IComparable versus Equals

Consider a type that both overrides Equals and implements the 1comparable interfaces.
You’d expect that when Equals returns true, CompareTo should return 0. And you’d be right.
But here’s the catch:

» When Equals returns false CompareTo canreturn what it likes (as long as it’s internally
consistent)!

In other words, equality can be “fussier” than comparison, but not vice versa (violate this and
sorting algorithms will break). So, compareTo can say “All objects are equal” while Equals
says “But some are more equal than others!”

A great example of this is System.String. String’s Equals method and == operator use

ordinal comparison, which compares the Unicode point values of each character. Its

compareTo method, however, uses a less fussy culture-dependent comparison. On most
[2 23]

computers, for instance, the strings “0” and “0” are different according to Equals, but the same
according to CompareTo.

In Chapter 7, we discuss the pluggable ordering protocol, 1comparer, which allows you to
specify an alternative ordering algorithm when sorting or instantiating a sorted collection. A
custom Icomparer can further extend the gap between compareTo and Equals — a case-
insensitive string comparer, for instance, will return 0 when comparing "A" and "a". The
reverse rule still applies, however: compareTo can never be fussier than Equals.

NOTE

When implementing the 1comparable interfaces in a custom type, you can avoid running afoul
of this rule by writing the first line of compareTo as follows:

if (Equals (other)) return 0;

After that, it can return what it likes, as long as it’s consistent!

<and >

Some types define < and > operators. For instance:

bool after2010 = DateTime.Now > new DateTime (2010, 1, 1);

You can expect the < and > operators, when implemented, to be functionally consistent with the
Icomparable interfaces. This is standard practice across the .NET Framework.

It’s also standard practice to implement the T1comparable interfaces whenever < and > are
overloaded, although the reverse is not true. In fact, most .NET types that implement
IComparable do not overload < and >. This differs from the situation with equality, where it’s
normal to overload == when overriding Equals.

Typically, > and < are overloaded only when:

= A type has a strong intrinsic concept of “greater than” and “less than” (versus
IComparable’s broader concepts of “comes before” and “comes after”).

m There is only one way or context in which to perform the comparison.
» The result is invariant across cultures.

system.String doesn’t satisfy the last point: the results of string comparisons can vary
according to language. Hence, string doesn’t support the > and < operators:

bool error = "Beck" > "Anne"; // Compile-time error

Implementing the IComparable Interfaces

In the following struct, representing a musical note, we implement the 1comparable interfaces,
as well as overloading the < and > operators. For completeness, we also override
Equals/GetHashCode and overload == and !=.

public struct Note : IComparable<Note>, IEquatable<Note>, IComparable
{

int semitonesFromA;
public int SemitonesFromA { get { return semitonesFromA; } }

public Note (int semitonesFromA)

{

_semitonesFromA = semitonesFromA;

}

public int CompareTo (Note other) // Generic IComparable<T>

{
if (Equals (other)) return 0; // Fail-safe check
return _semitonesFromA.CompareTo (other._semitonesFromA);

}

int IComparable.CompareTo (object other) // Nongeneric IComparable
{
if (! (other is Note))
throw new InvalidOperationException ("CompareTo: Not a note");
return CompareTo ((Note) other);

}

public static bool operator < (Note nl, Note n2)
=> nl.CompareTo (n2) < 0;

public static bool operator > (Note nl, Note n2)
=> nl.CompareTo (n2) > 0;

public bool Equals (Note other) // for IEquatable<Note>
=> semitonesFromA == other. semitonesFromA;

public override bool Equals (object other)

{

if (! (other is Note)) return false;

return Equals ((Note) other);
}

public override int GetHashCode () => semitonesFromA.GetHashCode () ;
public static bool operator == (Note nl, Note n2) => nl.Equals (n2);
public static bool operator != (Note nl, Note n2) => ! (nl == n2);
}
Utility Classes
Console

The static console class handles standard input/output for console-based applications. In a
command-line (Console) application, the input comes from the keyboard via read, ReadKey,
and ReadLine, and the output goes to the text window viaWwrite and WriteLine. You can
control the window’s position and dimensions with the properties windowLeft, WindowTop,
WindowHeight, and WindowwWidth. You can also change the Backgroundcolor and
ForegroundColor properties and manipulate the cursor with the cursorLeft, CursorTop,
and cursorsize properties:

Console.WindowWidth = Console.LargestWindowWidth;
Console.ForegroundColor = ConsoleColor.Green;

Console.Write ("test... 50%");
Console.CursorlLeft -= 3;
Console.Write ("90%"); // test... 90%

The write and writeLine methods are overloaded to accept a composite format string (see
String.Format in “String and Text Handling”). However, neither method accepts a format
provider, so you’re stuck with cultureInfo.cCurrentculture. (The workaround, of course,
is to explicitly call string.Format.)

The console.out property returns a TextwWriter. Passing console.out to a method that
expects a TextwWriter is a useful way to get that method to write to the console for diagnostic
purposes.

You can also redirect the console’s input and output streams via the set1n and setout
methods:

// First save existing output writer:
System.IO.TextWriter oldOut = Console.Out;

// Redirect the console's output to a file:
using (System.IO.TextWriter w = System.IO.File.CreateText
("e:\\output.txt"))
{
Console.SetOut (w);
Console.WriteLine ("Hello world");

}

// Restore standard console output
Console.SetOut (oldOut);

// Open the output.txt file in Notepad:
System.Diagnostics.Process.Start ("e:\\output.txt");

In Chapter 15, we describe how streams and text writers work.

NOTE

When running WPF or Windows Forms applications under Visual Studio, the console’s
output is automatically redirected to Visual Studio’s output window (in debug mode). This
can make console.write useful for diagnostic purposes; although in most cases the pebug and
Trace classes in the system.Diagnostics namespace are more appropriate (see Chapter 13).

Environment

The static system.Environment class provides a range of useful properties:

Files and folders

CurrentDirectory, SystemDirectory, CommandLine

Computer and operating system

MachineName, ProcessorCount, OSVersion, NewLine

User logon

UserName, UserInteractive, UserDomainName
Diagnostics
TickCount, StackTrace, WorkingSet, Version

You can obtain additional folders by calling GetFolderPath; we describe this in “File and
Directory Operations” in Chapter 15.

You can access OS environment variables (what you see when you type “set” at the command
prompt) with the following three methods: GetEnvironmentvariable,

GetEnvironmentVariables,andSetEnvironmentVariable.

The Exitcode property lets you set the return code, for when your program is called froma
command or batch file, and the Fai1Fast method terminates a program immediately, without
performing cleanup.

The Environment class available to Windows Store apps offers just a limited number of
Hmnﬁmrs(ProcessorCount,NewLine,andFailFast)

Process
The process class in system.Diagnostics allows you to launch a new process.

The static Process.start method has a number of overloads; the simplest accepts a simple
filename with optional arguments:

Process.Start ("notepad.exe");
Process.Start ("notepad.exe", "e:\\file.txt");

You can also specify just a filename, and the registered program for its extension will be
launched:

Process.Start ("e:\\file.txt");

The most flexible overload accepts a ProcessstartInfo instance. With this, you can capture

and redirect the launched process’s input, output, and error output (if you set
UseShellExecute t0 false). The following captures the output of calling ipconfig:

ProcessStartInfo psi = new ProcessStartInfo

{
FileName = "cmd.exe",
Arguments = "/c ipconfig /all",
RedirectStandardOutput = true,
UseShellExecute = false

}i

Process p = Process.Start (psi);

string result = p.StandardOutput.ReadToEnd() ;

Console.WriteLine (result);

You can do the same to invoke the csc compiler, if you set Filename to the following:

psi.FileName = System.IO.Path.Combine (
System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory (),
"csc.exe");

If you don’t redirect output, Process.sStart executes the program in parallel to the caller. If
you want to wait for the new process to complete, you can call waitForExit onthe Process
object, with an optional timeout.

The process class also allows you to query and interact with other processes running on the
computer (see Chapter 13).

WARNING

For security reasons, the process class is not available to Windows Store apps, and you
cannot start arbitrary processes. Instead, you must use the windows.System.Launcher class to
“launch” a URI or file to which you have access, e.g.:

Launcher.LaunchUriAsync (new Uri ("http://albahari.com"));

var file = await KnownFolders.DocumentsLibrary
.GetFileAsync ("foo.txt");
Launcher.LaunchFileAsync (file);

This opens the URI or file, using whatever program is associated with the URI scheme or file
extension. Your program must be in the foreground for this to work.

AppContext

The system.appContext class is new to Framework 4.6. It provides a global string-keyed
dictionary of Boolean values and is intended to offer library writers a standard mechanism for
allowing consumers to switch new features on or off. This untyped approach makes sense with
experimental features that you want to keep undocumented to the majority of users.

The consumer of a library requests that a feature be enabled as follows:

AppContext.SetSwitch ("MyLibrary.SomeBreakingChange", true);

Code inside that library can then check for that switch as follows:

bool isDefined, switchValue;

isDefined = AppContext.TryGetSwitch ("MyLibrary.SomeBreakingChange",
out switchvalue) ;

TryGetSwitch returns false if the switch is undefined; this lets you distinguish an undefined
switch from one whose value is set to false, should this be necessary.

NOTE

Ironically, the design of TryGetswitch illustrates how not to write APIs. The out parameter is
unnecessary, and the method should instead return a nullable boo1 whose value is true, false,
or null for undefined. This would then enable the following use:

bool switchValue = AppContext.GetSwitch ("...") ?2? false;

Chapter 7. Collections

The .NET Framework provides a standard set of types for storing and managing collections of
objects. These include resizable lists, linked lists, sorted and unsorted dictionaries, as well as
arrays. Of these, only arrays form part of the C# language; the remaining collections are just
classes you instantiate like any other.

The types in the Framework for collections can be divided into the following categories:

» Interfaces that define standard collection protocols
» Ready-to-use collection classes (lists, dictionaries, etc.)
» Base classes for writing application-specific collections

This chapter covers each of these categories, with an additional section on the types used in
determining element equality and order.

The collection namespaces are as follows:

Namespace Contains

System.Collections Nongeneric collection classes and interfaces
System.Collections.Specialized Strongly typed nongeneric collection classes
System.Collections.Generic Generic collection classes and interfaces
System.Collections.ObjectModel Proxies and bases for custom collections

System.Collections.Concurrent Thread-safe collections (see Chapter 23)

Enumeration

In computing, there are many different kinds of collections ranging from simple data structures,
such as arrays or linked lists, to more complex ones, such as red/black trees and hashtables.
Although the internal implementation and external characteristics of these data structures vary
widely, the ability to traverse the contents of the collection is an almost universal need. The
Framework supports this need via a pair of interfaces (IEnumerable, TEnumerator, and their
generic counterparts) that allow different data structures to expose a common traversal APL
These are part of a larger set of collection interfaces illustrated in Figure 7-1.

[Enumerator O O |Enumerator<T>

IEnumerable Q3 IEnumerable<T> Enumeration only

Nongeneric ; Generic

*ICollection<T> has added functionality

Figure 7-1. Collection interfaces

IEnumerable and IEnumerator

The 1Enumerator interface defines the basic low-level protocol by which elements in a
collection are traversed — or enumerated — in a forward-only manner. Its declaration is as
follows:

public interface IEnumerator
{
bool MoveNext () ;
object Current { get; }
void Reset () ;

}

MoveNext advances the current element or “cursor” to the next position, returning false if
there are no more elements in the collection. current returns the element at the current
position (usually cast from object to a more specific type). MoveNext must be called before
retrieving the first element — this is to allow for an empty collection. The Reset method, if
implemented, moves back to the start, allowing the collection to be enumerated again. Reset
exists mainly for COM interop; calling it directly is generally avoided because it’s not
universally supported (and is unnecessary in that it’s usually just as easy to instantiate a new
enumerator).

Collections do not usually implement enumerators; instead, they provide enumerators, via the
interface IEnumerable:

public interface IEnumerable
{

IEnumerator GetEnumerator();

}

By defining a single method retuning an enumerator, TEnumerable provides flexibility in that
the iteration logic can be farmed off to another class. Moreover, it means that several

consumers can enumerate the collection at once without interfering with each other.
IEnumerable can be thought of as “IEnumeratorProvider,” and it is the most basic interface
that collection classes implement.

The following example illustrates low-level use of TEnumerable and TEnumerator:

string s = "Hello";

// Because string implements IEnumerable, we can call GetEnumerator () :
IEnumerator rator = s.GetEnumerator();

while (rator.MoveNext ())

{
char ¢ = (char) rator.Current;
Console.Write (c + ".");

}

// Output: H.e.l.l.o.

However, it’s rare to call methods on enumerators directly in this manner, because C# provides
a syntactic shortcut: the foreach statement. Here’s the same example rewritten using foreach:

string s = "Hello"; // The String class implements IEnumerable

foreach (char ¢ in s)
Console.Write (c + ".");

IEnumerable<T> and IEnumerator<T>

IEnumerator and IEnumerable are nearly always implemented in conjunction with their
extended generic versions:

public interface IEnumerator<T> : IEnumerator, IDisposable
{

T Current { get; }
}

public interface IEnumerable<T> : IEnumerable
{
IEnumerator<T> GetEnumerator () ;

}

By defining a typed version of current and GetEnumerator, these interfaces strengthen static
type safety, avoid the overhead of boxing with value-type elements, and are more convenient to
the consumer. Arrays automatically implement IEnumerable<T> (Where T is the member type
of the array).

Thanks to the improved static type safety, calling the following method with an array of
characters will generate a compile-time error:

void Test (IEnumerable<int> numbers) { ... }

It’s a standard practice for collection classes to publicly expose 1Enumerable<T>, while
“hiding” the nongeneric TEnumerable through explicit interface implementation. This is so that
if you directly call GetEnumerator (), you get back the type-safe generic TEnumerator<T>.
There are times, though, when this rule is broken for reasons of backward compatibility
(generics did not exist prior to C# 2.0). A good example is arrays — these must return the
nongeneric (the nice way of putting it is “classic”) IEnumerator to avoid breaking earlier

code. In order to get a generic TEnumerator<T>, you must cast to expose the explicit interface:

r 2, 3}

int[] data = { 1
(IEnumerable <int>)data) .GetEnumerator () ;

var rator = (

Fortunately, you rarely need to write this sort of code, thanks to the foreach statement.

IEnumerable<T> and IDisposable

IEnumerator<T> inherits from IDisposable. This allows enumerators to hold references to
resources such as database connections — and ensure that those resources are released when
enumeration is complete (or abandoned partway through). The foreach statement recognizes
this detail and translates this:

foreach (var element in somethingEnumerable) { ... }

into the logical equivalent of this:

using (var rator = somethingEnumerable.GetEnumerator ())
while (rator.MoveNext ())
{

var element = rator.Current;

The using block ensures disposal — more on 1pisposable in Chapter 12.

WHEN TO USE THE NONGENERIC INTERFACES

Given the extra type safety of the generic collection interfaces such as 1Enumerable<T>, the question
arises: do you ever need to use the nongeneric TEnumerable (Or ICollection OF IList)?

In the case of TEnumerable, you must implement this interface in conjunction with IEnumerable<T>
— because the latter derives from the former. However, it’s very rare that you actually implement
these interfaces from scratch: in nearly all cases, you can take the higher-level approach of using
iterator methods, collection<T>, and LINQ.

So, what about as a consumer? In nearly all cases, you can manage entirely with the generic
interfaces. The nongeneric interfaces are still occasionally useful, though, in their ability to provide
type unification for collections across all element types. The following method, for instance, counts
elements in any collection recursively:

public static int Count (IEnumerable e)

{
int count = 0;
foreach (object element in e)

{
var subCollection = element as IEnumerable;
if (subCollection != null)
count += Count (subCollection);
else
count++;

}

return count;

Because C# offers covariance with generic interfaces, it might seem valid to have this method
instead accept IEnumerable<object>. This, however, would fail with value-type elements and with
legacy collections that don’t implement IEnumerable<T> — an example is ControlCollection in
Windows Forms.

(On a slight tangent, you might have noticed a potential bug in our example: cyclic references will
cause infinite recursion and crash the method. We could fix this most easily with the use of a
Hashset [see “HashSet<T> and SortedSet<T>"].)

Implementing the Enumeration Interfaces

You might want to implement TEnumerable Or TEnumerable<T> for one or more of the
following reasons:

m To support the foreach statement

= To interoperate with anything expecting a standard collection

= To meet the requirements of a more sophisticated collection interface
» To support collection initializers

To implement TEnumerable/IEnumerable<T>, you must provide an enumerator. You can do
this in one of three ways:

m [fthe class is “wrapping” another collection, by returning the wrapped collection’s
enumerator

® Via an iterator using yield return

= By instantiating your own IEnumerator/IEnumerator<T> implementation

NOTE

You can also subclass an existing collection: collection<T> is designed just for this purpose
(see “Customizable Collections and Proxies™). Yet another approach is to use the LINQ
query operators that we’ll cover in the next chapter.

Returning another collection’s enumerator is just a matter of calling GetEnumerator on the
inner collection. However, this is viable only in the simplest scenarios, where the items in the
inner collection are exactly what are required. A more flexible approach is to write an iterator,
using C#’s yield return statement. An iterator is a C# language feature that assists in
writing collections