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Preface

C# 7.0 represents the sixth major update to Microsoft’s flagship programming language,
positioning C# as a language with unusual flexibility and breadth. At one end, it offers high-
level abstractions such as query expressions and asynchronous continuations, while at the other
end, it allows low-level efficiency through constructs such as custom value types and optional
pointers.
The price of this growth is that there’s more than ever to learn. Although tools such as
Microsoft’s IntelliSense — and online references — are excellent in helping you on the job,
they presume an existing map of conceptual knowledge. This book provides exactly that map of
knowledge in a concise and unified style — free of clutter and long introductions.
Like the past four editions, C# 7.0 in a Nutshell is organized around concepts and use cases,
making it friendly both to sequential reading and to random browsing. It also plumbs significant
depths while assuming only basic background knowledge — making it accessible to
intermediate as well as advanced readers.
This book covers C#, the CLR, and the core Framework assemblies. We’ve chosen this focus
to allow space for difficult topics such as concurrency, security, and application domains —
without compromising depth or readability. Features new to C# 6 and C# 7 and the associated
Framework are flagged so that you can also use this book as a C# 5 and C# 6 reference.

Intended Audience
This book targets intermediate to advanced audiences. No prior knowledge of C# is required,
but some general programming experience is necessary. For the beginner, this book
complements, rather than replaces, a tutorial-style introduction to programming.
This book is an ideal companion to any of the vast array of books that focus on an applied
technology such as ASP.NET, WPF, UWP, or WCF. The areas of the language and .NET
Framework that such books omit, C# 7.0 in a Nutshell covers in detail — and vice versa.
If you’re looking for a book that skims every .NET Framework technology, this is not for you.
This book is also unsuitable if you want to learn about APIs specific to mobile device
development.



How This Book Is Organized
The first three chapters after the introduction concentrate purely on C#, starting with the basics
of syntax, types, and variables, and finishing with advanced topics such as unsafe code and
preprocessor directives. If you’re new to the language, you should read these chapters
sequentially.
The remaining chapters cover the core .NET Framework, including such topics as LINQ, XML,
collections, concurrency, I/O and networking, memory management, reflection, dynamic
programming, attributes, security, application domains, and native interoperability. You can
read most of these chapters randomly, except for Chapters 6 and 7, which lay a foundation for
subsequent topics. The three chapters on LINQ are also best read in sequence, and some
chapters assume some knowledge of concurrency, which we cover in Chapter 14.

What You Need to Use This Book
The examples in this book require a C# 7.0 compiler and Microsoft .NET Framework 4.6/4.7.
You will also find Microsoft’s .NET documentation useful to look up individual types and
members (which is available online).
While it’s possible to write source code in Notepad and invoke the compiler from the
command line, you’ll be much more productive with a code scratchpad for instantly testing
code snippets, plus an Integrated Development Environment (IDE) for producing executables
and libraries.
For a code scratchpad, download LINQPad 5 from www.linqpad.net (free). LINQPad fully
supports C# 7.0 and is maintained by one of the authors.
For an IDE, download Microsoft Visual Studio 2017: any edition is suitable for what’s taught
in this book, except the free express edition.

NOTE
All code listings for Chapters 2 through 10, plus the chapters on concurrency, parallel
programming, and dynamic programming are available as interactive (editable) LINQPad
samples. You can download the whole lot in a single click: go to LINQPad’s Samples tab at
the bottom left, click “Download more samples,” and choose “C# 7.0 in a Nutshell.”

Conventions Used in This Book
The book uses basic UML notation to illustrate relationships between types, as shown in
Figure P-1. A slanted rectangle means an abstract class; a circle means an interface. A line
with a hollow triangle denotes inheritance, with the triangle pointing to the base type. A line
with an arrow denotes a one-way association; a line without an arrow denotes a two-way
association.

http://www.linqpad.net


Figure P-1. Sample diagram

The following typographical conventions are used in this book:

Italic
Indicates new terms, URIs, filenames, and directories

Constant width

Indicates C# code, keywords and identifiers, and program output

Constant width bold

Shows a highlighted section of code

Constant width italic

Shows text that should be replaced with user-supplied values

NOTE
This icon signifies a tip, suggestion, or general note.



WARNING
This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.
We appreciate, but do not require, attribution. For example: “C# 7.0 in a Nutshell, by Joseph
Albahari and Ben Albahari (O’Reilly) Copyright 2018, Joseph Albahari, Ben Albahari, 978-1-
491-98765-0.”
If you feel your use of code examples falls outside fair use or the permission given here, feel
free to contact us at permissions@oreilly.com.

O’Reilly Safari
NOTE

Safari (formerly Safari Books Online) is a membership-based training and reference platform
for enterprise, government, educators, and individuals.
Members have access to thousands of books, training videos, Learning Paths, interactive
tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard
Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress,
Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.
For more information, please visit http://oreilly.com/safari.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari


707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at: http://bit.ly/c-sharp7_nutshell.
Code listings and additional resources are provided at: http://www.albahari.com/nutshell/.
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com.
For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our website at: http://www.oreilly.com.
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Chapter 1. Introducing C# and the .NET Framework

C# is a general-purpose, type-safe, object-oriented programming language. The goal of the
language is programmer productivity. To this end, C# balances simplicity, expressiveness, and
performance. The chief architect of the language since its first version is Anders Hejlsberg
(creator of Turbo Pascal and architect of Delphi). The C# language is platform-neutral and
works with a range of platform-specific compilers and frameworks, most notably the Microsoft
.NET Framework for Windows.

Object Orientation
C# is a rich implementation of the object-orientation paradigm, which includes encapsulation,
inheritance, and polymorphism. Encapsulation means creating a boundary around an object, to
separate its external (public) behavior from its internal (private) implementation details. The
distinctive features of C# from an object-oriented perspective are:

Unified type system
The fundamental building block in C# is an encapsulated unit of data and functions called
a type. C# has a unified type system, where all types ultimately share a common base
type. This means that all types, whether they represent business objects or are primitive
types such as numbers, share the same basic functionality. For example, an instance of any
type can be converted to a string by calling its ToString method.

Classes and interfaces
In a traditional object-oriented paradigm, the only kind of type is a class. In C#, there are
several other kinds of types, one of which is an interface. An interface is like a class,
except that it only describes members. The implementation for those members comes from
types that implement the interface. Interfaces are particularly useful in scenarios where
multiple inheritance is required (unlike languages such as C++ and Eiffel, C# does not
support multiple inheritance of classes).

Properties, methods, and events
In the pure object-oriented paradigm, all functions are methods (this is the case in
Smalltalk). In C#, methods are only one kind of function member, which also includes
properties and events (there are others, too). Properties are function members that
encapsulate a piece of an object’s state, such as a button’s color or a label’s text. Events
are function members that simplify acting on object state changes.

While C# is primarily an object-oriented language, it also borrows from the functional
programming paradigm. Specifically:

Functions can be treated as values
Through the use of delegates, C# allows functions to be passed as values to and from
other functions.

C# supports patterns for purity
Core to functional programming is avoiding the use of variables whose values change, in



favor of declarative patterns. C# has key features to help with those patterns, including the
ability to write unnamed functions on the fly that “capture” variables (lambda
expressions), and the ability to perform list or reactive programming via query
expressions. C# also makes it easy to define read-only fields and properties for writing
immutable (read-only) types.

Type Safety
C# is primarily a type-safe language, meaning that instances of types can interact only through
protocols they define, thereby ensuring each type’s internal consistency. For instance, C#
prevents you from interacting with a string type as though it were an integer type.
More specifically, C# supports static typing, meaning that the language enforces type safety at
compile time. This is in addition to type safety being enforced at runtime.
Static typing eliminates a large class of errors before a program is even run. It shifts the burden
away from runtime unit tests onto the compiler to verify that all the types in a program fit
together correctly. This makes large programs much easier to manage, more predictable, and
more robust. Furthermore, static typing allows tools such as IntelliSense in Visual Studio to
help you write a program, since it knows for a given variable what type it is, and hence what
methods you can call on that variable.

NOTE
C# also allows parts of your code to be dynamically typed via the dynamic keyword.
However, C# remains a predominantly statically typed language.

C# is also called a strongly typed language because its type rules (whether enforced statically
or at runtime) are very strict. For instance, you cannot call a function that’s designed to accept
an integer with a floating-point number, unless you first explicitly convert the floating-point
number to an integer. This helps prevent mistakes.
Strong typing also plays a role in enabling C# code to run in a sandbox — an environment
where every aspect of security is controlled by the host. In a sandbox, it is important that you
cannot arbitrarily corrupt the state of an object by bypassing its type rules.

Memory Management
C# relies on the runtime to perform automatic memory management. The Common Language
Runtime has a garbage collector that executes as part of your program, reclaiming memory for
objects that are no longer referenced. This frees programmers from explicitly deallocating the
memory for an object, eliminating the problem of incorrect pointers encountered in languages
such as C++.
C# does not eliminate pointers: it merely makes them unnecessary for most programming tasks.
For performance-critical hotspots and interoperability, pointers and explicit memory allocation
is permitted in blocks that are marked unsafe.



Platform Support
Historically, C# was used almost entirely for writing code to run on Windows platforms.
Recently, however, Microsoft and other companies have invested in other platforms, including
Linux, macOS, iOS, and Android. Xamarin™ allows cross-platform C# development for
mobile applications, and Portable Class Libraries are becoming increasingly widespread.
Microsoft’s ASP.NET Core is a cross-platform lightweight web hosting framework that can run
either on the .NET Framework or on .NET Core, an open source cross-platform runtime.

C# and the CLR
C# depends on a runtime equipped with a host of features such as automatic memory
management and exception handling. At the core of the Microsoft .NET Framework is the
Common Language Runtime (CLR), which provides these runtime features. (The .NET Core
and Xamarin frameworks provide similar runtimes.) The CLR is language-neutral, allowing
developers to build applications in multiple languages (e.g., C#, F#, Visual Basic .NET, and
Managed C++).
C# is one of several managed languages that get compiled into managed code. Managed code
is represented in Intermediate Language or IL. The CLR converts the IL into the native code
of the machine, such as X86 or X64, usually just prior to execution. This is referred to as Just-
In-Time (JIT) compilation. Ahead-of-time compilation is also available to improve startup
time with large assemblies or resource-constrained devices (and to satisfy iOS app store rules
when developing with Xamarin).
The container for managed code is called an assembly or portable executable. An assembly
can be an executable file (.exe) or a library (.dll), and contains not only IL, but type
information (metadata). The presence of metadata allows assemblies to reference types in
other assemblies without needing additional files.

NOTE
You can examine and disassemble the contents of an IL assembly with Microsoft’s ildasm
tool. And with tools such as ILSpy, dotPeek (JetBrains), or Reflector (Red Gate), you can go
further and decompile the IL to C#. Because IL is higher-level than native machine code, the
decompiler can do quite a good job of reconstructing the original C#.

A program can query its own metadata (reflection), and even generate new IL at runtime
(reflection.emit).

The CLR and .NET Framework
The .NET Framework consists of the CLR plus a vast set of libraries. The libraries consist of
core libraries (which this book is concerned with) and applied libraries, which depend on the
core libraries. Figure 1-1 is a visual overview of those libraries (and also serves as a
navigational aid to the book).



Figure 1-1. Topics covered in this book and the chapters in which they are found. Topics not covered
are shown outside the large circle.

NOTE
The core libraries are sometimes collectively called the Base Class Library (BCL). The entire
framework is called the Framework Class Library (FCL).

Other Frameworks
The Microsoft .NET Framework is the most expansive and mature framework, but runs only on
Microsoft Windows (desktop/server). Over the years, other frameworks have emerged to
support other platforms. There are currently three major players besides the .NET Framework,
all of which are currently owned by Microsoft:

Universal Windows Platform (UWP)
For writing Windows 10 Store Apps and for targeting Windows 10 devices (mobile,
XBox, Surface Hub, Hololens). Your app runs in a sandbox to lessen the threat of
malware, prohibiting operations such as reading or writing arbitrary files.



.NET Core with ASP.NET Core
An open source framework (originally based on a cut-down version of the .NET
Framework) for writing easily deployable Internet apps and micro-services that run on
Windows, macOS, and Linux. Unlike the .NET Framework, .NET Core can be packaged
with the web application and xcopy-deployed (self-contained deployment).

Xamarin
For writing mobile apps that target iOS, Android, and Windows Mobile. The Xamarin
company was purchased by Microsoft in 2016.

Table 1-1 compares the current platform support for each of the major frameworks.

Table 1-1. Platform support for the popular frameworks

Target operating system .NET Framework UWP .NET Core Xamarin

Windows 7/8 Yes  Yes  

Windows 10 desktop/server Yes Yes Yes  

Windows 10 devices  Yes  Yes

Linux   Yes  

macOS   Yes  

iOS (iPhone)    Yes

Android    Yes

The four major frameworks differ in the platforms they support, the libraries that sit on top, and
their intended uses. However, it’s fair to say that as of the release of .NET Core 2.0, they all
expose a similar core framework (BCL), which is the main focus of this book. It is even
possible to directly leverage this commonality by writing class libraries that work across all
four frameworks (see “.NET Standard 2.0” in Chapter 5).

NOTE
A nuance not shown in Table 1-1 is that UWP uses .NET Core under the covers, so
technically .NET Core does run on Windows 10 devices (albeit not for the purpose of
providing a framework for ASP.NET Core). It’s likely that we’ll see more uses for .NET
Core 2 in the future.

Legacy and Niche Frameworks
The following frameworks are still available to support older platforms:

Windows Runtime for Windows 8/8.1 (now UWP)

Windows Phone 7/8 (now UWP)

Microsoft XNA for game development (now UWP)

Silverlight (no longer actively developed since the rise of HTML5 and JavaScript)

.NET Core 1.x (the predecessor to .NET Core 2.0, with significantly reduced functionality)



There are also a couple of niche frameworks worth mentioning:
The .NET Micro Framework is for running .NET code on highly resource-constrained
embedded devices (under 1 MB).

Mono, the open source framework upon which Xamarin sits, also has libraries to develop
cross-platform desktop applications on Linux, macOS, and Windows. Not all features are
supported, or work fully.

It’s also possible to run managed code inside SQL Server. With SQL Server CLR integration,
you can write custom functions, stored procedures, and aggregations in C# and then call them
from SQL. This works in conjunction with the standard .NET Framework, but with a special
“hosted” CLR that enforces a sandbox to protect the integrity of the SQL Server process.

Windows Runtime
C# also interoperates with Windows Runtime (WinRT) technology. WinRT means two things:

A language-neutral object-oriented execution interface supported in Windows 8 and above

A set of libraries baked into Windows 8 and above that support the preceding interface

NOTE
Somewhat confusingly, the term “WinRT” has historically been used to mean two more
things:

The predecessor to UWP, i.e., the development platform for writing Store apps for
Windows 8/8.1, sometimes called “Metro” or “Modern”

The defunct mobile operating system for RISC-based tablets (“Windows RT”) that
Microsoft released in 2011

By execution interface, we mean a protocol for calling code that’s (potentially) written in
another language. Microsoft Windows has historically provided a primitive execution interface
in the form of low-level C-style function calls comprising the Win32 API.
WinRT is much richer. In part, it is an enhanced version of COM (Component Object Model)
that supports .NET, C++, and JavaScript. Unlike Win32, it’s object-oriented and has a
relatively rich type system. This means that referencing a WinRT library from C# feels much
like referencing a .NET library — you may not even be aware that you’re using WinRT.
The WinRT libraries in Windows 10 form an essential part of the UWP platform (UWP relies
on both WinRT and .NET Core libraries). If you’re targeting the standard .NET Framework
platform, referencing the Windows 10 WinRT libraries is optional, and can be useful if you
need to access Windows 10–specific features not otherwise covered in the .NET Framework.
The WinRT libraries in Windows 10 support the UWP user interface for writing immersive
touch-first applications. They also support mobile device-specific features such as sensors,
text messaging, and so on (the new functionality of Window 8, 8.1, and 10 has been exposed
through WinRT rather than Win32). WinRT libraries also provide file I/O tailored to work well
within the UWP sandbox.



What distinguishes WinRT from ordinary COM is that WinRT projects its libraries into a
multitude of languages, namely C#, VB, C++, and JavaScript, so that each language sees
WinRT types (almost) as though they were written especially for it. For example, WinRT will
adapt capitalization rules to suit the standards of the target language, and will even remap some
functions and interfaces. WinRT assemblies also ship with rich metadata in .winmd files,
which have the same format as .NET assembly files, allowing transparent consumption without
special ritual; this is why you might be unaware that you’re using WinRT rather than .NET
types, aside from namespace differences. Another clue is that WinRT types are subject to
COM-style restrictions; for instance, they offer limited support for inheritance and generics.
In C#, you can not only consume WinRT libraries, but also write your own (and call them from
a JavaScript application).

A Brief History of C#
The following is a reverse chronology of the new features in each C# version, for the benefit of
readers already familiar with an older version of the language.

What’s New in C# 7.0
(C# 7.0 ships with Visual Studio 2017.)

Numeric literal improvements
Numeric literals in C# 7 can include underscores to improve readability. These are called digit
separators and are ignored by the compiler:

int million = 1_000_000;

Binary literals can be specified with the 0b prefix:

var b = 0b1010_1011_1100_1101_1110_1111;

Out variables and discards
C# 7 makes it easier to call methods that contain out parameters. First, you can now declare
out variables on the fly:

bool successful = int.TryParse ("123", out int result);
Console.WriteLine (result);

And when calling a method with multiple out parameters, you can discard ones you’re
uninterested in with the underscore character:

SomeBigMethod (out _, out _, out _, out int x, out _, out _, out _);
Console.WriteLine (x);

Patterns
You can also introduce variables on the fly with the is operator. These are called pattern
variables (see “The is operator and pattern variables (C# 7)” in Chapter 3):

void Foo (object x)



{
  if (x is string s)
    Console.WriteLine (s.Length);
}

The switch statement also supports patterns, so you can switch on type as well as constants
(see “The switch statement with patterns (C# 7)” in Chapter 2). You can specify conditions
with a when clause, and also switch on the null value:

switch (x)
{
  case int i:
    Console.WriteLine ("It's an int!");
    break;
  case string s:
    Console.WriteLine (s.Length);   // We can use the s variable
    break;
  case bool b when b == true:        // Matches only when b is true
    Console.WriteLine ("True");
    break;
  case null:
    Console.WriteLine ("Nothing");
    break;
}

Local methods
A local method is a method declared inside another function (see “Local methods (C# 7)” in
Chapter 3):

void WriteCubes()
{
  Console.WriteLine (Cube (3));
  Console.WriteLine (Cube (4));
  Console.WriteLine (Cube (5));

  int Cube (int value) => value * value * value;
}

Local methods are visible only to the containing function, and can capture local variables in the
same way that lambda expressions do.

More expression-bodied members
C# 6 introduced the expression-bodied “fat-arrow” syntax for methods, read-only properties,
operators, and indexers. C# 7 extends this to constructors, read/write properties, and
finalizers:

public class Person
{
  string name;

  public Person (string name) => Name = name;

  public string Name
  {
    get => name;
    set => name = value ?? "";
  }

  ~Person () => Console.WriteLine ("finalize");
}



Deconstructors
C# 7 introduces the deconstructor pattern. Whereas a constructor typically takes a set of
values (as parameters) and assigns them to fields, a deconstructor does the reverse and assigns
fields back to a set of variables. We could write a deconstructor for the Person class in the
preceding example as follows (exception-handling aside):

public void Deconstruct (out string firstName, out string lastName)
{
  int spacePos = name.IndexOf (' ');
  firstName = name.Substring (0, spacePos);
  lastName = name.Substring (spacePos + 1);
}

Deconstructors are called with the following special syntax:

var joe = new Person ("Joe Bloggs");
var (first, last) = joe;          // Deconstruction
Console.WriteLine (first);        // Joe
Console.WriteLine (last);         // Bloggs

Tuples
Perhaps the most notable improvement to C# 7 is explicit tuple support (see “Tuples (C# 7)” in
Chapter 4). Tuples provide a simple way to store a set of related values:

var bob = ("Bob", 23);
Console.WriteLine (bob.Item1);   // Bob
Console.WriteLine (bob.Item2);   // 23

C#’s new tuples are syntactic sugar for using the System.ValueTuple<...> generic structs.
But thanks to compiler magic, tuple elements can be named:

var tuple = (Name:"Bob", Age:23);
Console.WriteLine (tuple.Name);     // Bob
Console.WriteLine (tuple.Age);      // 23

With tuples, functions can return multiple values without resorting to out parameters:

static (int row, int column) GetFilePosition() => (3, 10);

static void Main()
{
  var pos = GetFilePosition();
  Console.WriteLine (pos.row);      // 3
  Console.WriteLine (pos.column);   // 10
}

Tuples implicitly support the deconstruction pattern, so they can easily be deconstructed into
individual variables. We can rewrite the preceding Main method so that the tuple returned by
GetFilePosition is instead assigned to two local variables, row and column:

static void Main()
{
  (int row, int column) = GetFilePosition();   // Creates 2 local variables
  Console.WriteLine (row);      // 3 
  Console.WriteLine (column);   // 10
}



throw expressions
Prior to C# 7, throw was always a statement. Now it can also appear as an expression in
expression-bodied functions:

public string Foo() => throw new NotImplementedException();

A throw expression can also appear in a ternary conditional expression:

string Capitalize (string value) =>
  value == null ? throw new ArgumentException ("value") :
  value == "" ? "" :
  char.ToUpper (value[0]) + value.Substring (1);

Other improvements
C# 7 also includes a couple of features for specialized micro-optimization scenarios (see “Ref
Locals (C# 7)” and “Ref Returns (C# 7)” in Chapter 2), and the ability to declare asynchronous
methods with return types other than Task / Task<T>.

What’s New in C# 6.0
C# 6.0, which shipped with Visual Studio 2015, features a new-generation compiler,
completely written in C#. Known as project “Roslyn,” the new compiler exposes the entire
compilation pipeline via libraries, allowing you to perform code analysis on arbitrary source
code (see Chapter 27). The compiler itself is open source, and the source code is available at
github.com/dotnet/roslyn.
In addition, C# 6.0 features a number of minor, but significant enhancements, aimed primarily
at reducing code clutter.
The null-conditional (“Elvis”) operator (see “Null Operators”, Chapter 2) avoids having to
explicitly check for null before calling a method or accessing a type member. In the following
example, result evaluates to null instead of throwing a NullReferenceException:

System.Text.StringBuilder sb = null;
string result = sb?.ToString();      // result is null

Expression-bodied functions (see “Methods”, Chapter 3) allow methods, properties,
operators, and indexers that comprise a single expression to be written more tersely, in the
style of a lambda expression:

public int TimesTwo (int x) => x * 2;
public string SomeProperty => "Property value";

Property initializers (Chapter 3) let you assign an initial value to an automatic property:

public DateTime TimeCreated { get; set; } = DateTime.Now;

Initialized properties can also be read-only:

public DateTime TimeCreated { get; } = DateTime.Now;

Read-only properties can also be set in the constructor, making it easier to create immutable

http://github.com/dotnet/roslyn


(read-only) types.
Index initializers (Chapter 4) allow single-step initialization of any type that exposes an
indexer:

var dict = new Dictionary<int,string>()
{
  [3] = "three",
  [10] = "ten"
};

String interpolation (see “String Type”, Chapter 2) offers a succinct alternative to
string.Format:

string s = $"It is {DateTime.Now.DayOfWeek} today";

Exception filters (see “try Statements and Exceptions”, Chapter 4) let you apply a condition to
a catch block:

string html;
try
{
  html = new WebClient().DownloadString ("http://asef");
}
catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
  ...
}

The using static (see “Namespaces”, Chapter 2) directive lets you import all the static
members of a type, so that you can use those members unqualified:

using static System.Console;
...
WriteLine ("Hello, world");  // WriteLine instead of Console.WriteLine

The nameof (Chapter 3) operator returns the name of a variable, type, or other symbol as a
string. This avoids breaking code when you rename a symbol in Visual Studio:

int capacity = 123;
string x = nameof (capacity);   // x is "capacity"
string y = nameof (Uri.Host);   // y is "Host"

And finally, you’re now allowed to await inside catch and finally blocks.

What’s New in C# 5.0
C# 5.0’s big new feature was support for asynchronous functions via two new keywords,
async and await. Asynchronous functions enable asynchronous continuations, which make it
easier to write responsive and thread-safe rich-client applications. They also make it easy to
write highly concurrent and efficient I/O-bound applications that don’t tie up a thread resource
per operation.
We cover asynchronous functions in detail in Chapter 14.

What’s New in C# 4.0



The features new to C# 4.0 were:
Dynamic binding

Optional parameters and named arguments

Type variance with generic interfaces and delegates

COM interoperability improvements

Dynamic binding (Chapters 4 and 20) defers binding — the process of resolving types and
members — from compile time to runtime and is useful in scenarios that would otherwise
require complicated reflection code. Dynamic binding is also useful when interoperating with
dynamic languages and COM components.
Optional parameters (Chapter 2) allow functions to specify default parameter values so that
callers can omit arguments and named arguments allow a function caller to identify an
argument by name rather than position.
Type variance rules were relaxed in C# 4.0 (Chapters 3 and 4), such that type parameters in
generic interfaces and generic delegates can be marked as covariant or contravariant,
allowing more natural type conversions.
COM interoperability (Chapter 25) was enhanced in C# 4.0 in three ways. First, arguments
can be passed by reference without the ref keyword (particularly useful in conjunction with
optional parameters). Second, assemblies that contain COM interop types can be linked rather
than referenced. Linked interop types support type equivalence, avoiding the need for Primary
Interop Assemblies and putting an end to versioning and deployment headaches. Third,
functions that return COM-Variant types from linked interop types are mapped to dynamic
rather than object, eliminating the need for casting.

What’s New in C# 3.0
The features added to C# 3.0 were mostly centered on Language Integrated Query
capabilities or LINQ for short. LINQ enables queries to be written directly within a C#
program and checked statically for correctness, and query both local collections (such as lists
or XML documents) or remote data sources (such as a database). The C# 3.0 features added to
support LINQ comprised implicitly typed local variables, anonymous types, object initializers,
lambda expressions, extension methods, query expressions, and expression trees.
Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable type in a
declaration statement, allowing the compiler to infer it. This reduces clutter as well as
allowing anonymous types (Chapter 4), which are simple classes created on the fly that are
commonly used in the final output of LINQ queries. Arrays can also be implicitly typed
(Chapter 2).
Object initializers (Chapter 3) simplify object construction by allowing properties to be set
inline after the constructor call. Object initializers work with both named and anonymous types.
Lambda expressions (Chapter 4) are miniature functions created by the compiler on the fly, and
are particularly useful in “fluent” LINQ queries (Chapter 8).
Extension methods (Chapter 4) extend an existing type with new methods (without altering the
type’s definition), making static methods feel like instance methods. LINQ’s query operators



are implemented as extension methods.
Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ queries that can
be substantially simpler when working with multiple sequences or range variables.
Expression trees (Chapter 8) are miniature code DOMs (Document Object Models) that
describe lambda expressions assigned to the special type Expression<TDelegate>.
Expression trees make it possible for LINQ queries to execute remotely (e.g., on a database
server) because they can be introspected and translated at runtime (e.g., into a SQL statement).
C# 3.0 also added automatic properties and partial methods.
Automatic properties (Chapter 3) cut the work in writing properties that simply get/set a
private backing field by having the compiler do that work automatically. Partial methods
(Chapter 3) let an auto-generated partial class provide customizable hooks for manual
authoring that “melt away” if unused.

What’s New in C# 2.0
The big new features in C# 2 were generics (Chapter 3), nullable types (Chapter 4), iterators
(Chapter 4), and anonymous methods (the predecessor to lambda expressions). These features
paved the way for the introduction of LINQ in C# 3.
C# 2 also added support for partial classes, static classes, and a host of minor and
miscellaneous features such as the namespace alias qualifier, friend assemblies, and fixed-size
buffers.
The introduction of generics required a new CLR (CLR 2.0), because generics maintain full
type fidelity at runtime.



Chapter 2. C# Language Basics

In this chapter, we introduce the basics of the C# language.

NOTE
All programs and code snippets in this and the following two chapters are available as
interactive samples in LINQPad. Working through these samples in conjunction with the
book accelerates learning in that you can edit the samples and instantly see the results without
needing to set up projects and solutions in Visual Studio.
To download the samples, click the Samples tab in LINQPad, and then click “Download
more samples.” LINQPad is free — go to http://www.linqpad.net.

A First C# Program
Here is a program that multiplies 12 by 30 and prints the result, 360, to the screen. The double
forward slash indicates that the remainder of a line is a comment.

using System;                     // Importing namespace

class Test                        // Class declaration
{
  static void Main()              //   Method declaration
  {
    int x = 12 * 30;              //     Statement 1
    Console.WriteLine (x);        //     Statement 2
  }                               //   End of method
}                                 // End of class

At the heart of this program lie two statements:

int x = 12 * 30;
Console.WriteLine (x);

Statements in C# execute sequentially and are terminated by a semicolon (or a code block, as
we’ll see later). The first statement computes the expression 12 * 30 and stores the result in a
local variable, named x, which is an integer type. The second statement calls the Console
class’s WriteLine method, to print the variable x to a text window on the screen.
A method performs an action in a series of statements, called a statement block — a pair of
braces containing zero or more statements. We defined a single method named Main:

static void Main()
{
  ...
}

Writing higher-level functions that call upon lower-level functions simplifies a program. We
can refactor our program with a reusable method that multiplies an integer by 12 as follows:

using System;

http://www.linqpad.net


class Test
{
  static void Main()
  {
    Console.WriteLine (FeetToInches (30));      // 360
    Console.WriteLine (FeetToInches (100));     // 1200
  }

  static int FeetToInches (int feet)
  {
    int inches = feet * 12;
    return inches;
  }
}

A method can receive input data from the caller by specifying parameters and output data
back to the caller by specifying a return type. We defined a method called FeetToInches that
has a parameter for inputting feet, and a return type for outputting inches:

static int FeetToInches (int feet ) {...}

The literals 30 and 100 are the arguments passed to the FeetToInches method. The Main
method in our example has empty parentheses because it has no parameters, and is void
because it doesn’t return any value to its caller:

static void Main()

C# recognizes a method called Main as signaling the default entry point of execution. The Main
method may optionally return an integer (rather than void) in order to return a value to the
execution environment (where a nonzero value typically indicates an error). The Main method
can also optionally accept an array of strings as a parameter (that will be populated with any
arguments passed to the executable). For example:

static int Main (string[] args) {...}

NOTE
An array (such as string[]) represents a fixed number of elements of a particular type.
Arrays are specified by placing square brackets after the element type and are described in
“Arrays”.

Methods are one of several kinds of functions in C#. Another kind of function we used in our
example program was the * operator, which performs multiplication. There are also
constructors, properties, events, indexers, and finalizers.
In our example, the two methods are grouped into a class. A class groups function members and
data members to form an object-oriented building block. The Console class groups members
that handle command-line input/output functionality, such as the WriteLine method. Our Test
class groups two methods — the Main method and the FeetToInches method. A class is a kind
of type, which we will examine in “Type Basics”.
At the outermost level of a program, types are organized into namespaces. The using directive
was used to make the System namespace available to our application, to use the Console



class. We could define all our classes within the TestPrograms namespace, as follows:

using System;

namespace TestPrograms
{
  class Test  {...}
  class Test2 {...}
}

The .NET Framework is organized into nested namespaces. For example, this is the namespace
that contains types for handling text:

using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully qualified
name, which is the type name prefixed with its namespace, such as
System.Text.StringBuilder.

Compilation
The C# compiler compiles source code, specified as a set of files with the .cs extension, into
an assembly. An assembly is the unit of packaging and deployment in .NET. An assembly can
be either an application or a library. A normal console or Windows application has a Main
method and is an .exe file. A library is a .dll and is equivalent to an .exe without an entry point.
Its purpose is to be called upon (referenced) by an application or by other libraries. The .NET
Framework is a set of libraries.
The name of the C# compiler is csc.exe. You can either use an IDE such as Visual Studio to
compile, or call csc manually from the command line. (The compiler is also available as a
library; see Chapter 27.) To compile manually, first save a program to a file such as
MyFirstProgram.cs, and then go to the command line and invoke csc (located in
%ProgramFiles(X86)%\msbuild\14.0\bin) as follows:

csc MyFirstProgram.cs

This produces an application named MyFirstProgram.exe.

WARNING
Peculiarly, .NET Framework 4.6 and 4.7 still ship with the C# 5 compiler. To obtain the C# 7
command-line compiler, you must install Visual Studio 2017 or MSBuild 15.

To produce a library (.dll), do the following:

csc /target:library MyFirstProgram.cs

We explain assemblies in detail in Chapter 18.

Syntax



C# syntax is inspired by C and C++ syntax. In this section, we will describe C#’s elements of
syntax, using the following program:

using System;

class Test
{
  static void Main()
  {
    int x = 12 * 30;
    Console.WriteLine (x);
  }
}

Identifiers and Keywords
Identifiers are names that programmers choose for their classes, methods, variables, and so on.
These are the identifiers in our example program, in the order they appear:

System   Test   Main   x   Console   WriteLine

An identifier must be a whole word, essentially made up of Unicode characters starting with a
letter or underscore. C# identifiers are case-sensitive. By convention, parameters, local
variables, and private fields should be in camel case (e.g., myVariable), and all other
identifiers should be in Pascal case (e.g., MyMethod).
Keywords are names that mean something special to the compiler. These are the keywords in
our example program:

using   class   static   void   int

Most keywords are reserved, which means that you can’t use them as identifiers. Here is the
full list of C# reserved keywords:

abstract
as
base
bool
break
byte
case
catch
char
checked
class
const
continue
decimal
default
delegate

do
double
else
enum
event
explicit
extern
false
finally
fixed
float
for
foreach
goto
if
implicit

in
int
interface
internal
is
lock
long
namespace
new
null
object
operator
out
override
params
private

protected
public
readonly
ref
return
sbyte
sealed
short
sizeof
stackalloc
static
string
struct
switch
this
throw

true
try
typeof
uint
ulong
unchecked
unsafe
ushort
using
virtual
void
volatile
while

Avoiding conflicts
If you really want to use an identifier that clashes with a reserved keyword, you can do so by
qualifying it with the @ prefix. For instance:

class class  {...}      // Illegal
class @class {...}      // Legal

The @ symbol doesn’t form part of the identifier itself. So @myVariable is the same as



myVariable.

NOTE
The @ prefix can be useful when consuming libraries written in other .NET languages that
have different keywords.

Contextual keywords
Some keywords are contextual, meaning they can also be used as identifiers — without an @
symbol. These are:

add
ascending
async
await
by
descending

dynamic
equals
from
get
global
group

in
into
join
let
nameof
on

orderby
partial
remove
select
set
value

var
when
where
yield

With contextual keywords, ambiguity cannot arise within the context in which they are used.

Literals, Punctuators, and Operators
Literals are primitive pieces of data lexically embedded into the program. The literals we used
in our example program are 12 and 30.
Punctuators help demarcate the structure of the program. These are the punctuators we used in
our example program:

{   }   ;

The braces group multiple statements into a statement block.
The semicolon terminates a statement. (Statement blocks, however, do not require a
semicolon.) Statements can wrap multiple lines:

Console.WriteLine
  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

An operator transforms and combines expressions. Most operators in C# are denoted with a
symbol, such as the multiplication operator, *. We will discuss operators in more detail later in
this chapter. These are the operators we used in our example program:

.  ()   *   =

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are used when the
method accepts no arguments. (Parentheses also have other purposes that we’ll see later in this
chapter.) An equals sign performs assignment. (The double equals sign, ==, performs equality
comparison, as we’ll see later.)

Comments



C# offers two different styles of source-code documentation: single-line comments and
multiline comments. A single-line comment begins with a double forward slash and continues
until the end of the line. For example:

int x = 3;   // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For example:

int x = 3;   /* This is a comment that
                spans two lines */

Comments may embed XML documentation tags, explained in “XML Documentation” in
Chapter 4.

Type Basics
A type defines the blueprint for a value. In our example, we used two literals of type int with
values 12 and 30. We also declared a variable of type int whose name was x:

static void Main()
{
  int x = 12 * 30;
  Console.WriteLine (x);
}

A variable denotes a storage location that can contain different values over time. In contrast, a
constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value, and the set of possible values
a variable can have, is determined by its type.

Predefined Type Examples
Predefined types are types that are specially supported by the compiler. The int type is a
predefined type for representing the set of integers that fit into 32 bits of memory, from −231 to
231−1, and is the default type for numeric literals within this range. We can perform functions
such as arithmetic with instances of the int type as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of characters,
such as “.NET” or “http://oreilly.com”. We can work with strings by calling functions on them
as follows:

string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage);               // HELLO WORLD

int x = 2015;
message = message + x.ToString();
Console.WriteLine (message);                    // Hello world2015

http://oreilly.com


The predefined bool type has exactly two possible values: true and false. The bool type is
commonly used to conditionally branch execution flow based with an if statement. For
example:

bool simpleVar = false;
if (simpleVar)
  Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
  Console.WriteLine ("This will print");

NOTE
In C#, predefined types (also referred to as built-in types) are recognized with a C# keyword.
The System namespace in the .NET Framework contains many important types that are not
predefined by C# (e.g., DateTime).

Custom Type Examples
Just as we can build complex functions from simple functions, we can build complex types
from primitive types. In this example, we will define a custom type named UnitConverter —
a class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter
{
  int ratio;                                                 // Field
  public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
  public int Convert   (int unit)    {return unit * ratio; } // Method
}

class Test
{
  static void Main()
  {
    UnitConverter feetToInchesConverter = new UnitConverter (12);
    UnitConverter milesToFeetConverter  = new UnitConverter (5280);

    Console.WriteLine (feetToInchesConverter.Convert(30));    // 360
    Console.WriteLine (feetToInchesConverter.Convert(100));   // 1200
    Console.WriteLine (feetToInchesConverter.Convert(
                         milesToFeetConverter.Convert(1)));   // 63360
  }
}

Members of a type
A type contains data members and function members. The data member of UnitConverter is
the field called ratio. The function members of UnitConverter are the Convert method and
the UnitConverter’s constructor.

Symmetry of predefined types and custom types
A beautiful aspect of C# is that predefined types and custom types have few differences. The
predefined int type serves as a blueprint for integers. It holds data — 32 bits — and provides
function members that use that data, such as ToString. Similarly, our custom UnitConverter



type acts as a blueprint for unit conversions. It holds data — the ratio — and provides function
members to use that data.

Constructors and instantiation
Data is created by instantiating a type. Predefined types can be instantiated simply by using a
literal such as 12 or "Hello world". The new operator creates instances of a custom type. We
created and declared an instance of the UnitConverter type with this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is called to
perform initialization. A constructor is defined like a method, except that the method name and
return type are reduced to the name of the enclosing type:

public class UnitConverter
{
  ...
  public UnitConverter (int unitRatio) { ratio = unitRatio; }
  ...
}

Instance versus static members
The data members and function members that operate on the instance of the type are called
instance members. The UnitConverter’s Convert method and the int’s ToString method
are examples of instance members. By default, members are instance members.
Data members and function members that don’t operate on the instance of the type, but rather on
the type itself, must be marked as static. The Test.Main and Console.WriteLine methods
are static methods. The Console class is actually a static class, which means all its members
are static. You never actually create instances of a Console — one console is shared across
the whole application.
Let’s contrast instance from static members. In the following code, the instance field Name
pertains to an instance of a particular Panda, whereas Population pertains to the set of all
Panda instances:

public class Panda
{
  public string Name;             // Instance field
  public static int Population;   // Static field

  public Panda (string n)         // Constructor
  {
    Name = n;                     // Assign the instance field
    Population = Population + 1;  // Increment the static Population field
  }
}

The following code creates two instances of the Panda, prints their names, and then prints the
total population:

using System;

class Test
{
  static void Main()
  {



    Panda p1 = new Panda ("Pan Dee");
    Panda p2 = new Panda ("Pan Dah");

    Console.WriteLine (p1.Name);      // Pan Dee
    Console.WriteLine (p2.Name);      // Pan Dah

    Console.WriteLine (Panda.Population);   // 2
  }
}

Attempting to evaluate p1.Population or Panda.Name will generate a compile-time error.

The public keyword
The public keyword exposes members to other classes. In this example, if the Name field in
Panda was not marked as public, it would be private and the Test class could not access it.
Marking a member public is how a type communicates: “Here is what I want other types to
see — everything else is my own private implementation details.” In object-oriented terms, we
say that the public members encapsulate the private members of the class.

Conversions
C# can convert between instances of compatible types. A conversion always creates a new
value from an existing one. Conversions can be either implicit or explicit: implicit conversions
happen automatically, and explicit conversions require a cast. In the following example, we
implicitly convert an int to a long type (which has twice the bitwise capacity of an int) and
explicitly cast an int to a short type (which has half the capacity of an int):

int x = 12345;       // int is a 32-bit integer
long y = x;          // Implicit conversion to 64-bit integer
short z = (short)x;  // Explicit conversion to 16-bit integer

Implicit conversions are allowed when both of the following are true:
The compiler can guarantee they will always succeed.

No information is lost in conversion.1

Conversely, explicit conversions are required when one of the following is true:
The compiler cannot guarantee they will always succeed.

Information may be lost during conversion.

(If the compiler can determine that a conversion will always fail, both kinds of conversion are
prohibited. Conversions that involve generics can also fail in certain conditions — see “Type
Parameters and Conversions” in Chapter 3.)

NOTE
The numeric conversions that we just saw are built into the language. C# also supports
reference conversions and boxing conversions (see Chapter 3) as well as custom conversions
(see “Operator Overloading” in Chapter 4). The compiler doesn’t enforce the aforementioned
rules with custom conversions, so it’s possible for badly designed types to behave otherwise.



Value Types Versus Reference Types
All C# types fall into the following categories:

Value types

Reference types

Generic type parameters

Pointer types

NOTE
In this section, we’ll describe value types and reference types. We’ll cover generic type
parameters in “Generics” in Chapter 3, and pointer types in “Unsafe Code and Pointers” in
Chapter 4.

Value types comprise most built-in types (specifically, all numeric types, the char type, and the
bool type) as well as custom struct and enum types.
Reference types comprise all class, array, delegate, and interface types. (This includes the
predefined string type.)
The fundamental difference between value types and reference types is how they are handled in
memory.

Value types
The content of a value type variable or constant is simply a value. For example, the content of
the built-in value type, int, is 32 bits of data.
You can define a custom value type with the struct keyword (see Figure 2-1):

public struct Point { public int X; public int Y; }

or more tersely:

public struct Point { public int X, Y; }

Figure 2-1. A value-type instance in memory



The assignment of a value-type instance always copies the instance. For example:

static void Main()
{
  Point p1 = new Point();
  p1.X = 7;

  Point p2 = p1;             // Assignment causes copy

  Console.WriteLine (p1.X);  // 7
  Console.WriteLine (p2.X);  // 7

  p1.X = 9;                  // Change p1.X

  Console.WriteLine (p1.X);  // 9
  Console.WriteLine (p2.X);  // 7
}

Figure 2-2 shows that p1 and p2 have independent storage.

Figure 2-2. Assignment copies a value-type instance

Reference types
A reference type is more complex than a value type, having two parts: an object and the
reference to that object. The content of a reference-type variable or constant is a reference to
an object that contains the value. Here is the Point type from our previous example rewritten
as a class, rather than a struct (shown in Figure 2-3):

public class Point { public int X, Y; }



Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance. This allows
multiple variables to refer to the same object — something not ordinarily possible with value
types. If we repeat the previous example, but with Point now a class, an operation to p1
affects p2:

static void Main()
{
  Point p1 = new Point();
  p1.X = 7;

  Point p2 = p1;             // Copies p1 reference

  Console.WriteLine (p1.X);  // 7
  Console.WriteLine (p2.X);  // 7

  p1.X = 9;                  // Change p1.X

  Console.WriteLine (p1.X);  // 9
  Console.WriteLine (p2.X);  // 9
}

Figure 2-4 shows that p1 and p2 are two references that point to the same object.



Figure 2-4. Assignment copies a reference

Null
A reference can be assigned the literal null, indicating that the reference points to no object:

class Point {...}
...

Point p = null;
Console.WriteLine (p == null);   // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);

In contrast, a value type cannot ordinarily have a null value:

struct Point {...}
...

Point p = null;  // Compile-time error
int x = null;    // Compile-time error

NOTE
C# also has a construct called nullable types for representing value-type nulls (see “Nullable
Types” in Chapter 4).

Storage overhead
Value-type instances occupy precisely the memory required to store their fields. In this
example, Point takes eight bytes of memory:

struct Point



{
  int x;  // 4 bytes
  int y;  // 4 bytes
}

NOTE
Technically, the CLR positions fields within the type at an address that’s a multiple of the
fields’ size (up to a maximum of eight bytes). Thus, the following actually consumes 16 bytes
of memory (with the seven bytes following the first field “wasted”):

struct A { byte b; long l; }

You can override this behavior with the StructLayout attribute (see “Mapping a Struct to
Unmanaged Memory”).

Reference types require separate allocations of memory for the reference and object. The
object consumes as many bytes as its fields, plus additional administrative overhead. The
precise overhead is intrinsically private to the implementation of the .NET runtime, but at
minimum, the overhead is eight bytes, used to store a key to the object’s type, as well as
temporary information such as its lock state for multithreading and a flag to indicate whether it
has been fixed from movement by the garbage collector. Each reference to an object requires an
extra four or eight bytes, depending on whether the .NET runtime is running on a 32- or 64-bit
platform.

Predefined Type Taxonomy
The predefined types in C# are:

Value types
 

Numeric
Signed integer (sbyte, short, int, long)

Unsigned integer (byte, ushort, uint, ulong)

Real number (float, double, decimal)

Logical (bool)

Character (char)

 

Reference types
 

String (string)

Object (object)



 
Predefined types in C# alias Framework types in the System namespace. There is only a
syntactic difference between these two statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types excluding decimal are known as primitive types in the CLR.
Primitive types are so called because they are supported directly via instructions in compiled
code, and this usually translates to direct support on the underlying processor. For example:

                   // Underlying hexadecimal representation
int i = 7;         // 0x7
bool b = true;     // 0x1
char c = 'A';      // 0x41
float f = 0.5f;    // uses IEEE floating-point encoding

The System.IntPtr and System.UIntPtr types are also primitive (see Chapter 25).

Numeric Types
C# has the predefined numeric types shown in Table 2-1.

Table 2-1. Predefined numeric types in C#

C# type System type Suffix Size Range

Integral — signed

sbyte SByte  8 bits –27 to 27–1

short Int16  16 bits –215 to 215–1

int Int32  32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

Integral — unsigned

byte Byte  8 bits 0 to 28–1

ushort UInt16  16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

Real

float Single F 32 bits ± (~10–45 to 1038)

double Double D 64 bits ± (~10–324 to 10308)

decimal Decimal M 128 bits ± (~10–28 to 1028)

Of the integral types, int and long are first-class citizens and are favored by both C# and the
runtime. The other integral types are typically used for interoperability or when space
efficiency is paramount.

Of the real number types, float and double are called floating-point types2 and are typically



used for scientific and graphical calculations. The decimal type is typically used for financial
calculations, where base-10-accurate arithmetic and high precision are required.

Numeric Literals
Integral-type literals can use decimal or hexadecimal notation; hexadecimal is denoted with
the 0x prefix. For example:

int x = 127;
long y = 0x7F;

From C# 7, you can insert an underscore anywhere inside a numeric literal to make it more
readable:

int million = 1_000_000;

C# 7 also lets you specify numbers in binary with the 0b prefix:

var b = 0b1010_1011_1100_1101_1110_1111;

Real literals can use decimal and/or exponential notation. For example:

double d = 1.5;
double million = 1E06;

Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral type:

If the literal contains a decimal point or the exponential symbol (E), it is a double.

Otherwise, the literal’s type is the first type in this list that can fit the literal’s value: int,
uint, long, and ulong.

For example:

Console.WriteLine (        1.0.GetType());  // Double  (double)
Console.WriteLine (       1E06.GetType());  // Double  (double)
Console.WriteLine (          1.GetType());  // Int32   (int)
Console.WriteLine ( 0xF0000000.GetType());  // UInt32  (uint)
Console.WriteLine (0x100000000.GetType());  // Int64   (long)

Numeric suffixes
Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower- or
uppercase, and are as follows:

Category C# type Example
F float float f = 1.0F;

D double double d = 1D;

M decimal decimal d = 1.0M;

U uint uint i = 1U;

L long long i = 1L;

UL ulong ulong i = 1UL;



The suffixes U and L are rarely necessary, because the uint, long, and ulong types can nearly
always be either inferred or implicitly converted from int:

long i = 5;     // Implicit lossless conversion from int literal to long

The D suffix is technically redundant, in that all literals with a decimal point are inferred to be
double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The F and M suffixes are the most useful and should always be applied when specifying float
or decimal literals. Without the F suffix, the following line would not compile, because 4.5
would be inferred to be of type double, which has no implicit conversion to float:

float f = 4.5F;

The same principle is true for a decimal literal:

decimal d = -1.23M;     // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section.

Numeric Conversions

Converting between integral types
Integral type conversions are implicit when the destination type can represent every possible
value of the source type. Otherwise, an explicit conversion is required. For example:

int x = 12345;       // int is a 32-bit integer
long y = x;          // Implicit conversion to 64-bit integral type
short z = (short)x;  // Explicit conversion to 16-bit integral type

Converting between floating-point types
A float can be implicitly converted to a double, since a double can represent every possible
value of a float. The reverse conversion must be explicit.

Converting between floating-point and integral types
All integral types may be implicitly converted to all floating-point types:

int i = 1;
float f = i;

The reverse conversion must be explicit:

int i2 = (int)f;

NOTE
When you cast from a floating-point number to an integral type, any fractional portion is
truncated; no rounding is performed. The static class System.Convert provides methods that



round while converting between various numeric types (see Chapter 6).

Implicitly converting a large integral type to a floating-point type preserves magnitude but may
occasionally lose precision. This is because floating-point types always have more magnitude
than integral types, but may have less precision. Rewriting our example with a larger number
demonstrates this:

int i1 = 100000001;
float f = i1;          // Magnitude preserved, precision lost
int i2 = (int)f;       // 100000000

Decimal conversions
All integral types can be implicitly converted to the decimal type, since a decimal can
represent every possible C# integral-type value. All other numeric conversions to and from a
decimal type must be explicit.

Arithmetic Operators
The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8- and 16-
bit integral types:

+    Addition
-    Subtraction
*    Multiplication
/    Division
%    Remainder after division

Increment and Decrement Operators
The increment and decrement operators (++, --) increment and decrement numeric types by 1.
The operator can either follow or precede the variable, depending on whether you want its
value before or after the increment/decrement. For example:

int x = 0, y = 0;
Console.WriteLine (x++);   // Outputs 0; x is now 1
Console.WriteLine (++y);   // Outputs 1; y is now 1

Specialized Operations on Integral Types
(The integral types are int, uint, long, ulong, short, ushort, byte and sbyte.)

Division
Division operations on integral types always truncate remainders (round toward zero).
Dividing by a variable whose value is zero generates a runtime error (a
DivideByZeroException):

int a = 2 / 3;      // 0

int b = 0;
int c = 5 / b;      // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.



Overflow
At runtime, arithmetic operations on integral types can overflow. By default, this happens
silently — no exception is thrown, and the result exhibits “wraparound” behavior, as though the
computation was done on a larger integer type and the extra significant bits discarded. For
example, decrementing the minimum possible int value results in the maximum possible int
value:

int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True

Overflow check operators
The checked operator tells the runtime to generate an OverflowException rather than
overflowing silently when an integral-type expression or statement exceeds the arithmetic
limits of that type. The checked operator affects expressions with the ++, −−, +, − (binary and
unary), *, /, and explicit conversion operators between integral types.

NOTE
The checked operator has no effect on the double and float types (which overflow to special
“infinite” values, as we’ll see soon) and no effect on the decimal type (which is always
checked).

checked can be used around either an expression or a statement block. For example:

int a = 1000000;
int b = 1000000;

int c = checked (a * b);      // Checks just the expression.

checked                       // Checks all expressions
{                             // in statement block.
   ...
   c = a * b;
   ...
}

You can make arithmetic overflow checking the default for all expressions in a program by
compiling with the /checked+ command-line switch (in Visual Studio, go to Advanced Build
Settings). If you then need to disable overflow checking just for specific expressions or
statements, you can do so with the unchecked operator. For example, the following code will
not throw exceptions — even if compiled with /checked+:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions
Regardless of the /checked compiler switch, expressions evaluated at compile time are
always overflow-checked — unless you apply the unchecked operator:

int x = int.MaxValue + 1;               // Compile-time error



int y = unchecked (int.MaxValue + 1);   // No errors

Bitwise operators
C# supports the following bitwise operators:

Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integral Types
The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types lack their
own arithmetic operators, so C# implicitly converts them to larger types as required. This can
cause a compile-time error when trying to assign the result back to a small integral type:

short x = 1, y = 1;
short z = x + y;          // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be performed. This
means the result is also an int, which cannot be implicitly cast back to a short (because it
could cause loss of data). To make this compile, we must add an explicit cast:

short z = (short) (x + y);   // OK

Special Float and Double Values
Unlike integral types, floating-point types have values that certain operations treat specially.
These special values are NaN (Not a Number), +∞, −∞, and −0. The float and double
classes have constants for NaN, +∞, and −∞, as well as other values (MaxValue, MinValue,
and Epsilon). For example:

Console.WriteLine (double.NegativeInfinity);   // -Infinity

The constants that represent special values for double and float are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

+∞ double.PositiveInfinity float.PositiveInfinity

−∞ double.NegativeInfinity float.NegativeInfinity

−0 −0.0 −0.0f

Dividing a nonzero number by zero results in an infinite value. For example:

Console.WriteLine ( 1.0 /  0.0);                  //  Infinity
Console.WriteLine (−1.0 /  0.0);                  // -Infinity
Console.WriteLine ( 1.0 / −0.0);                  // -Infinity



Console.WriteLine (−1.0 / −0.0);                  //  Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN. For example:

Console.WriteLine ( 0.0 /  0.0);                  //  NaN
Console.WriteLine ((1.0 /  0.0) − (1.0 / 0.0));   //  NaN

When using ==, a NaN value is never equal to another value, even another NaN value:

Console.WriteLine (0.0 / 0.0 == double.NaN);    // False

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN method:

Console.WriteLine (double.IsNaN (0.0 / 0.0));   // True

When using object.Equals, however, two NaN values are equal:

Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN));   // True

NOTE
NaNs are sometimes useful in representing special values. In WPF, double.NaN represents a
measurement whose value is “Automatic”. Another way to represent such a value is with a
nullable type (Chapter 4); another is with a custom struct that wraps a numeric type and adds
an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported natively
by almost all processors. You can find detailed information on the behavior of these types at
http://www.ieee.org.

double Versus decimal
double is useful for scientific computations (such as computing spatial coordinates). decimal
is useful for financial computations and values that are “man-made” rather than the result of
real-world measurements. Here’s a summary of the differences:

Category double decimal

Internal representation Base 2 Base 10

Decimal precision 15–16 significant figures 28–29 significant figures

Range ±(~10−324 to ~10308) ±(~10−28 to ~1028)

Special values +0, −0, +∞, −∞, and NaN None

Speed Native to processor Non-native to processor (about 10 times slower than double)

Real Number Rounding Errors
float and double internally represent numbers in base 2. For this reason, only numbers
expressible in base 2 are represented precisely. Practically, this means most literals with a
fractional component (which are in base 10) will not be represented precisely. For example:

http://www.ieee.org


float tenth = 0.1f;                       // Not quite 0.1
float one   = 1f;
Console.WriteLine (one - tenth * 10f);    // -1.490116E-08

This is why float and double are bad for financial calculations. In contrast, decimal works
in base 10 and so can precisely represent numbers expressible in base 10 (as well as its
factors, base 2 and base 5). Since real literals are in base 10, decimal can precisely represent
numbers such as 0.1. However, neither double nor decimal can precisely represent a
fractional number whose base 10 representation is recurring:

decimal m = 1M / 6M;               // 0.1666666666666666666666666667M
double  d = 1.0 / 6.0;             // 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m;  // 1.0000000000000000000000000002M
double  notQuiteWholeD = d+d+d+d+d+d;  // 0.99999999999999989

which breaks equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M);   // False
Console.WriteLine (notQuiteWholeD < 1.0);   // True

Boolean Type and Operators
C#’s bool type (aliasing the System.Boolean type) is a logical value that can be assigned the
literal true or false.
Although a Boolean value requires only one bit of storage, the runtime will use one byte of
memory, since this is the minimum chunk that the runtime and processor can efficiently work
with. To avoid space inefficiency in the case of arrays, the Framework provides a BitArray
class in the System.Collections namespace that is designed to use just one bit per Boolean
value.

Bool Conversions
No casting conversions can be made from the bool type to numeric types or vice versa.

Equality and Comparison Operators
== and != test for equality and inequality of any type, but always return a bool value.3 Value
types typically have a very simple notion of equality:

int x = 1;
int y = 2;
int z = 1;
Console.WriteLine (x == y);         // False
Console.WriteLine (x == z);         // True

For reference types, equality, by default, is based on reference, as opposed to the actual value
of the underlying object (more on this in Chapter 6):

public class Dude
{



  public string Name;
  public Dude (string n) { Name = n; }
}
...
Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2);       // False
Dude d3 = d1;
Console.WriteLine (d1 == d3);       // True

The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric types,
but should be used with caution with real numbers (as we saw in “Real Number Rounding
Errors”). The comparison operators also work on enum type members, by comparing their
underlying integral-type values. We describe this in “Enums” in Chapter 3.
We explain the equality and comparison operators in greater detail in “Operator Overloading”
in Chapter 4, and in “Equality Comparison” and “Order Comparison”.

Conditional Operators
The && and || operators test for and and or conditions. They are frequently used in conjunction
with the ! operator, which expresses not. In this example, the UseUmbrella method returns
true if it’s rainy or sunny (to protect us from the rain or the sun), as long as it’s not also windy
(since umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{
  return !windy && (rainy || sunny);
}

The && and || operators short-circuit evaluation when possible. In the preceding example, if it
is windy, the expression (rainy || sunny) is not even evaluated. Short-circuiting is
essential in allowing expressions such as the following to run without throwing a
NullReferenceException:

if (sb != null && sb.Length > 0) ...

The & and | operators also test for and and or conditions:

return !windy & (rainy | sunny);

The difference is that they do not short-circuit. For this reason, they are rarely used in place of
conditional operators.

NOTE
Unlike in C and C++, the & and | operators perform (non-short-circuiting) Boolean
comparisons when applied to bool expressions. The & and | operators perform bitwise
operations only when applied to numbers.

Conditional operator (ternary operator)
The conditional operator (more commonly called the ternary operator, as it’s the only



operator that takes three operands) has the form q ? a : b, where if condition q is true, a is
evaluated, else b is evaluated. For example:

static int Max (int a, int b)
{
  return (a > b) ? a : b;
}

The conditional operator is particularly useful in LINQ queries (Chapter 8).

Strings and Characters
C#’s char type (aliasing the System.Char type) represents a Unicode character and occupies
2 bytes. A char literal is specified inside single quotes:

char c = 'A';       // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally. An
escape sequence is a backslash followed by a character with a special meaning. For example:

char newLine = '\n';
char backSlash = '\\';

The escape sequence characters are shown in Table 2-2.

Table 2-2. Escape
sequence characters

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its four-digit
hexadecimal code:

char copyrightSymbol = '\u00A9';
char omegaSymbol     = '\u03A9';
char newLine         = '\u000A';

Char Conversions



An implicit conversion from a char to a numeric type works for the numeric types that can
accommodate an unsigned short. For other numeric types, an explicit conversion is required.

String Type
C#’s string type (aliasing the System.String type, covered in depth in Chapter 6) represents
an immutable sequence of Unicode characters. A string literal is specified inside double
quotes:

string a = "Heat";

NOTE
string is a reference type, rather than a value type. Its equality operators, however, follow
value-type semantics:

string a = "test";
string b = "test";
Console.Write (a == b);  // True

The escape sequences that are valid for char literals also work inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is prefixed
with @ and does not support escape sequences. The following verbatim string is identical to the
preceding one:

string a2 = @"\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines:

string escaped  = "First Line\r\nSecond Line";
string verbatim = @"First Line
Second Line";

// True if your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:

string xml = @"<customer id=""123""></customer>";

String concatenation
The + operator concatenates two strings:

string s = "a" + "b";



One of the operands may be a nonstring value, in which case ToString is called on that value.
For example:

string s = "a" + 5;  // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is to use the
System.Text.StringBuilder type (described in Chapter 6).

String interpolation (C# 6)
A string preceded with the $ character is called an interpolated string. Interpolated strings can
include expressions inside braces:

int x = 4;
Console.Write ($"A square has {x} sides");  // Prints: A square has 4 sides

Any valid C# expression of any type can appear within the braces, and C# will convert the
expression to a string by calling its ToString method or equivalent. You can change the
formatting by appending the expression with a colon and a format string (format strings are
described in “String.Format and composite format strings”):

string s = $"255 in hex is {byte.MaxValue:X2}";  // X2 = 2-digit Hexadecimal
// Evaluates to "255 in hex is FF"

Interpolated strings must complete on a single line, unless you also specify the verbatim string
operator. Note that the $ operator must come before @:

int x = 2;
string s = $@"this spans {
x} lines";

To include a brace literal in an interpolated string, repeat the desired brace character.

String comparisons
string does not support < and > operators for comparisons. You must use the string’s
CompareTo method, described in Chapter 6.

Arrays
An array represents a fixed number of variables (called elements) of a particular type. The
elements in an array are always stored in a contiguous block of memory, providing highly
efficient access.
An array is denoted with square brackets after the element type. For example:

char[] vowels = new char[5];    // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';



vowels[4] = 'u';
Console.WriteLine (vowels[1]);      // e

This prints “e” because array indexes start at 0. We can use a for loop statement to iterate
through each element in the array. The for loop in this example cycles the integer i from 0 to
4:

for (int i = 0; i < vowels.Length; i++)
  Console.Write (vowels[i]);            // aeiou

The Length property of an array returns the number of elements in the array. Once an array has
been created, its length cannot be changed. The System.Collection namespace and
subnamespaces provide higher-level data structures, such as dynamically sized arrays and
dictionaries.
An array initialization expression lets you declare and populate an array in a single step:

char[] vowels = new char[] {'a','e','i','o','u'};

or simply:

char[] vowels = {'a','e','i','o','u'};

All arrays inherit from the System.Array class, providing common services for all arrays.
These members include methods to get and set elements regardless of the array type, and are
described in Chapter 7.

Default Element Initialization
Creating an array always preinitializes the elements with default values. The default value for a
type is the result of a bitwise zeroing of memory. For example, consider creating an array of
integers. Since int is a value type, this allocates 1,000 integers in one contiguous block of
memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]);            // 0

Value types versus reference types
Whether an array element type is a value type or a reference type has important performance
implications. When the element type is a value type, each element value is allocated as part of
the array. For example:

public struct Point { public int X, Y; }
...

Point[] a = new Point[1000];
int x = a[500].X;                  // 0

Had Point been a class, creating the array would have merely allocated 1,000 null references:

public class Point { public int X, Y; }

...
Point[] a = new Point[1000];



int x = a[500].X;                  // Runtime error, NullReferenceException

To avoid this error, we must explicitly instantiate 1,000 Points after instantiating the array:

Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
   a[i] = new Point();             // Set array element i with new point

An array itself is always a reference type object, regardless of the element type. For instance,
the following is legal:

int[] a = null;

Multidimensional Arrays
Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular arrays
represent an n-dimensional block of memory, and jagged arrays are arrays of arrays.

Rectangular arrays
Rectangular arrays are declared using commas to separate each dimension. The following
declares a rectangular two-dimensional array, where the dimensions are 3 by 3:

int[,] matrix = new int[3,3];

The GetLength method of an array returns the length for a given dimension (starting at 0):

for (int i = 0; i < matrix.GetLength(0); i++)
  for (int j = 0; j < matrix.GetLength(1); j++)
    matrix[i,j] = i * 3 + j;

A rectangular array can be initialized as follows (to create an array identical to the previous
example):

int[,] matrix = new int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

Jagged arrays
Jagged arrays are declared using successive square brackets to represent each dimension. Here
is an example of declaring a jagged two-dimensional array, where the outermost dimension is
3:

int[][] matrix = new int[3][];

NOTE
Interestingly, this is new int[3][] and not new int[][3]. Eric Lippert has written an excellent
article on why this is so: see http://albahari.com/jagged.

http://albahari.com/jagged


The inner dimensions aren’t specified in the declaration because, unlike a rectangular array,
each inner array can be an arbitrary length. Each inner array is implicitly initialized to null
rather than an empty array. Each inner array must be created manually:

for (int i = 0; i < matrix.Length; i++)
{
  matrix[i] = new int[3];                    // Create inner array
  for (int j = 0; j < matrix[i].Length; j++)
    matrix[i][j] = i * 3 + j;
}

A jagged array can be initialized as follows (to create an array identical to the previous
example with an additional element at the end):

int[][] matrix = new int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8,9}
};

Simplified Array Initialization Expressions
There are two ways to shorten array initialization expressions. The first is to omit the new
operator and type qualifications:

char[] vowels = {'a','e','i','o','u'};

int[,] rectangularMatrix =
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

int[][] jaggedMatrix =
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8}
};

The second approach is to use the var keyword, which tells the compiler to implicitly type a
local variable:

var i = 3;           // i is implicitly of type int
var s = "sausage";   // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,]    // rectMatrix is implicitly of type int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

var jaggedMat = new int[][]    // jaggedMat is implicitly of type int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8}
};



Implicit typing can be taken one stage further with arrays: you can omit the type qualifier after
the new keyword and have the compiler infer the array type:

var vowels = new[] {'a','e','i','o','u'};   // Compiler infers char[]

For this to work, the elements must all be implicitly convertible to a single type (and at least
one of the elements must be of that type, and there must be exactly one best type). For example:

var x = new[] {1,10000000000};   // all convertible to long

Bounds Checking
All array indexing is bounds-checked by the runtime. An IndexOutOfRangeException is
thrown if you use an invalid index:

int[] arr = new int[3];
arr[3] = 1;               // IndexOutOfRangeException thrown

As with Java, array bounds checking is necessary for type safety and simplifies debugging.

NOTE
Generally, the performance hit from bounds checking is minor, and the JIT (Just-In-Time)
compiler can perform optimizations, such as determining in advance whether all indexes will
be safe before entering a loop, thus avoiding a check on each iteration. In addition, C#
provides “unsafe” code that can explicitly bypass bounds checking (see “Unsafe Code and
Pointers” in Chapter 4).

Variables and Parameters
A variable represents a storage location that has a modifiable value. A variable can be a local
variable, parameter (value, ref, or out), field (instance or static), or array element.

The Stack and the Heap
The stack and the heap are the places where variables and constants reside. Each has very
different lifetime semantics.

Stack
The stack is a block of memory for storing local variables and parameters. The stack logically
grows and shrinks as a function is entered and exited. Consider the following method (to avoid
distraction, input argument checking is ignored):

static int Factorial (int x)
{
  if (x == 0) return 1;
  return x * Factorial (x-1);
}

This method is recursive, meaning that it calls itself. Each time the method is entered, a new



int is allocated on the stack, and each time the method exits, the int is deallocated.

Heap
The heap is a block of memory in which objects (i.e., reference-type instances) reside.
Whenever a new object is created, it is allocated on the heap, and a reference to that object is
returned. During a program’s execution, the heap starts filling up as new objects are created.
The runtime has a garbage collector that periodically deallocates objects from the heap, so
your program does not run out of memory. An object is eligible for deallocation as soon as it’s
not referenced by anything that’s itself “alive.”
In the following example, we start by creating a StringBuilder object referenced by the
variable ref1, and then write out its content. That StringBuilder object is then immediately
eligible for garbage collection, because nothing subsequently uses it.
Then, we create another StringBuilder referenced by variable ref2, and copy that reference
to ref3. Even though ref2 is not used after that point, ref3 keeps the same StringBuilder
object alive — ensuring that it doesn’t become eligible for collection until we’ve finished
using ref3.

using System;
using System.Text;

class Test
{
  static void Main()
  {
    StringBuilder ref1 = new StringBuilder ("object1");
    Console.WriteLine (ref1);
    // The StringBuilder referenced by ref1 is now eligible for GC.

    StringBuilder ref2 = new StringBuilder ("object2");
    StringBuilder ref3 = ref2;
    // The StringBuilder referenced by ref2 is NOT yet eligible for GC.

    Console.WriteLine (ref3);                   // object2
  }
}

Value-type instances (and object references) live wherever the variable was declared. If the
instance was declared as a field within a class type, or as an array element, that instance lives
on the heap.

NOTE
You can’t explicitly delete objects in C#, as you can in C++. An unreferenced object is
eventually collected by the garbage collector.

The heap also stores static fields. Unlike objects allocated on the heap (which can get garbage-
collected), these live until the application domain is torn down.

Definite Assignment
C# enforces a definite assignment policy. In practice, this means that outside of an unsafe
context, it’s impossible to access uninitialized memory. Definite assignment has three



implications:
Local variables must be assigned a value before they can be read.

Function arguments must be supplied when a method is called (unless marked as optional —
see “Optional parameters”).

All other variables (such as fields and array elements) are automatically initialized by the
runtime.

For example, the following code results in a compile-time error:

static void Main()
{
  int x;
  Console.WriteLine (x);        // Compile-time error
}

Fields and array elements are automatically initialized with the default values for their type.
The following code outputs 0, because array elements are implicitly assigned to their default
values:

static void Main()
{
  int[] ints = new int[2];
  Console.WriteLine (ints[0]);    // 0
}

The following code outputs 0, because fields are implicitly assigned a default value:

class Test
{
  static int x;
  static void Main() { Console.WriteLine (x); }   // 0
}

Default Values
All type instances have a default value. The default value for the predefined types is the result
of a bitwise zeroing of memory:

Type Default value

All reference types null

All numeric and enum types 0

char type '\0'

bool type false

You can obtain the default value for any type with the default keyword (in practice, this is
useful with generics, which we’ll cover in Chapter 3):

decimal d = default (decimal);

The default value in a custom value type (i.e., struct) is the same as the default value for each
field defined by the custom type.



Parameters
A method has a sequence of parameters. Parameters define the set of arguments that must be
provided for that method. In this example, the method Foo has a single parameter named p, of
type int:

static void Foo (int p)
{
  p = p + 1;                 // Increment p by 1
  Console.WriteLine (p);     // Write p to screen
}

static void Main()
{
  Foo (8);                  // Call Foo with an argument of 8
}

You can control how parameters are passed with the ref and out modifiers:

Parameter modifier Passed by Variable must be definitely assigned

(None) Value Going in

ref Reference Going in

out Reference Going out

Passing arguments by value
By default, arguments in C# are passed by value, which is by far the most common case. This
means a copy of the value is created when passed to the method:

class Test
{
  static void Foo (int p)
  {
    p = p + 1;                // Increment p by 1
    Console.WriteLine (p);    // Write p to screen
  }

  static void Main()
  {
    int x = 8;
    Foo (x);                  // Make a copy of x
    Console.WriteLine (x);    // x will still be 8
  }
}

Assigning p a new value does not change the contents of x, since p and x reside in different
memory locations.
Passing a reference-type argument by value copies the reference, but not the object. In the
following example, Foo sees the same StringBuilder object that Main instantiated, but has an
independent reference to it. In other words, sb and fooSB are separate variables that reference
the same StringBuilder object:

class Test
{
  static void Foo (StringBuilder fooSB)
  {
    fooSB.Append ("test");
    fooSB = null;
  }



  static void Main()
  {
    StringBuilder sb = new StringBuilder();
    Foo (sb);
    Console.WriteLine (sb.ToString());    // test
  }
}

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If, however,
fooSB was declared and called with the ref modifier, sb would become null.)

The ref modifier
To pass by reference, C# provides the ref parameter modifier. In the following example, p and
x refer to the same memory locations:

class Test
{
  static void Foo (ref int p)
  {
    p = p + 1;               // Increment p by 1
    Console.WriteLine (p);   // Write p to screen
  }

  static void Main()
  {
    int x = 8;
    Foo (ref  x);            // Ask Foo to deal directly with x
    Console.WriteLine (x);   // x is now 9
  }
}

Now assigning p a new value changes the contents of x. Notice how the ref modifier is
required both when writing and when calling the method.4 This makes it very clear what’s
going on.
The ref modifier is essential in implementing a swap method (later, in “Generics” in
Chapter 3, we will show how to write a swap method that works with any type):

class Test
{
  static void Swap (ref string a, ref string b)
  {
    string temp = a;
    a = b;
    b = temp;
  }

  static void Main()
  {
    string x = "Penn";
    string y = "Teller";
    Swap (ref x, ref y);
    Console.WriteLine (x);   // Teller
    Console.WriteLine (y);   // Penn
  }
}

NOTE
A parameter can be passed by reference or by value, regardless of whether the parameter
type is a reference type or a value type.



The out modifier
An out argument is like a ref argument, except it:

Need not be assigned before going into the function

Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a method. For
example:

class Test
{
  static void Split (string name, out string firstNames,
                     out string lastName)
  {
     int i = name.LastIndexOf (' ');
     firstNames = name.Substring (0, i);
     lastName   = name.Substring (i + 1);
  }

  static void Main()
  {
    string a, b;
    Split ("Stevie Ray Vaughan", out a, out b);
    Console.WriteLine (a);                      // Stevie Ray
    Console.WriteLine (b);                      // Vaughan
  }
}

Like a ref parameter, an out parameter is passed by reference.

Out variables and discards (C# 7)
From C# 7, you can declare variables on the fly when calling methods with out parameters.
We can shorten the Main method in our preceding example as follows:

static void Main()
{
  Split ("Stevie Ray Vaughan", out string a, out string b);
  Console.WriteLine (a);                      // Stevie Ray
  Console.WriteLine (b);                      // Vaughan
}

When calling methods with multiple out parameters, sometimes you’re not interested in
receiving values from all the parameters. In such cases, you can “discard” the ones you’re
uninterested in with an underscore:

Split ("Stevie Ray Vaughan", out string a, out _);   // Discard the 2nd param
Console.WriteLine (a);

In this case, the compiler treats the underscore as a special symbol, called a discard. You can
include multiple discards in a single call. Assuming SomeBigMethod has been defined with
seven out parameters, we can ignore all but the fourth as follows:

SomeBigMethod (out _, out _, out _, out int x, out _, out _, out _);

For backward compatibility, this language feature will not take effect if a real underscore



variable is in scope:

string _;
Split ("Stevie Ray Vaughan", out string a, _);   // Will not compile

Implications of passing by reference
When you pass an argument by reference, you alias the storage location of an existing variable
rather than create a new storage location. In the following example, the variables x and y
represent the same instance:

class Test
{
  static int x;

  static void Main() { Foo (out x); }

  static void Foo (out int y)
  {
    Console.WriteLine (x);                // x is 0
    y = 1;                                // Mutate y
    Console.WriteLine (x);                // x is 1
  }
}

The params modifier
The params parameter modifier may be specified on the last parameter of a method so that the
method accepts any number of arguments of a particular type. The parameter type must be
declared as an array. For example:

class Test
{
  static int Sum (params int[] ints)
  {
    int sum = 0;
    for (int i = 0; i < ints.Length; i++)
      sum += ints[i];                       // Increase sum by ints[i]
    return sum;
  }

  static void Main()
  {
    int total = Sum (1, 2, 3, 4);
    Console.WriteLine (total);              // 10
  }
}

You can also supply a params argument as an ordinary array. The first line in Main is
semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4 } );

Optional parameters
From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional
parameters. A parameter is optional if it specifies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

Optional parameters may be omitted when calling the method:



Foo();     // 23

The default argument of 23 is actually passed to the optional parameter x — the compiler
bakes the value 23 into the compiled code at the calling side. The preceding call to Foo is
semantically identical to:

Foo (23); 

because the compiler simply substitutes the default value of an optional parameter wherever it
is used.

WARNING
Adding an optional parameter to a public method that’s called from another assembly requires
recompilation of both assemblies — just as though the parameter was mandatory.

The default value of an optional parameter must be specified by a constant expression, or a
parameterless constructor of a value type. Optional parameters cannot be marked with ref or
out.
Mandatory parameters must occur before optional parameters in both the method declaration
and the method call (the exception is with params arguments, which still always come last). In
the following example, the explicit value of 1 is passed to x, and the default value of 0 is
passed to y:

void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test()
{
  Foo(1);    // 1, 0
}

To do the converse (pass a default value to x and an explicit value to y) you must combine
optional parameters with named arguments.

Named arguments
Rather than identifying an argument by position, you can identify an argument by name. For
example:

void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

void Test()
{
  Foo (x:1, y:2);  // 1, 2
}

Named arguments can occur in any order. The following calls to Foo are semantically
identical:

Foo (x:1, y:2);
Foo (y:2, x:1);



NOTE
A subtle difference is that argument expressions are evaluated in the order in which they
appear at the calling site. In general, this makes a difference only with interdependent side-
effecting expressions such as the following, which writes 0, 1:

int a = 0;
Foo (y: ++a, x: --a);  // ++a is evaluated first

Of course, you would almost certainly avoid writing such code in practice!

You can mix named and positional arguments:

Foo (1, y:2);

However, there is a restriction: positional arguments must come before named arguments. So
we couldn’t call Foo like this:

Foo (x:1, 2);         // Compile-time error

Named arguments are particularly useful in conjunction with optional parameters. For instance,
consider the following method:

void Bar (int a = 0, int b = 0, int c = 0, int d = 0) { ... }

We can call this supplying only a value for d as follows:

Bar (d:3);

This is particularly useful when calling COM APIs, and is discussed in detail in “Native and
COM Interoperability”.

Ref Locals (C# 7)
C# 7 adds an esoteric feature, whereby you can define a local variable that references an
element in an array or field in an object:

int[] numbers = { 0, 1, 2, 3, 4 };
ref int numRef = ref numbers [2];

In this example, numRef is a reference to the numbers[2]. When we modify numRef, we
modify the array element:

numRef *= 10;
Console.WriteLine (numRef);        // 20
Console.WriteLine (numbers [2]);   // 20

The target for a ref local must be an array element, field, or local variable; it cannot be a
property (Chapter 3). Ref locals are intended for specialized micro-optimization scenarios,
and are typically used in conjunction with ref returns.



Ref Returns (C# 7)
You can return a ref local from a method. This is called a ref return:

static string X = "Old Value";

static ref string GetX() => ref X;    // This method returns a ref

static void Main()
{
  ref string xRef = ref GetX();       // Assign result to a ref local
  xRef = "New Value";
  Console.WriteLine (X);              // New Value
}

var — Implicitly Typed Local Variables
It is often the case that you declare and initialize a variable in one step. If the compiler is able
to infer the type from the initialization expression, you can use the keyword var (introduced in
C# 3.0) in place of the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to:

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello";    // Compile-time error; x is of type int

NOTE
var can decrease code readability in the case when you can’t deduce the type purely by
looking at the variable declaration. For example:

Random r = new Random();
var x = r.Next();

What type is x?

In “Anonymous Types” in Chapter 4, we will describe a scenario where the use of var is
mandatory.

Expressions and Operators
An expression essentially denotes a value. The simplest kinds of expressions are constants and
variables. Expressions can be transformed and combined using operators. An operator takes



one or more input operands to output a new expression.
Here is an example of a constant expression:

12

We can use the * operator to combine two operands (the literal expressions 12 and 30), as
follows:

12 * 30

Complex expressions can be built because an operand may itself be an expression, such as the
operand (12 * 30) in the following example:

1 + (12 * 30)

Operators in C# can be classed as unary, binary, or ternary — depending on the number of
operands they work on (one, two, or three). The binary operators always use infix notation,
where the operator is placed between the two operands.

Primary Expressions
Primary expressions include expressions composed of operators that are intrinsic to the basic
plumbing of the language. Here is an example:

Math.Log (1)

This expression is composed of two primary expressions. The first expression performs a
member-lookup (with the . operator), and the second expression performs a method call (with
the () operator).

Void Expressions
A void expression is an expression that has no value. For example:

Console.WriteLine (1)

A void expression, since it has no value, cannot be used as an operand to build more complex
expressions:

1 + Console.WriteLine (1)      // Compile-time error

Assignment Expressions
An assignment expression uses the = operator to assign the result of another expression to a
variable. For example:

x = x * 5

An assignment expression is not a void expression — it has a value of whatever was assigned,
and so can be incorporated into another expression. In the following example, the expression



assigns 2 to x and 10 to y:

y = 5 * (x = 2)

This style of expression can be used to initialize multiple values:

a = b = c = d = 0

The compound assignment operators are syntactic shortcuts that combine assignment with
another operator. For example:

x *= 2    // equivalent to x = x * 2
x <<= 1   // equivalent to x = x << 1

(A subtle exception to this rule is with events, which we describe in Chapter 4: the += and -=
operators here are treated specially and map to the event’s add and remove accessors.)

Operator Precedence and Associativity
When an expression contains multiple operators, precedence and associativity determine the
order of their evaluation. Operators with higher precedence execute before operators of lower
precedence. If the operators have the same precedence, the operator’s associativity determines
the order of evaluation.

Precedence
The following expression:

1 + 2 * 3

is evaluated as follows because * has a higher precedence than +:

1 + (2 * 3)

Left-associative operators
Binary operators (except for assignment, lambda, and null coalescing operators) are left-
associative; in other words, they are evaluated from left to right. For example, the following
expression:

8 / 4 / 2

is evaluated as follows due to left associativity:

( 8 / 4 ) / 2    // 1

You can insert parentheses to change the actual order of evaluation:

8 / ( 4 / 2 )    // 4

Right-associative operators
The assignment operators, lambda, null coalescing, and conditional operator are right-



associative; in other words, they are evaluated from right to left. Right associativity allows
multiple assignments such as the following to compile:

x = y = 3;

This first assigns 3 to y, and then assigns the result of that expression (3) to x.

Operator Table
Table 2-3 lists C#’s operators in order of precedence. Operators in the same category have the
same precedence. We explain user-overloadable operators in “Operator Overloading” in
Chapter 4.

Table 2-3. C# operators (categories in order of precedence)

Category Operator
symbol

Operator name Example User-
overloadable

Primary . Member access x.y No

 -> (unsafe) Pointer to struct x->y No

 () Function call x() No

 [] Array/index a[x] Via indexer

 ++ Post-increment x++ Yes

 −− Post-decrement x−− Yes

 new Create instance new Foo() No

 stackalloc Unsafe stack allocation stackalloc(10) No

 typeof Get type from identifier typeof(int) No

 nameof Get name of identifier nameof(x) No

 checked Integral overflow check
on

checked(x) No

 unchecked Integral overflow check
off

unchecked(x) No

 default Default value default(char) No

Unary await Await await myTask No

 sizeof Get size of struct sizeof(int) No

 ?. Null-conditional x?.y No

 + Positive value of +x Yes

 − Negative value of −x Yes

 ! Not !x Yes

 ~ Bitwise complement ~x Yes

 ++ Pre-increment ++x Yes

 −− Pre-decrement −−x Yes

 () Cast (int)x No

 * (unsafe) Value at address *x No

 & (unsafe) Address of value &x No

Multiplicative * Multiply x * y Yes

 / Divide x / y Yes



 % Remainder x % y Yes

Additive + Add x + y Yes

 − Subtract x − y Yes

Shift << Shift left x << 1 Yes

 >> Shift right x >> 1 Yes

Relational < Less than x < y Yes

 > Greater than x > y Yes

 <= Less than or equal to x <= y Yes

 >= Greater than or equal to x >= y Yes

 is Type is or is subclass of x is y No

 as Type conversion x as y No

Equality == Equals x == y Yes

 != Not equals x != y Yes

Logical And & And x & y Yes

Logical Xor ^ Exclusive Or x ^ y Yes

Logical Or | Or x | y Yes

Conditional And && Conditional And x && y Via &

Conditional Or || Conditional Or x || y Via |

Null coalescing ?? Null coalescing x ?? y No

Conditional ?: Conditional isTrue ? thenThisValue :
elseThisValue

No

Assignment &
Lambda

= Assign x = y No

 *= Multiply self by x *= 2 Via *

 /= Divide self by x /= 2 Via /

 += Add to self x += 2 Via +

 −= Subtract from self x −= 2 Via −

 <<= Shift self left by x <<= 2 Via <<

 >>= Shift self right by x >>= 2 Via >>

 &= And self by x &= 2 Via &

 ^= Exclusive-Or self by x ^= 2 Via ^

 |= Or self by x |= 2 Via |

 => Lambda x => x + 1 No

Null Operators
C# provides two operators to make it easier to work with nulls: the null coalescing operator
and the null-conditional operator.

Null Coalescing Operator
The ?? operator is the null coalescing operator. It says “If the operand is non-null, give it to
me; otherwise, give me a default value.” For example:

string s1 = null;
string s2 = s1 ?? "nothing";   // s2 evaluates to "nothing"



If the lefthand expression is non-null, the righthand expression is never evaluated. The null
coalescing operator also works with nullable value types (see “Nullable Types” in Chapter 4).

Null-conditional Operator (C# 6)
The ?. operator is the null-conditional or “Elvis” operator (after the Elvis emoticon), and is
new to C# 6. It allows you to call methods and access members just like the standard dot
operator, except that if the operand on the left is null, the expression evaluates to null instead of
throwing a Null ReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?.ToString();  // No error; s instead evaluates to null

The last line is equivalent to:

string s = (sb == null ? null : sb.ToString());

Upon encountering a null, the Elvis operator short-circuits the remainder of the expression. In
the following example, s evaluates to null, even with a standard dot operator between
ToString() and ToUpper():

System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper();   // s evaluates to null without error

Repeated use of Elvis is necessary only if the operand immediately to its left may be null. The
following expression is robust to both x being null and x.y being null:

x?.y?.z

and is equivalent to the following (except that x.y is evaluated only once):

x == null ? null
          : (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length;   // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Types” in Chapter 4): If
you’re already familiar with nullable types, here’s a preview:

int? length = sb?.ToString().Length;   // OK : int? can be null

You can also use the null-conditional operator to call a void method:

someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than throwing a
NullReferenceException.
The null-conditional operator can be used with the commonly used type members that we



describe in Chapter 3, including methods, fields, properties and indexers. It also combines
well with the null coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing";   // s evaluates to "nothing"

Statements
Functions comprise statements that execute sequentially in the textual order in which they
appear. A statement block is a series of statements appearing between braces (the {} tokens).

Declaration Statements
A declaration statement declares a new variable, optionally initializing the variable with an
expression. A declaration statement ends in a semicolon. You may declare multiple variables
of the same type in a comma-separated list. For example:

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;

A constant declaration is like a variable declaration, except that it cannot be changed after it
has been declared, and the initialization must occur with the declaration (see “Constants” in
Chapter 3):

const double c = 2.99792458E08;
c += 10;                        // Compile-time Error

Local variables
The scope of a local variable or local constant extends throughout the current block. You
cannot declare another local variable with the same name in the current block or in any nested
blocks. For example:

static void Main()
{
  int x;
  {
    int y;
    int x;            // Error - x already defined
  }
  {
    int y;            // OK - y not in scope
  }
  Console.Write (y);  // Error - y is out of scope
}

NOTE
A variable’s scope extends in both directions throughout its code block. This means that if
we moved the initial declaration of x in this example to the bottom of the method, we’d get
the same error. This is in contrast to C++ and is somewhat peculiar, given that it’s not legal to
refer to a variable or constant before it’s declared.



Expression Statements
Expression statements are expressions that are also valid statements. An expression statement
must either change state or call something that might change state. Changing state essentially
means changing a variable. The possible expression statements are:

Assignment expressions (including increment and decrement expressions)

Method call expressions (both void and nonvoid)

Object instantiation expressions

Here are some examples:

// Declare variables with declaration statements:
string s;
int x, y;
System.Text.StringBuilder sb;

// Expression statements
x = 1 + 2;                 // Assignment expression
x++;                       // Increment expression
y = Math.Max (x, 5);       // Assignment expression
Console.WriteLine (y);     // Method call expression
sb = new StringBuilder();  // Assignment expression
new StringBuilder();       // Object instantiation expression

When you call a constructor or a method that returns a value, you’re not obliged to use the
result. However, unless the constructor or method changes state, the statement is completely
useless:

new StringBuilder();     // Legal, but useless
new string ('c', 3);     // Legal, but useless
x.Equals (y);            // Legal, but useless

Selection Statements
C# has the following mechanisms to conditionally control the flow of program execution:

Selection statements (if, switch)

Conditional operator (?:)

Loop statements (while, do..while, for, foreach)

This section covers the simplest two constructs: the if-else statement and the switch
statement.

The if statement
An if statement executes a statement if a bool expression is true. For example:

if (5 < 2 * 3)
  Console.WriteLine ("true");       // true

The statement can be a code block:

if (5 < 2 * 3)



{
  Console.WriteLine ("true");
  Console.WriteLine ("Let's move on!");
}

The else clause
An if statement can optionally feature an else clause:

if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  Console.WriteLine ("False");        // False

Within an else clause, you can nest another if statement:

if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  if (2 + 2 == 4)
    Console.WriteLine ("Computes");    // Computes

Changing the flow of execution with braces
An else clause always applies to the immediately preceding if statement in the statement
block. For example:

if (true)
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");

This is semantically identical to:

if (true)
{
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");
}

We can change the execution flow by moving the braces:

if (true)
{
  if (false)
    Console.WriteLine();
}
else
  Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of nested if
statements — even when not required by the compiler. A notable exception is with the
following pattern:

static void TellMeWhatICanDo (int age)
{
  if (age >= 35)
    Console.WriteLine ("You can be president!");



  else if (age >= 21)
    Console.WriteLine ("You can drink!");
  else if (age >= 18)
    Console.WriteLine ("You can vote!");
  else
    Console.WriteLine ("You can wait!");
}

Here, we’ve arranged the if and else statements to mimic the “elseif” construct of other
languages (and C#’s #elif preprocessor directive). Visual Studio’s auto-formatting recognizes
this pattern and preserves the indentation. Semantically, though, each if statement following an
else statement is functionally nested within the else clause.

The switch statement
switch statements let you branch program execution based on a selection of possible values
that a variable may have. switch statements may result in cleaner code than multiple if
statements, since switch statements require an expression to be evaluated only once. For
instance:

static void ShowCard (int cardNumber)
{
  switch (cardNumber)
  {
    case 13:
      Console.WriteLine ("King");
      break;
    case 12:
      Console.WriteLine ("Queen");
      break;
    case 11:
      Console.WriteLine ("Jack");
      break;
    case -1:                         // Joker is -1
      goto case 12;                  // In this game joker counts as queen
    default:                         // Executes for any other cardNumber
      Console.WriteLine (cardNumber);
      break;
  }
}

This example demonstrates the most common scenario, which is switching on constants. When
you specify a constant, you’re restricted to the built-in integral types, bool, char, enum types,
and the string type.
At the end of each case clause, you must say explicitly where execution is to go next, with
some kind of jump statement (unless your code ends in an infinite loop). Here are the options:

break (jumps to the end of the switch statement)

goto case x (jumps to another case clause)

goto default (jumps to the default clause)

Any other jump statement — namely, return, throw, continue, or goto label

When more than one value should execute the same code, you can list the common cases
sequentially:

switch (cardNumber)



{
  case 13:
  case 12:
  case 11:
    Console.WriteLine ("Face card");
    break;
  default:
    Console.WriteLine ("Plain card");
    break;
}

This feature of a switch statement can be pivotal in terms of producing cleaner code than
multiple if-else statements.

The switch statement with patterns (C# 7)
From C# 7, you can also switch on types:

static void Main()
{
  TellMeTheType (12);
  TellMeTheType ("hello");
  TellMeTheType (true);
}

static void TellMeTheType (object x)   // object allows any type.
{
  switch (x)
  {
    case int i:
      Console.WriteLine ("It's an int!");
      Console.WriteLine ($"The square of {i} is {i * i}");
      break;
    case string s:
      Console.WriteLine ("It's a string");
      Console.WriteLine ($"The length of {s} is {s.Length}");
      break;
    default:
      Console.WriteLine ("I don't know what x is");
      break;
  }
}

(The object type allows for a variable of any type; we discuss this fully in “Inheritance” and
“The object Type” in Chapter 3.)
Each case clause specifies a type upon which to match, and a variable upon which to assign the
typed value if the match succeeds (see the “pattern” variable). Unlike with constants, there’s no
restriction on what types you can use.
You can predicate a case with the when keyword:

switch (x)
{
  case bool b when b == true:     // Fires only when b is true
    Console.WriteLine ("True!");
    break;
  case bool b:
    Console.WriteLine ("False!");
    break;
}

The order of the case clauses can matter when switching on type (unlike when switching on
constants). This example would give a different result if we reversed the two cases (in fact, it



would not even compile, because the compiler would determine that the second case is
unreachable). An exception to this rule is the default clause, which is always executed last,
regardless of where it appears.
You can stack multiple case clauses. The Console.WriteLine in the following code will
execute for any floating-point type greater than 1000:

switch (x)
{
  case float f when f > 1000:
  case double d when d > 1000:
  case decimal m when m > 1000:
    Console.WriteLine ("We can refer to x here but not f or d or m");
    break;
}

In this example, the compiler lets us consume the pattern variables f, d, and m, only in the
when clauses. When we call Console.WriteLine, it’s unknown as to which one of those three
variables will be assigned, so the compiler puts all of them out of scope.
You can mix and match constants and patterns in the same switch statement. And you can also
switch on the null value:

case null:
  Console.WriteLine ("Nothing here");
  break;

Iteration Statements
C# enables a sequence of statements to execute repeatedly with the while, do-while, for, and
foreach statements.

while and do-while loops
while loops repeatedly execute a body of code while a bool expression is true. The
expression is tested before the body of the loop is executed. For example:

int i = 0;
while (i < 3)
{
  Console.WriteLine (i);
  i++;
}

OUTPUT:
0
1
2

do-while loops differ in functionality from while loops only in that they test the expression
after the statement block has executed (ensuring that the block is always executed at least
once). Here’s the preceding example rewritten with a do-while loop:

int i = 0;
do
{
  Console.WriteLine (i);
  i++;
}
while (i < 3);



for loops
for loops are like while loops with special clauses for initialization and iteration of a loop
variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
  statement-or-statement-block

Initialization clause
Executed before the loop begins; used to initialize one or more iteration variables.

Condition clause
The bool expression that, while true, will execute the body.

Iteration clause
Executed after each iteration of the statement block; used typically to update the iteration
variable.

For example, the following prints the numbers 0 through 2:

for (int i = 0; i < 3; i++)
  Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (where each number is the sum of the
previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
  Console.WriteLine (prevFib);
  int newFib = prevFib + curFib;
  prevFib = curFib; curFib = newFib;
}

Any of the three parts of the for statement may be omitted. One can implement an infinite loop
such as the following (though while(true) may be used instead):

for (;;)
  Console.WriteLine ("interrupt me");

foreach loops
The foreach statement iterates over each element in an enumerable object. Most of the types in
C# and the .NET Framework that represent a set or list of elements are enumerable. For
example, both an array and a string are enumerable. Here is an example of enumerating over
the characters in a string, from the first character through to the last:

foreach (char c in "beer")   // c is the iteration variable
  Console.WriteLine (c);

OUTPUT:
b
e
e
r

We define enumerable objects in “Enumeration and Iterators” in Chapter 4.



Jump Statements
The C# jump statements are break, continue, goto, return, and throw.

NOTE
Jump statements obey the reliability rules of try statements (see “try Statements and
Exceptions” in Chapter 4). This means that:

A jump out of a try block always executes the try’s finally block before reaching the
target of the jump.

A jump cannot be made from the inside to the outside of a finally block (except via
throw).

The break statement
The break statement ends the execution of the body of an iteration or switch statement:

int x = 0;
while (true)
{
  if (x++ > 5)
    break ;      // break from the loop
}
// execution continues here after break
...

The continue statement
The continue statement forgoes the remaining statements in a loop and makes an early start on
the next iteration. The following loop skips even numbers:

for (int i = 0; i < 10; i++)
{
  if ((i % 2) == 0)       // If i is even,
    continue;             // continue with next iteration

  Console.Write (i + " ");
}

OUTPUT: 1 3 5 7 9

The goto statement
The goto statement transfers execution to another label within a statement block. The form is
as follows:

goto statement-label;

Or, when used within a switch statement:

goto case case-constant;    // (Only works with constants, not patterns)

A label is a placeholder in a code block that precedes a statement, denoted with a colon suffix.
The following iterates the numbers 1 through 5, mimicking a for loop:



int i = 1;
startLoop:
if (i <= 5)
{
  Console.Write (i + " ");
  i++;
  goto startLoop;
}

OUTPUT: 1 2 3 4 5

The goto case case-constant transfers execution to another case in a switch block (see
“The switch statement”).

The return statement
The return statement exits the method and must return an expression of the method’s return
type if the method is nonvoid:

static decimal AsPercentage (decimal d)
{
  decimal p = d * 100m;
  return p;             // Return to the calling method with value
}

A return statement can appear anywhere in a method (except in a finally block).

The throw statement
The throw statement throws an exception to indicate an error has occurred (see “try Statements
and Exceptions” in Chapter 4):

if (w == null)
  throw new ArgumentNullException (...);

Miscellaneous Statements
The using statement provides an elegant syntax for calling Dispose on objects that implement
IDisposable, within a finally block (see “try Statements and Exceptions” in Chapter 4 and
“IDisposable, Dispose, and Close” in Chapter 12).

NOTE
C# overloads the using keyword to have independent meanings in different contexts.
Specifically, the using directive is different from the using statement.

The lock statement is a shortcut for calling the Enter and Exit methods of the Monitor class
(see Chapters 14 and 23).

Namespaces
A namespace is a domain for type names. Types are typically organized into hierarchical
namespaces, making them easier to find and avoiding conflicts. For example, the RSA type that
handles public key encryption is defined within the following namespace:



System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s Create
method:

System.Security.Cryptography.RSA rsa =
  System.Security.Cryptography.RSA.Create();

NOTE
Namespaces are independent of assemblies, which are units of deployment such as an .exe or
.dll (described in Chapter 18).
Namespaces also have no impact on member visibility — public, internal, private, and so
on.

The namepace keyword defines a namespace for types within that block. For example:

namespace Outer.Middle.Inner
{
  class Class1 {}
  class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that follows is
semantically identical to the preceding example:

namespace Outer
{
  namespace Middle
  {
    namespace Inner
    {
      class Class1 {}
      class Class2 {}
    }
  }
}

You can refer to a type with its fully qualified name, which includes all namespaces from the
outermost to the innermost. For example, we could refer to Class1 in the preceding example as
Outer.Middle.Inner.Class1.
Types not defined in any namespace are said to reside in the global namespace. The global
namespace also includes top-level namespaces, such as Outer in our example.

The using Directive
The using directive imports a namespace, allowing you to refer to types without their fully
qualified names. The following imports the previous example’s Outer.Middle.Inner
namespace:

using Outer.Middle.Inner;

class Test
{
  static void Main()



  {
    Class1 c;    // Don't need fully qualified name
  }
}

NOTE
It’s legal (and often desirable) to define the same type name in different namespaces.
However, you’d typically do so only if it was unlikely for a consumer to want to import both
namespaces at once. A good example, from the .NET Framework, is the TextBox class,
which is defined both in System.Windows.Controls (WPF) and System.Web.UI.WebControls
(ASP.NET).

using static (C# 6)
From C# 6, you can import not just a namespace, but a specific type, with the using static
directive. All static members of that type can then be used without being qualified with the type
name. In the following example, we call the Console class’s static WriteLine method:

using static System.Console;

class Test
{
  static void Main() { WriteLine ("Hello"); }
}

The using static directive imports all accessible static members of the type, including
fields, properties, and nested types (Chapter 3). You can also apply this directive to enum types
(Chapter 3), in which case their members are imported. So, if we import the following enum
type:

using static System.Windows.Visibility;

we can specify Hidden instead of Visibility.Hidden:

var textBox = new TextBox { Visibility = Hidden };   // XAML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not smart enough
to infer the correct type from the context, and will generate an error.

Rules Within a Namespace

Name scoping
Names declared in outer namespaces can be used unqualified within inner namespaces. In this
example, Class1 does not need qualification within Inner:

namespace Outer
{
  class Class1 {}

  namespace Inner
  {
    class Class2 : Class1  {}
  }



}

If you want to refer to a type in a different branch of your namespace hierarchy, you can use a
partially qualified name. In the following example, we base SalesReport on
Common.ReportBase:

namespace MyTradingCompany
{
  namespace Common
  {
    class ReportBase {}
  }
  namespace ManagementReporting
  {
    class SalesReport : Common.ReportBase  {}
  }
}

Name hiding
If the same type name appears in both an inner and an outer namespace, the inner name wins. To
refer to the type in the outer namespace, you must qualify its name. For example:

namespace Outer
{
  class Foo { }

  namespace Inner
  {
    class Foo { }

    class Test
    {
      Foo f1;         // = Outer.Inner.Foo
      Outer.Foo f2;   // = Outer.Foo
    }
  }
}

NOTE
All type names are converted to fully qualified names at compile time. Intermediate Language
(IL) code contains no unqualified or partially qualified names.

Repeated namespaces
You can repeat a namespace declaration, as long as the type names within the namespaces don’t
conflict:

namespace Outer.Middle.Inner
{
  class Class1 {}
}

namespace Outer.Middle.Inner
{
  class Class2 {}
}

We can even break the example into two source files such that we could compile each class



into a different assembly.
Source file 1:

namespace Outer.Middle.Inner
{
  class Class1 {}
}

Source file 2:

namespace Outer.Middle.Inner
{
  class Class2 {}
}

Nested using directive
You can nest a using directive within a namespace. This allows you to scope the using
directive within a namespace declaration. In the following example, Class1 is visible in one
scope, but not in another:

namespace N1
{
  class Class1 {}
}

namespace N2
{
  using N1;

  class Class2 : Class1 {}
}

namespace N2
{
  class Class3 : Class1 {}   // Compile-time error
}

Aliasing Types and Namespaces
Importing a namespace can result in type-name collision. Rather than importing the whole
namespace, you can import just the specific types you need, giving each type an alias. For
example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern
Extern aliases allow your program to reference two types with the same fully qualified name
(i.e., the namespace and type name are identical). This is an unusual scenario and can occur



only when the two types come from different assemblies. Consider the following example.
Library 1:

// csc target:library /out:Widgets1.dll widgetsv1.cs

namespace Widgets
{
  public class Widget {}
}

Library 2:

// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets
{
  public class Widget {}
}

Application:

// csc /r:Widgets1.dll /r:Widgets2.dll application.cs

using Widgets;

class Test
{
  static void Main()
  {
    Widget w = new Widget();
  }
}

The application cannot compile, because Widget is ambiguous. Extern aliases can resolve the
ambiguity in our application:

// csc /r:W1=Widgets1.dll /r:W2=Widgets2.dll application.cs

extern alias W1;
extern alias W2;

class Test
{
  static void Main()
  {
    W1.Widgets.Widget w1 = new W1.Widgets.Widget();
    W2.Widgets.Widget w2 = new W2.Widgets.Widget();
  }
}

Namespace alias qualifiers
As we mentioned earlier, names in inner namespaces hide names in outer namespaces.
However, sometimes even the use of a fully qualified type name does not resolve the conflict.
Consider the following example:

namespace N
{
  class A
  {
    public class B {}                    // Nested type
    static void Main() { new A.B(); }    // Instantiate class B



  }
}

namespace A
{
  class B {}
}

The Main method could be instantiating either the nested class B, or the class B within the
namespace A. The compiler always gives higher precedence to identifiers in the current
namespace; in this case, the nested B class.
To resolve such conflicts, a namespace name can be qualified, relative to one of the following:

The global namespace — the root of all namespaces (identified with the contextual keyword
global)

The set of extern aliases

The :: token is used for namespace alias qualification. In this example, we qualify using the
global namespace (this is most commonly seen in auto-generated code to avoid name
conflicts):

namespace N
{
  class A
  {
    static void Main()
    {
      System.Console.WriteLine (new A.B());
      System.Console.WriteLine (new global::A.B());
    }

    public class B {}
  }
}

namespace A
{
  class B {}
}

Here is an example of qualifying with an alias (adapted from the example in “Extern”):

extern alias W1;
extern alias W2;

class Test
{
  static void Main()
  {
    W1::Widgets.Widget w1 = new W1::Widgets.Widget();
    W2::Widgets.Widget w2 = new W2::Widgets.Widget();
  }
}

A minor caveat is that very large long values lose some precision when converted to double.

Technically, decimal is a floating-point type too, although it’s not referred to as such in the C#
language specification.

It’s possible to overload these operators (Chapter 4) such that they return a non-bool type, but this
is almost never done in practice.

1

2

3



An exception to this rule is when calling COM methods. We discuss this in Chapter 25.4



Chapter 3. Creating Types in C#

In this chapter, we will delve into types and type members.

Classes
A class is the most common kind of reference type. The simplest possible class declaration is
as follows:

class YourClassName
{
}

A more complex class optionally has the following:

Preceding the
keyword class

Attributes and class modifiers. The non-nested class modifiers are public, internal, abstract,
sealed, static, unsafe, and partial

Following
YourClassName

Generic type parameters, a base class, and interfaces

Within the braces Class members (these are methods, properties, indexers, events, fields, constructors, overloaded
operators, nested types, and a finalizer)

This chapter covers all of these constructs except attributes, operator functions, and the unsafe
keyword, which are covered in Chapter 4. The following sections enumerate each of the class
members.

Fields
A field is a variable that is a member of a class or struct. For example:

class Octopus
{
  string name;
  public int Age = 10;
}

Fields allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifier new

Unsafe code modifier unsafe

Read-only modifier readonly

Threading modifier volatile

The readonly modifier
The readonly modifier prevents a field from being modified after construction. A read-only
field can be assigned only in its declaration or within the enclosing type’s constructor.



Field initialization
Field initialization is optional. An uninitialized field has a default value (0, \0, null, false).
Field initializers run before constructors:

public int Age = 10;

Declaring multiple fields together
For convenience, you may declare multiple fields of the same type in a comma-separated list.
This is a convenient way for all the fields to share the same attributes and field modifiers. For
example:

static readonly int legs = 8,
                    eyes = 2;

Methods
A method performs an action in a series of statements. A method can receive input data from
the caller by specifying parameters and output data back to the caller by specifying a return
type. A method can specify a void return type, indicating that it doesn’t return any value to its
caller. A method can also output data back to the caller via ref/out parameters.
A method’s signature must be unique within the type. A method’s signature comprises its name
and parameter types in order (but not the parameter names, nor the return type).
Methods allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifiers new virtual abstract override sealed

Partial method modifier partial

Unmanaged code modifiers unsafe extern

Asynchronous code modifier async

Expression-bodied methods (C# 6)
A method that comprises a single expression, such as the following:

int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method. A fat arrow replaces the braces
and return keyword:

int Foo (int x) => x * 2;

Expression-bodied functions can also have a void return type:

void Foo (int x) => Console.WriteLine (x);

Overloading methods
A type may overload methods (have multiple methods with the same name), as long as the



signatures are different. For example, the following methods can all coexist in the same type:

void Foo (int x) {...}
void Foo (double x) {...}
void Foo (int x, float y) {...}
void Foo (float x, int y) {...}

However, the following pairs of methods cannot coexist in the same type, since the return type
and the params modifier are not part of a method’s signature:

void  Foo (int x) {...}
float Foo (int x) {...}           // Compile-time error

void  Goo (int[] x) {...}
void  Goo (params int[] x) {...}  // Compile-time error

Pass-by-value versus pass-by-reference
Whether a parameter is pass-by-value or pass-by-reference is also part of the signature. For
example, Foo(int) can coexist with either Foo(ref int) or Foo(out int). However,
Foo(ref int) and Foo(out int) cannot coexist:

void Foo (int x) {...}
void Foo (ref int x) {...}     // OK so far
void Foo (out int x) {...}     // Compile-time error

Local methods (C# 7)
From C# 7, you can define a method inside another method:

void WriteCubes()
{
  Console.WriteLine (Cube (3));
  Console.WriteLine (Cube (4));
  Console.WriteLine (Cube (5));

  int Cube (int value) => value * value * value;
}

The local method (Cube, in this case) is visible only to the enclosing method (WriteCubes).
This simplifies the containing type and instantly signals to anyone looking at the code that Cube
is used nowhere else. Another benefit of local methods is that they can access the local
variables and parameters of the enclosing method. This has a number of consequences, which
we describe in detail in “Capturing Outer Variables” in Chapter 4.
Local methods can appear inside other function kinds, such as property accessors, constructors,
and so on. You can even put local methods inside other local methods, and inside lambda
expressions that use a statement block (Chapter 4). Local methods can be iterators (Chapter 4)
or asynchronous (Chapter 14).
The static modifier is invalid for local methods. They are implicitly static if the enclosing
method is static.

Instance Constructors
Constructors run initialization code on a class or struct. A constructor is defined like a method,
except that the method name and return type are reduced to the name of the enclosing type:



public class Panda
{
  string name;                   // Define field
  public Panda (string n)        // Define constructor
  {
    name = n;                    // Initialization code (set up field)
  }
}
...

Panda p = new Panda ("Petey");   // Call constructor

Instance constructors allow the following modifiers:

Access modifiers public internal private protected

Unmanaged code modifiers unsafe extern

From C# 7, single-statement constructors can also be written as expression-bodied members:

public Panda (string n) => name = n;

Overloading constructors
A class or struct may overload constructors. To avoid code duplication, one constructor may
call another, using the this keyword:

using System;

public class Wine
{
  public decimal Price;
  public int Year;
  public Wine (decimal price) { Price = price; }
  public Wine (decimal price, int year) : this (price) { Year = year; }
}

When one constructor calls another, the called constructor executes first.
You can pass an expression into another constructor as follows:

public Wine (decimal price, DateTime year) : this (price, year.Year) { }

The expression itself cannot make use of the this reference, for example, to call an instance
method. (This is enforced because the object has not been initialized by the constructor at this
stage, so any methods that you call on it are likely to fail.) It can, however, call static methods.

Implicit parameterless constructors
For classes, the C# compiler automatically generates a parameterless public constructor if and
only if you do not define any constructors. However, as soon as you define at least one
constructor, the parameterless constructor is no longer automatically generated.

Constructor and field initialization order
We saw previously that fields can be initialized with default values in their declaration:

class Player
{
  int shields = 50;   // Initialized first



  int health = 100;   // Initialized second
}

Field initializations occur before the constructor is executed, and in the declaration order of the
fields.

Nonpublic constructors
Constructors do not need to be public. A common reason to have a nonpublic constructor is to
control instance creation via a static method call. The static method could be used to return an
object from a pool rather than necessarily creating a new object, or return various subclasses
based on input arguments:

public class Class1
{
  Class1() {}                             // Private constructor
  public static Class1 Create (...)
  {
    // Perform custom logic here to return an instance of Class1
    ...
  }
}

Deconstructors (C# 7)
C# 7 introduces the deconstructor pattern. A deconstructor (also called a deconstructing
method) acts as an approximate opposite to a constructor: Whereas a constructor typically
takes a set of values (as parameters) and assigns them to fields, a deconstructor does the
reverse and assigns fields back to a set of variables.
A deconstruction method must be called Deconstruct, and have one or more out parameters,
such as in the following class:

class Rectangle
{
  public readonly float Width, Height;
  
  public Rectangle (float width, float height)
  {
    Width = width;
    Height = height;
  }
  
  public void Deconstruct (out float width, out float height)
  {
    width = Width;
    height = Height;
  }
}

To call the deconstructor, we use the following special syntax:

var rect = new Rectangle (3, 4);
(float width, float height) = rect;          // Deconstruction
Console.WriteLine (width + " " + height);    // 3 4

The second line is the deconstructing call. It creates two local variables and then calls the
Deconstruct method. Our deconstructing call is equivalent to:

float width, height;



rect.Deconstruct (out width, out height);

Or:

rect.Deconstruct (out var width, out var height);

Deconstructing calls allow implicit typing, so we could shorten our call to:

(var width, var height) = rect;

Or simply:

var (width, height) = rect;

If the variables into which you’re deconstructing are already defined, omit the types altogether:

float width, height;
(width, height) = rect;

This is called a deconstructing assignment.
You can offer the caller a range of deconstruction options by overloading the Deconstruct
method.

NOTE
The Deconstruct method can be an extension method (see “Extension Methods” in
Chapter 4). This is a useful trick if you want to deconstruct types you did not author.

Object Initializers
To simplify object initialization, any accessible fields or properties of an object can be set via
an object initializer directly after construction. For example, consider the following class:

public class Bunny
{
  public string Name;
  public bool LikesCarrots;
  public bool LikesHumans;

  public Bunny () {}
  public Bunny (string n) { Name = n; }
}

Using object initializers, you can instantiate Bunny objects as follows:

// Note parameterless constructors can omit empty parentheses
Bunny b1 = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo")     { LikesCarrots=true, LikesHumans=false };

The code to construct b1 and b2 is precisely equivalent to:

Bunny temp1 = new Bunny();    // temp1 is a compiler-generated name
temp1.Name = "Bo";
temp1.LikesCarrots = true;



temp1.LikesHumans = false;
Bunny b1 = temp1;

Bunny temp2 = new Bunny ("Bo");
temp2.LikesCarrots = true;
temp2.LikesHumans = false;
Bunny b2 = temp2;

The temporary variables are to ensure that if an exception is thrown during initialization, you
can’t end up with a half-initialized object.

OBJECT INITIALIZERS VERSUS OPTIONAL PARAMETERS
Instead of using object initializers, we could make Bunny’s constructor accept optional parameters:

public Bunny (string name,
              bool likesCarrots = false,
              bool likesHumans = false)
{
  Name = name;
  LikesCarrots = likesCarrots;
  LikesHumans = likesHumans; 
}

This would allow us to construct a Bunny as follows:

Bunny b1 = new Bunny (name: "Bo",
                      likesCarrots: true);

An advantage of this approach is that we could make Bunny’s fields (or properties, as we’ll explain
shortly) read-only if we choose. Making fields or properties read-only is good practice when there’s
no valid reason for them to change throughout the life of the object.
The disadvantage in this approach is that each optional parameter value is baked into the calling
site. In other words, C# translates our constructor call into this:

Bunny b1 = new Bunny ("Bo", true, false);

This can be problematic if we instantiate the Bunny class from another assembly, and later modify
Bunny by adding another optional parameter — such as likesCats. Unless the referencing assembly
is also recompiled, it will continue to call the (now nonexistent) constructor with three parameters
and fail at runtime. (A subtler problem is that if we changed the value of one of the optional
parameters, callers in other assemblies would continue to use the old optional value until they were
recompiled.)
Hence, you should exercise caution with optional parameters in public functions if you want to offer
binary compatibility between assembly versions.

Object initializers were introduced in C# 3.0.

The this Reference
The this reference refers to the instance itself. In the following example, the Marry method
uses this to set the partner’s mate field:

public class Panda
{
  public Panda Mate;

  public void Marry (Panda partner)



  {
    Mate = partner;
    partner.Mate = this;
  }
}

The this reference also disambiguates a local variable or parameter from a field. For
example:

public class Test
{
  string name;
  public Test (string name) { this.name = name; }
}

The this reference is valid only within nonstatic members of a class or struct.

Properties
Properties look like fields from the outside, but internally they contain logic, like methods do.
For example, you can’t tell by looking at the following code whether CurrentPrice is a field
or a property:

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);

A property is declared like a field, but with a get/set block added. Here’s how to implement
CurrentPrice as a property:

public class Stock
{
  decimal currentPrice;           // The private "backing" field

  public decimal CurrentPrice     // The public property
  {
    get { return currentPrice; }
    set { currentPrice = value; }
  }
}

get and set denote property accessors. The get accessor runs when the property is read. It
must return a value of the property’s type. The set accessor runs when the property is
assigned. It has an implicit parameter named value of the property’s type that you typically
assign to a private field (in this case, currentPrice).
Although properties are accessed in the same way as fields, they differ in that they give the
implementer complete control over getting and setting its value. This control enables the
implementer to choose whatever internal representation is needed, without exposing the
internal details to the user of the property. In this example, the set method could throw an
exception if value was outside a valid range of values.

NOTE
Throughout this book, we use public fields extensively to keep the examples free of
distraction. In a real application, you would typically favor public properties over public



fields, in order to promote encapsulation.

Properties allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifiers new virtual abstract override sealed

Unmanaged code modifiers unsafe extern

Read-only and calculated properties
A property is read-only if it specifies only a get accessor, and it is write-only if it specifies
only a set accessor. Write-only properties are rarely used.
A property typically has a dedicated backing field to store the underlying data. However, a
property can also be computed from other data. For example:

decimal currentPrice, sharesOwned;

public decimal Worth
{
  get { return currentPrice * sharesOwned; }
}

Expression-bodied properties (C# 6, C# 7)
From C# 6, you can declare a read-only property, such as the preceding example, more tersely
as an expression-bodied property. A fat arrow replaces all the braces and the get and return
keywords:

public decimal Worth => currentPrice * sharesOwned;

C# 7 extends this further by allowing set accessors to be expression-bodied, with a little extra
syntax:

public decimal Worth
{
  get => currentPrice * sharesOwned;
  set => sharesOwned = value / currentPrice;
}

Automatic properties
The most common implementation for a property is a getter and/or setter that simply reads and
writes to a private field of the same type as the property. An automatic property declaration
instructs the compiler to provide this implementation. We can improve the first example in this
section by declaring CurrentPrice as an automatic property:

public class Stock
{
  ...
  public decimal CurrentPrice { get; set; }
}

The compiler automatically generates a private backing field of a compiler-generated name that



cannot be referred to. The set accessor can be marked private or protected if you want to
expose the property as read-only to other types. Automatic properties were introduced in C#
3.0.

Property initializers (C# 6)
From C# 6, you can add a property initializer to automatic properties, just as with fields:

public decimal CurrentPrice { get; set; } = 123;

This gives CurrentPrice an initial value of 123. Properties with an initializer can be read-
only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties can also be assigned in the type’s
constructor. This is useful in creating immutable (read-only) types.

get and set accessibility
The>  get and set accessors can have different access levels. The typical use case for this is
to have a public property with an internal or private access modifier on the setter:

public class Foo
{
  private decimal x;
  public decimal X
  {
    get         { return x;  }
    private set { x = Math.Round (value, 2); }
  }
}

Notice that you declare the property itself with the more permissive access level (public, in
this case), and add the modifier to the accessor you want to be less accessible.

CLR property implementation
C# property accessors internally compile to methods called get_XXX and set_XXX:

public decimal get_CurrentPrice {...}
public void set_CurrentPrice (decimal value) {...}

Simple nonvirtual property accessors are inlined by the JIT (Just-In-Time) compiler,
eliminating any performance difference between accessing a property and a field. Inlining is an
optimization in which a method call is replaced with the body of that method.
With WinRT properties, the compiler assumes the put_XXX naming convention rather than
set_XXX.

Indexers
Indexers provide a natural syntax for accessing elements in a class or struct that encapsulate a
list or dictionary of values. Indexers are similar to properties, but are accessed via an index
argument rather than a property name. The string class has an indexer that lets you access
each of its char values via an int index:



string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'l'

The syntax for using indexers is like that for using arrays, except that the index argument(s) can
be of any type(s).
Indexers have the same modifiers as properties (see “Properties”), and can be called null-
conditionally by inserting a question mark before the square bracket (see “Null Operators” in
Chapter 2):

string s = null;
Console.WriteLine (s?[0]);  // Writes nothing; no error.

Implementing an indexer
To write an indexer, define a property called this, specifying the arguments in square
brackets. For instance:

class Sentence
{
  string[] words = "The quick brown fox".Split();

  public string this [int wordNum]      // indexer
  { 
    get { return words [wordNum];  }
    set { words [wordNum] = value; }
  }
}

Here’s how we could use this indexer:

Sentence s = new Sentence();
Console.WriteLine (s[3]);       // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]);       // kangaroo

A type may declare multiple indexers, each with parameters of different types. An indexer can
also take more than one parameter:

public string this [int arg1, string arg2]
{
  get { ... }  set { ... }
}

If you omit the set accessor, an indexer becomes read-only, and expression-bodied syntax may
be used in C# 6 to shorten its definition:

public string this [int wordNum] => words [wordNum];

CLR indexer implementation
Indexers internally compile to methods called get_Item and set_Item, as follows:

public string get_Item (int wordNum) {...}
public void set_Item (int wordNum, string value) {...}



Constants
A constant is a static field whose value can never change. A constant is evaluated statically at
compile time and the compiler literally substitutes its value whenever used (rather like a macro
in C++). A constant can be any of the built-in numeric types, bool, char, string, or an enum
type.
A constant is declared with the const keyword and must be initialized with a value. For
example:

public class Test
{
  public const string Message = "Hello World";
}

A constant is much more restrictive than a static readonly field — both in the types you can
use and in field initialization semantics. A constant also differs from a static readonly field
in that the evaluation of the constant occurs at compile time. For example:

public static double Circumference (double radius)
{
  return 2 * System.Math.PI * radius;
}

is compiled to:

public static double Circumference (double radius)
{
  return 6.2831853071795862 * radius;
}

It makes sense for PI to be a constant, since it can never change. In contrast, a static
readonly field can have a different value per application.

NOTE
A static readonly field is also advantageous when exposing to other assemblies a value that
might change in a later version. For instance, suppose assembly X exposes a constant as
follows:

public const decimal ProgramVersion = 2.3;

If assembly Y references X and uses this constant, the value 2.3 will be baked into assembly Y
when compiled. This means that if X is later recompiled with the constant set to 2.4, Y will
still use the old value of 2.3 until Y is recompiled. A static readonly field avoids this
problem.
Another way of looking at this is that any value that might change in the future is not constant
by definition, and so should not be represented as one.

Constants can also be declared local to a method. For example:

static void Main()
{
  const double twoPI  = 2 * System.Math.PI;



  ...
}

Nonlocal constants allow the following modifiers:

Access modifiers public internal private protected

Inheritance modifier new

Static Constructors
A static constructor executes once per type, rather than once per instance. A type can define
only one static constructor, and it must be parameterless and have the same name as the type:

class Test
{
  static Test() { Console.WriteLine ("Type Initialized"); }
}

The runtime automatically invokes a static constructor just prior to the type being used. Two
things trigger this:

Instantiating the type

Accessing a static member in the type

The only modifiers allowed by static constructors are unsafe and extern.

WARNING
If a static constructor throws an unhandled exception (Chapter 4), that type becomes
unusable for the life of the application.

Static constructors and field initialization order
Static field initializers run just before the static constructor is called. If a type has no static
constructor, field initializers will execute just prior to the type being used — or anytime
earlier at the whim of the runtime.
Static field initializers run in the order in which the fields are declared. The following example
illustrates this: X is initialized to 0 and Y is initialized to 3.

class Foo
{
  public static int X = Y;    // 0
  public static int Y = 3;    // 3
}

If we swap the two field initializers around, both fields are initialized to 3. The next example
prints 0 followed by 3 because the field initializer that instantiates a Foo executes before X is
initialized to 3:

class Program
{
  static void Main() { Console.WriteLine (Foo.X); }   // 3



}

class Foo
{
  public static Foo Instance = new Foo();
  public static int X = 3;

  Foo() { Console.WriteLine (X); }   // 0
}

If we swap the two lines in boldface, the example prints 3 followed by 3.

Static Classes
A class can be marked static, indicating that it must be composed solely of static members
and cannot be subclassed. The System.Console and System.Math classes are good examples
of static classes.

Finalizers
Finalizers are class-only methods that execute before the garbage collector reclaims the
memory for an unreferenced object. The syntax for a finalizer is the name of the class prefixed
with the ~ symbol:

class Class1
{
  ~Class1()
  {
    ...
  }
}

This is actually C# syntax for overriding Object’s Finalize method, and the compiler
expands it into the following method declaration:

protected override void Finalize()
{
  ...
  base.Finalize();
}

We discuss garbage collection and finalizers fully in Chapter 12.
Finalizers allow the following modifier:

Unmanaged code modifier unsafe

From C# 7, single-statement finalizers can be written with expression-bodied syntax:

~Class1() => Console.WriteLine ("Finalizing");

Partial Types and Methods
Partial types allow a type definition to be split — typically across multiple files. A common
scenario is for a partial class to be auto-generated from some other source (such as a Visual
Studio template or designer), and for that class to be augmented with additional hand-authored
methods. For example:



// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration; the following is illegal:

partial class PaymentForm {}
class PaymentForm {}

Participants cannot have conflicting members. A constructor with the same parameters, for
instance, cannot be repeated. Partial types are resolved entirely by the compiler, which means
that each participant must be available at compile time and must reside in the same assembly.
You can specify a base class on one or more partial class declarations, as long as the base
class, if specified, is the same. In addition, each participant can independently specify
interfaces to implement. We cover base classes and interfaces in “Inheritance” and
“Interfaces”.
The compiler makes no guarantees with regard to field initialization order between partial type
declarations.

Partial methods
A partial type may contain partial methods. These let an auto-generated partial type provide
customizable hooks for manual authoring. For example:

partial class PaymentForm    // In auto-generated file
{
  ...
  partial void ValidatePayment (decimal amount);
}

partial class PaymentForm    // In hand-authored file
{
  ...
  partial void ValidatePayment (decimal amount)
  {
    if (amount > 100)
      ...
  }
}

A partial method consists of two parts: a definition and an implementation. The definition is
typically written by a code generator, and the implementation is typically manually authored. If
an implementation is not provided, the definition of the partial method is compiled away (as is
the code that calls it). This allows auto-generated code to be liberal in providing hooks,
without having to worry about bloat. Partial methods must be void and are implicitly private.
Partial methods were introduced in C# 3.0.

The nameof Operator (C# 6)
The nameof operator returns the name of any symbol (type, member, variable, and so on) as a
string:

int count = 123;
string name = nameof (count);       // name is "count" 



Its advantage over simply specifying a string is that of static type checking. Tools such as
Visual Studio can understand the symbol reference, so if you rename the symbol in question, all
its references will be renamed, too.
To specify the name of a type member such as a field or property, include the type as well. This
works with both static and instance members:

string name = nameof (StringBuilder.Length);

This evaluates to “Length”. To return “StringBuilder.Length”, you would do this:

nameof (StringBuilder) + "." + nameof (StringBuilder.Length);

Inheritance
A class can inherit from another class to extend or customize the original class. Inheriting from
a class lets you reuse the functionality in that class instead of building it from scratch. A class
can inherit from only a single class, but can itself be inherited by many classes, thus forming a
class hierarchy. In this example, we start by defining a class called Asset:

public class Asset
{
  public string Name;
}

Next, we define classes called Stock and House, which will inherit from Asset. Stock and
House get everything an Asset has, plus any additional members that they define:

public class Stock : Asset   // inherits from Asset
{
  public long SharesOwned;
}

public class House : Asset   // inherits from Asset
{
  public decimal Mortgage;
}

Here’s how we can use these classes:

Stock msft = new Stock { Name="MSFT",
                         SharesOwned=1000 };

Console.WriteLine (msft.Name);         // MSFT
Console.WriteLine (msft.SharesOwned);  // 1000

House mansion = new House { Name="Mansion",
                            Mortgage=250000 };

Console.WriteLine (mansion.Name);      // Mansion
Console.WriteLine (mansion.Mortgage);  // 250000

The derived classes, Stock and House, inherit the Name property from the base class, Asset.

NOTE
A derived class is also called a subclass.



A base class is also called a superclass.

Polymorphism
References are polymorphic. This means a variable of type x can refer to an object that
subclasses x. For instance, consider the following method:

public static void Display (Asset asset)
{
  System.Console.WriteLine (asset.Name);
}

This method can display both a Stock and a House, since they are both Assets:

Stock msft    = new Stock ... ;
House mansion = new House ... ;

Display (msft);
Display (mansion);

Polymorphism works on the basis that subclasses (Stock and House) have all the features of
their base class (Asset). The converse, however, is not true. If Display was modified to
accept a House, you could not pass in an Asset:

static void Main() { Display (new Asset()); }    // Compile-time error

public static void Display (House house)         // Will not accept Asset
{
  System.Console.WriteLine (house.Mortgage);
}

Casting and Reference Conversions
An object reference can be:

Implicitly upcast to a base class reference

Explicitly downcast to a subclass reference

Upcasting and downcasting between compatible reference types performs reference
conversions: a new reference is (logically) created that points to the same object. An upcast
always succeeds; a downcast succeeds only if the object is suitably typed.

Upcasting
An upcast operation creates a base class reference from a subclass reference. For example:

Stock msft = new Stock();
Asset a = msft;              // Upcast

After the upcast, variable a still references the same Stock object as variable msft. The object
being referenced is not itself altered or converted:

Console.WriteLine (a == msft);        // True



Although a and msft refer to the identical object, a has a more restrictive view on that object:

Console.WriteLine (a.Name);           // OK
Console.WriteLine (a.SharesOwned);    // Error: SharesOwned undefined

The last line generates a compile-time error because the variable a is of type Asset, even
though it refers to an object of type Stock. To get to its SharesOwned field, you must downcast
the Asset to a Stock.

Downcasting
A downcast operation creates a subclass reference from a base class reference. For example:

Stock msft = new Stock();
Asset a = msft;                      // Upcast
Stock s = (Stock)a;                  // Downcast
Console.WriteLine (s.SharesOwned);   // <No error>
Console.WriteLine (s == a);          // True
Console.WriteLine (s == msft);       // True

As with an upcast, only references are affected — not the underlying object. A downcast
requires an explicit cast because it can potentially fail at runtime:

House h = new House();
Asset a = h;               // Upcast always succeeds
Stock s = (Stock)a;        // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is an example of runtime type
checking (we will elaborate on this concept in “Static and Runtime Type Checking”).

The as operator
The as operator performs a downcast that evaluates to null (rather than throwing an
exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock;       // s is null; no exception thrown

This is useful when you’re going to subsequently test whether the result is null:

if (s != null) Console.WriteLine (s.SharesOwned);

NOTE
Without such a test, a cast is advantageous, because if it fails, a more helpful exception is
thrown. We can illustrate by comparing the following two lines of code:

int shares = ((Stock)a).SharesOwned;    // Approach #1
int shares = (a as Stock).SharesOwned;  // Approach #2

If a is not a Stock, the first line throws an InvalidCastException, which is an accurate
description of what went wrong. The second line throws a NullReferenceException, which is
ambiguous. Was a not a Stock or was a null?
Another way of looking at it is that with the cast operator, you’re saying to the compiler: “I’m
certain of a value’s type; if I’m wrong, there’s a bug in my code, so throw an exception!”



Whereas with the as operator, you’re uncertain of its type and want to branch according to
the outcome at runtime.

The as operator cannot perform custom conversions (see “Operator Overloading” in
Chapter 4) and it cannot do numeric conversions:

long x = 3 as long;    // Compile-time error

NOTE
The as and cast operators will also perform upcasts, although this is not terribly useful
because an implicit conversion will do the job.

The is operator
The is operator tests whether a reference conversion would succeed; in other words, whether
an object derives from a specified class (or implements an interface). It is often used to test
before downcasting.

if (a is Stock)
  Console.WriteLine (((Stock)a).SharesOwned);

The is operator also evaluates to true if an unboxing conversion would succeed (see “The
object Type”). However, it does not consider custom or numeric conversions.

The is operator and pattern variables (C# 7)
From C# 7, you can introduce a variable while using the is operator:

if (a is Stock s)
  Console.WriteLine (s.SharesOwned);

This is equivalent to:

Stock s;
if (a is Stock)
{
  s = (Stock) a;
  Console.WriteLine (s.SharesOwned);
}

The variable that you introduce is available for “immediate” consumption, so the following is
legal:

if (a is Stock s && s.SharesOwned > 100000)
  Console.WriteLine ("Wealthy");

And it remains in scope outside the is-expression, allowing this:

if (a is Stock s && s.SharesOwned > 100000)
  Console.WriteLine ("Wealthy");
else
  s = new Stock();   // s is in scope



Console.WriteLine (s.SharesOwned);  // Still in scope

Virtual Function Members
A function marked as virtual can be overridden by subclasses wanting to provide a
specialized implementation. Methods, properties, indexers, and events can all be declared
virtual:

public class Asset
{
  public string Name;
  public virtual decimal Liability => 0;   // Expression-bodied property
}

(Liability => 0 is a shortcut for { get { return 0; } }. See “Expression-bodied
properties (C# 6, C# 7)” for more details on this syntax.)
A subclass overrides a virtual method by applying the override modifier:

public class Stock : Asset
{
  public long SharesOwned;
}

public class House : Asset
{
  public decimal Mortgage;
  public override decimal Liability => Mortgage;
}

By default, the Liability of an Asset is 0. A Stock does not need to specialize this behavior.
However, the House specializes the Liability property to return the value of the Mortgage:

House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;
Console.WriteLine (mansion.Liability);  // 250000
Console.WriteLine (a.Liability);        // 250000

The signatures, return types, and accessibility of the virtual and overridden methods must be
identical. An overridden method can call its base class implementation via the base keyword
(we will cover this in “The base Keyword”).

WARNING
Calling virtual methods from a constructor is potentially dangerous because authors of
subclasses are unlikely to know, when overriding the method, that they are working with a
partially initialized object. In other words, the overriding method may end up accessing
methods or properties that rely on fields not yet initialized by the constructor.

Abstract Classes and Abstract Members
A class declared as abstract can never be instantiated. Instead, only its concrete subclasses
can be instantiated.
Abstract classes are able to define abstract members. Abstract members are like virtual



members, except they don’t provide a default implementation. That implementation must be
provided by the subclass, unless that subclass is also declared abstract:

public abstract class Asset
{
  // Note empty implementation
  public abstract decimal NetValue { get; }
}

public class Stock : Asset
{
  public long SharesOwned;
  public decimal CurrentPrice;

  // Override like a virtual method.
  public override decimal NetValue => CurrentPrice * SharesOwned;  
}

Hiding Inherited Members
A base class and a subclass may define identical members. For example:

public class A      { public int Counter = 1; }
public class B : A  { public int Counter = 2; }

The Counter field in class B is said to hide the Counter field in class A. Usually, this happens
by accident, when a member is added to the base type after an identical member was added to
the subtype. For this reason, the compiler generates a warning, and then resolves the ambiguity
as follows:

References to A (at compile time) bind to A.Counter.

References to B (at compile time) bind to B.Counter.

Occasionally, you want to hide a member deliberately, in which case you can apply the new
modifier to the member in the subclass. The new modifier does nothing more than suppress the
compiler warning that would otherwise result:

public class A     { public     int Counter = 1; }
public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler — and other programmers — that
the duplicate member is not an accident.

NOTE
C# overloads the new keyword to have independent meanings in different contexts.
Specifically, the new operator is different from the new member modifier.

new versus override
Consider the following class hierarchy:

public class BaseClass
{
  public virtual void Foo()  { Console.WriteLine ("BaseClass.Foo"); }



}

public class Overrider : BaseClass
{
  public override void Foo() { Console.WriteLine ("Overrider.Foo"); }
}

public class Hider : BaseClass
{
  public new void Foo()      { Console.WriteLine ("Hider.Foo"); }
}

The differences in behavior between Overrider and Hider are demonstrated in the following
code:

Overrider over = new Overrider();
BaseClass b1 = over;
over.Foo();                         // Overrider.Foo
b1.Foo();                           // Overrider.Foo

Hider h = new Hider();
BaseClass b2 = h;
h.Foo();                           // Hider.Foo
b2.Foo();                          // BaseClass.Foo

Sealing Functions and Classes
An overridden function member may seal its implementation with the sealed keyword to
prevent it from being overridden by further subclasses. In our earlier virtual function member
example, we could have sealed House’s implementation of Liability, preventing a class that
derives from House from overriding Liability, as follows:

public sealed override decimal Liability { get { return Mortgage; } }

You can also seal the class itself, implicitly sealing all the virtual functions, by applying the
sealed modifier to the class itself. Sealing a class is more common than sealing a function
member.
Although you can seal against overriding, you can’t seal a member against being hidden.

The base Keyword
The base keyword is similar to the this keyword. It serves two essential purposes:

Accessing an overridden function member from the subclass

Calling a base-class constructor (see the next section)

In this example, House uses the base keyword to access Asset’s implementation of
Liability:

public class House : Asset
{
  ...
  public override decimal Liability => base.Liability + Mortgage;
}

With the base keyword, we access Asset’s Liability property nonvirtually. This means we
will always access Asset’s version of this property — regardless of the instance’s actual



runtime type.
The same approach works if Liability is hidden rather than overridden. (You can also
access hidden members by casting to the base class before invoking the function.)

Constructors and Inheritance
A subclass must declare its own constructors. The base class’s constructors are accessible to
the derived class, but are never automatically inherited. For example, if we define Baseclass
and Subclass as follows:

public class Baseclass
{
  public int X;
  public Baseclass () { }
  public Baseclass (int x) { this.X = x; }
}

public class Subclass : Baseclass { }

the following is illegal:

Subclass s = new Subclass (123);

Subclass must hence “redefine” any constructors it wants to expose. In doing so, however, it
can call any of the base class’s constructors with the base keyword:

public class Subclass : Baseclass
{
  public Subclass (int x) : base (x) { }
}

The base keyword works rather like the this keyword, except that it calls a constructor in the
base class.
Base-class constructors always execute first; this ensures that base initialization occurs before
specialized initialization.

Implicit calling of the parameterless base-class constructor
If a constructor in a subclass omits the base keyword, the base type’s parameterless
constructor is implicitly called:

public class BaseClass
{
  public int X;
  public BaseClass() { X = 1; }
}

public class Subclass : BaseClass
{
  public Subclass() { Console.WriteLine (X); }  // 1
}

If the base class has no accessible parameterless constructor, subclasses are forced to use the
base keyword in their constructors.

Constructor and field initialization order



When an object is instantiated, initialization takes place in the following order:
1. From subclass to base class:

a. Fields are initialized.

b. Arguments to base-class constructor calls are evaluated.

2. From base class to subclass:
a. Constructor bodies execute.

The following code demonstrates:

public class B
{
  int x = 1;         // Executes 3rd
  public B (int x)
  {
    ...              // Executes 4th
  }
}
public class D : B
{
  int y = 1;         // Executes 1st
  public D (int x)
    : base (x + 1)   // Executes 2nd
  {
     ...             // Executes 5th
  }
}

Overloading and Resolution
Inheritance has an interesting impact on method overloading. Consider the following two
overloads:

static void Foo (Asset a) { }
static void Foo (House h) { }

When an overload is called, the most specific type has precedence:

House h = new House (...);
Foo(h);                      // Calls Foo(House)

The particular overload to call is determined statically (at compile time) rather than at runtime.
The following code calls Foo(Asset), even though the runtime type of a is House:

Asset a = new House (...);
Foo(a);                      // Calls Foo(Asset)

NOTE
If you cast Asset to dynamic (Chapter 4), the decision as to which overload to call is deferred
until runtime, and is then based on the object’s actual type:

Asset a = new House (...);
Foo ((dynamic)a);   // Calls Foo(House)



The object Type
object (System.Object) is the ultimate base class for all types. Any type can be upcast to
object.
To illustrate how this is useful, consider a general-purpose stack. A stack is a data structure
based on the principle of LIFO — “Last-In First-Out.” A stack has two operations: push an
object on the stack, and pop an object off the stack. Here is a simple implementation that can
hold up to 10 objects:

public class Stack
{
  int position;
  object[] data = new object[10];
  public void Push (object obj)   { data[position++] = obj;  }
  public object Pop()             { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop instances of any type to and
from the Stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop();   // Downcast, so explicit cast is needed

Console.WriteLine (s);             // sausage

object is a reference type, by virtue of being a class. Despite this, value types, such as int,
can also be cast to and from object, and so be added to our stack. This feature of C# is called
type unification and is demonstrated here:

stack.Push (3);
int three = (int) stack.Pop();

When you cast between a value type and object, the CLR must perform some special work to
bridge the difference in semantics between value and reference types. This process is called
boxing and unboxing.

NOTE
In “Generics”, we’ll describe how to improve our Stack class to better handle stacks with
same-typed elements.

Boxing and Unboxing
Boxing is the act of converting a value-type instance to a reference-type instance. The reference
type may be either the object class or an interface (which we will visit later in the chapter).1
In this example, we box an int into an object:

int x = 9;
object obj = x;           // Box the int



Unboxing reverses the operation, by casting the object back to the original value type:

int y = (int)obj;         // Unbox the int

Unboxing requires an explicit cast. The runtime checks that the stated value type matches the
actual object type, and throws an InvalidCastException if the check fails. For instance, the
following throws an exception, because long does not exactly match int:

object obj = 9;           // 9 is inferred to be of type int
long x = (long) obj;      // InvalidCastException

The following succeeds, however:

object obj = 9;
long x = (int) obj;

As does this:

object obj = 3.5;              // 3.5 is inferred to be of type double
int x = (int) (double) obj;    // x is now 3

In the last example, (double) performs an unboxing and then (int) performs a numeric
conversion.

NOTE
Boxing conversions are crucial in providing a unified type system. The system is not perfect,
however: we’ll see in “Generics” that variance with arrays and generics supports only
reference conversions and not boxing conversions:

object[] a1 = new string[3];   // Legal
object[] a2 = new int[3];      // Error

Copying semantics of boxing and unboxing
Boxing copies the value-type instance into the new object, and unboxing copies the contents of
the object back into a value-type instance. In the following example, changing the value of i
doesn’t change its previously boxed copy:

int i = 3;
object boxed = i;
i = 5;
Console.WriteLine (boxed);    // 3

Static and Runtime Type Checking
C# programs are type-checked both statically (at compile time) and at runtime (by the CLR).
Static type checking enables the compiler to verify the correctness of your program without
running it. The following code will fail because the compiler enforces static typing:

int x = "5";



Runtime type checking is performed by the CLR when you downcast via a reference conversion
or unboxing. For example:

object y = "5";
int z = (int) y;          // Runtime error, downcast failed

Runtime type checking is possible because each object on the heap internally stores a little type
token. This token can be retrieved by calling the GetType method of object.

The GetType Method and typeof Operator
All types in C# are represented at runtime with an instance of System.Type. There are two
basic ways to get a System.Type object:

Call GetType on the instance.

Use the typeof operator on a type name.

GetType is evaluated at runtime; typeof is evaluated statically at compile time (when generic
type parameters are involved, it’s resolved by the Just-In-Time compiler).
System.Type has properties for such things as the type’s name, assembly, base type, and so on.
For example:

using System;

public class Point { public int X, Y; }

class Test
{
  static void Main()
  {
    Point p = new Point();
    Console.WriteLine (p.GetType().Name);             // Point
    Console.WriteLine (typeof (Point).Name);          // Point
    Console.WriteLine (p.GetType() == typeof(Point)); // True
    Console.WriteLine (p.X.GetType().Name);           // Int32
    Console.WriteLine (p.Y.GetType().FullName);       // System.Int32
  }
}

System.Type also has methods that act as a gateway to the runtime’s reflection model,
described in Chapter 19.

The ToString Method
The ToString method returns the default textual representation of a type instance. This method
is overridden by all built-in types. Here is an example of using the int type’s ToString
method:

int x = 1;
string s = x.ToString();     // s is "1"

You can override the ToString method on custom types as follows:

public class Panda
{
  public string Name;



  public override string ToString() => Name;
}
...

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p);   // Petey

If you don’t override ToString, the method returns the type name.

NOTE
When you call an overridden object member such as ToString directly on a value type,
boxing doesn’t occur. Boxing then occurs only if you cast:

int x = 1;
string s1 = x.ToString();    // Calling on nonboxed value
object box = x;
string s2 = box.ToString();  // Calling on boxed value

Object Member Listing
Here are all the members of object:

public class Object
{
  public Object();

  public extern Type GetType();

  public virtual bool Equals (object obj);
  public static bool Equals  (object objA, object objB);
  public static bool ReferenceEquals (object objA, object objB);

  public virtual int GetHashCode();

  public virtual string ToString();

  protected virtual void Finalize();
  protected extern object MemberwiseClone();
}

We describe the Equals, ReferenceEquals, and GetHashCode methods in “Equality
Comparison” in Chapter 6.

Structs
A struct is similar to a class, with the following key differences:

A struct is a value type, whereas a class is a reference type.

A struct does not support inheritance (other than implicitly deriving from object, or more
precisely, System.ValueType).

A struct can have all the members a class can, except the following:
A parameterless constructor



Field initializers

A finalizer

Virtual or protected members

A struct is appropriate when value-type semantics are desirable. Good examples of structs are
numeric types, where it is more natural for assignment to copy a value rather than a reference.
Because a struct is a value type, each instance does not require instantiation of an object on the
heap; this incurs a useful saving when creating many instances of a type. For instance, creating
an array of value type requires only a single heap allocation.

Struct Construction Semantics
The construction semantics of a struct are as follows:

A parameterless constructor that you can’t override implicitly exists. This performs a
bitwise-zeroing of its fields.

When you define a struct constructor, you must explicitly assign every field.

(And you can’t have field initializers.) Here is an example of declaring and calling struct
constructors:

public struct Point
{
  int x, y;
  public Point (int x, int y) { this.x = x; this.y = y; }
}

...
Point p1 = new Point ();       // p1.x and p1.y will be 0
Point p2 = new Point (1, 1);   // p1.x and p1.y will be 1

The next example generates three compile-time errors:

public struct Point
{
  int x = 1;                          // Illegal: field initializer
  int y;
  public Point() {}                   // Illegal: parameterless constructor
  public Point (int x) {this.x = x;}  // Illegal: must assign field y
}

Changing struct to class makes this example legal.

Access Modifiers
To promote encapsulation, a type or type member may limit its accessibility to other types and
other assemblies by adding one of five access modifiers to the declaration:

public

Fully accessible. This is the implicit accessibility for members of an enum or interface.

internal

Accessible only within the containing assembly or friend assemblies. This is the default



accessibility for non-nested types.

private

Accessible only within the containing type. This is the default accessibility for members
of a class or struct.

protected

Accessible only within the containing type or subclasses.

protected internal

The union of protected and internal accessibility. Eric Lippert explains it as follows:
Everything is as private as possible by default, and each modifier makes the thing more
accessible. So something that is protected internal is made more accessible in two
ways.

NOTE
The CLR has the concept of the intersection of protected and internal accessibility, but C#
does not support this.

Examples
Class2 is accessible from outside its assembly; Class1 is not:

class Class1 {}                  // Class1 is internal (default)
public class Class2 {}

ClassB exposes field x to other types in the same assembly; ClassA does not:

class ClassA { int x;          } // x is private (default)
class ClassB { internal int x; }

Functions within Subclass can call Bar but not Foo:

class BaseClass
{
  void Foo()           {}        // Foo is private (default)
  protected void Bar() {}
}

class Subclass : BaseClass
{
  void Test1() { Foo(); }       // Error - cannot access Foo
  void Test2() { Bar(); }       // OK
}

Friend Assemblies
In advanced scenarios, you can expose internal members to other friend assemblies by
adding the System.Runtime.CompilerServices.InternalsVisibleTo assembly attribute,
specifying the name of the friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]



If the friend assembly has a strong name (see Chapter 18), you must specify its full 160-byte
public key:

[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]

You can extract the full public key from a strongly named assembly with a LINQ query (we
explain LINQ in detail in Chapter 8):

string key = string.Join ("",
  Assembly.GetExecutingAssembly().GetName().GetPublicKey()
    .Select (b => b.ToString ("x2")));

NOTE
The companion sample in LINQPad invites you to browse to an assembly and then copies
the assembly’s full public key to the clipboard.

Accessibility Capping
A type caps the accessibility of its declared members. The most common example of capping is
when you have an internal type with public members. For example:

class C { public void Foo() {} }

C’s (default) internal accessibility caps Foo’s accessibility, effectively making Foo
internal. A common reason Foo would be marked public is to make for easier refactoring,
should C later be changed to public.

Restrictions on Access Modifiers
When overriding a base class function, accessibility must be identical on the overridden
function. For example:

class BaseClass             { protected virtual  void Foo() {} }
class Subclass1 : BaseClass { protected override void Foo() {} }  // OK
class Subclass2 : BaseClass { public    override void Foo() {} }  // Error

(An exception is when overriding a protected internal method in another assembly, in
which case the override must simply be protected.)
The compiler prevents any inconsistent use of access modifiers. For example, a subclass itself
can be less accessible than a base class, but not more:

internal class A {}
public class B : A {}          // Error

Interfaces
An interface is similar to a class, but it provides a specification rather than an implementation
for its members. An interface is special in the following ways:

Interface members are all implicitly abstract. In contrast, a class can provide both abstract



members and concrete members with implementations.

A class (or struct) can implement multiple interfaces. In contrast, a class can inherit from
only a single class, and a struct cannot inherit at all (aside from deriving from
System.ValueType).

An interface declaration is like a class declaration, but it provides no implementation for its
members, since all its members are implicitly abstract. These members will be implemented by
the classes and structs that implement the interface. An interface can contain only methods,
properties, events, and indexers, which noncoincidentally are precisely the members of a class
that can be abstract.
Here is the definition of the IEnumerator interface, defined in System.Collections:

public interface IEnumerator
{
  bool MoveNext();
  object Current { get; }
  void Reset();
}

Interface members are always implicitly public and cannot declare an access modifier.
Implementing an interface means providing a public implementation for all its members:

internal class Countdown : IEnumerator
{
  int count = 11;
  public bool MoveNext() => count-- > 0;
  public object Current => count;
  public void Reset() { throw new NotSupportedException(); }
}

You can implicitly cast an object to any interface that it implements. For example:

IEnumerator e = new Countdown();
while (e.MoveNext())
  Console.Write (e.Current);      // 109876543210

NOTE
Even though Countdown is an internal class, its members that implement IEnumerator can be
called publicly by casting an instance of Countdown to IEnumerator. For instance, if a public
type in the same assembly defined a method as follows:

public static class Util
{
  public static object GetCountDown() => new CountDown();
}

a caller from another assembly could do this:

IEnumerator e = (IEnumerator) Util.GetCountDown();
e.MoveNext();

If IEnumerator was itself defined as internal, this wouldn’t be possible.



Extending an Interface
Interfaces may derive from other interfaces. For instance:

public interface IUndoable             { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of IUndoable. In other words, types that implement
IRedoable must also implement the members of IUndoable.

Explicit Interface Implementation
Implementing multiple interfaces can sometimes result in a collision between member
signatures. You can resolve such collisions by explicitly implementing an interface member.
Consider the following example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2
{
  public void Foo()
  {
    Console.WriteLine ("Widget's implementation of I1.Foo");
  }

  int I2.Foo()
  {
    Console.WriteLine ("Widget's implementation of I2.Foo");
    return 42;
  }
}

Because both I1 and I2 have conflicting Foo signatures, Widget explicitly implements I2’s
Foo method. This lets the two methods coexist in one class. The only way to call an explicitly
implemented member is to cast to its interface:

Widget w = new Widget();
w.Foo();                      // Widget's implementation of I1.Foo
((I1)w).Foo();                // Widget's implementation of I1.Foo
((I2)w).Foo();                // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to hide members that are highly
specialized and distracting to a type’s normal use case. For example, a type that implements
ISerializable would typically want to avoid flaunting its ISerializable members unless
explicitly cast to that interface.

Implementing Interface Members Virtually
An implicitly implemented interface member is, by default, sealed. It must be marked virtual
or abstract in the base class in order to be overridden. For example:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
  public virtual void Undo() => Console.WriteLine ("TextBox.Undo");
}



public class RichTextBox : TextBox
{
  public override void Undo() => Console.WriteLine ("RichTextBox.Undo");
}

Calling the interface member through either the base class or the interface calls the subclass’s
implementation:

RichTextBox r = new RichTextBox();
r.Undo();                          // RichTextBox.Undo
((IUndoable)r).Undo();             // RichTextBox.Undo
((TextBox)r).Undo();               // RichTextBox.Undo

An explicitly implemented interface member cannot be marked virtual, nor can it be
overridden in the usual manner. It can, however, be reimplemented.

Reimplementing an Interface in a Subclass
A subclass can reimplement any interface member already implemented by a base class.
Reimplementation hijacks a member implementation (when called through the interface) and
works whether or not the member is virtual in the base class. It also works whether a
member is implemented implicitly or explicitly — although it works best in the latter case, as
we will demonstrate.
In the following example, TextBox implements IUndoable.Undo explicitly, and so it cannot be
marked as virtual. In order to “override” it, RichTextBox must re-implement IUndoable’s
Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
  void IUndoable.Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox, IUndoable
{
  public void Undo() => Console.WriteLine ("RichTextBox.Undo");
}

Calling the reimplemented member through the interface calls the subclass’s implementation:

RichTextBox r = new RichTextBox();
r.Undo();                 // RichTextBox.Undo      Case 1
((IUndoable)r).Undo();    // RichTextBox.Undo      Case 2

Assuming the same RichTextBox definition, suppose that TextBox implemented Undo
implicitly:

public class TextBox : IUndoable
{
  public void Undo() => Console.WriteLine ("TextBox.Undo");
}

This would give us another way to call Undo, which would “break” the system, as shown in
Case 3:

RichTextBox r = new RichTextBox();



r.Undo();                 // RichTextBox.Undo      Case 1
((IUndoable)r).Undo();    // RichTextBox.Undo      Case 2
((TextBox)r).Undo();      // TextBox.Undo          Case 3

Case 3 demonstrates that reimplementation hijacking is effective only when a member is called
through the interface and not through the base class. This is usually undesirable as it can mean
inconsistent semantics. This makes reimplementation most appropriate as a strategy for
overriding explicitly implemented interface members.

Alternatives to interface reimplementation
Even with explicit member implementation, interface reimplementation is problematic for a
couple of reasons:

The subclass has no way to call the base class method.

The base class author may not anticipate that a method will be reimplemented and may not
allow for the potential consequences.

Reimplementation can be a good last resort when subclassing hasn’t been anticipated. A better
option, however, is to design a base class such that reimplementation will never be required.
There are two ways to achieve this:

When implicitly implementing a member, mark it virtual if appropriate.

When explicitly implementing a member, use the following pattern if you anticipate that
subclasses might need to override any logic:

public class TextBox : IUndoable
{
  void IUndoable.Undo()         => Undo();    // Calls method below
  protected virtual void Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox
{
  protected override void Undo() => Console.WriteLine("RichTextBox.Undo");
}

If you don’t anticipate any subclassing, you can mark the class as sealed to preempt interface
reimplementation.

Interfaces and Boxing
Converting a struct to an interface causes boxing. Calling an implicitly implemented member on
a struct does not cause boxing:

interface  I { void Foo();          }
struct S : I { public void Foo() {} }

...
S s = new S();
s.Foo();         // No boxing.

I i = s;         // Box occurs when casting to interface.
i.Foo();



WRITING A CLASS VERSUS AN INTERFACE
As a guideline:

Use classes and subclasses for types that naturally share an implementation.

Use interfaces for types that have independent implementations.

Consider the following classes:

abstract class Animal {}
abstract class Bird           : Animal {}
abstract class Insect         : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore      : Animal {}

// Concrete classes:

class Ostrich : Bird {}
class Eagle   : Bird, FlyingCreature, Carnivore {}  // Illegal
class Bee     : Insect, FlyingCreature {}           // Illegal
class Flea    : Insect, Carnivore {}                // Illegal

The Eagle, Bee, and Flea classes do not compile because inheriting from multiple classes is
prohibited. To resolve this, we must convert some of the types to interfaces. The question then
arises, which types? Following our general rule, we could say that insects share an implementation,
and birds share an implementation, so they remain classes. In contrast, flying creatures have
independent mechanisms for flying, and carnivores have independent strategies for eating animals,
so we would convert FlyingCreature and Carnivore to interfaces:

interface IFlyingCreature {}
interface ICarnivore      {}

In a typical scenario, Bird and Insect might correspond to a Windows control and a web control;
FlyingCreature and Carnivore might correspond to IPrintable and IUndoable.

Enums
An enum is a special value type that lets you specify a group of named numeric constants. For
example:

public enum BorderSide { Left, Right, Top, Bottom }

We can use this enum type as follows:

BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top);   // true

Each enum member has an underlying integral value. By default:
Underlying values are of type int.

The constants 0, 1, 2... are automatically assigned, in the declaration order of the enum
members.

You may specify an alternative integral type, as follows:

public enum BorderSide : byte { Left, Right, Top, Bottom }



You may also specify an explicit underlying value for each enum member:

public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }

NOTE
The compiler also lets you explicitly assign some of the enum members. The unassigned
enum members keep incrementing from the last explicit value. The preceding example is
equivalent to the following:

public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }

Enum Conversions
You can convert an enum instance to and from its underlying integral value with an explicit
cast:

int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) i;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another. Suppose HorizontalAlignment is
defined as follows:

public enum HorizontalAlignment
{
  Left = BorderSide.Left,
  Right = BorderSide.Right,
  Center
}

A translation between the enum types uses the underlying integral values:

HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;
// same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;

The numeric literal 0 is treated specially by the compiler in an enum expression and does not
require an explicit cast:

BorderSide b = 0;    // No cast required
if (b == 0) ...

There are two reasons for the special treatment of 0:
The first member of an enum is often used as the “default” value.

For combined enum types, 0 means “no flags.”

Flags Enums
You can combine enum members. To prevent ambiguities, members of a combinable enum



require explicitly assigned values, typically in powers of two. For example:

[Flags]
public enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }

To work with combined enum values, you use bitwise operators, such as | and &. These
operate on the underlying integral values:

BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
  Console.WriteLine ("Includes Left");     // Includes Left

string formatted = leftRight.ToString();   // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight);   // True

s ^= BorderSides.Right;               // Toggles BorderSides.Right
Console.WriteLine (s);                // Left

By convention, the Flags attribute should always be applied to an enum type when its members
are combinable. If you declare such an enum without the Flags attribute, you can still combine
members, but calling ToString on an enum instance will emit a number rather than a series of
names.
By convention, a combinable enum type is given a plural rather than singular name.
For convenience, you can include combination members within an enum declaration itself:

[Flags]
public enum BorderSides
{
  None=0,
  Left=1, Right=2, Top=4, Bottom=8,
  LeftRight = Left | Right, 
  TopBottom = Top  | Bottom,
  All       = LeftRight | TopBottom
}

Enum Operators
The operators that work with enums are:

=   ==   !=   <   >   <=   >=   +   -   ^  &  |   ˜
+=   -=   ++  --   sizeof

The bitwise, arithmetic, and comparison operators return the result of processing the
underlying integral values. Addition is permitted between an enum and an integral type, but not
between two enums.

Type-Safety Issues
Consider the following enum:

public enum BorderSide { Left, Right, Top, Bottom }

Since an enum can be cast to and from its underlying integral type, the actual value it may have



may fall outside the bounds of a legal enum member. For example:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b);                // 12345

The bitwise and arithmetic operators can produce similarly invalid values:

BorderSide b = BorderSide.Bottom;
b++;                                  // No errors

An invalid BorderSide would break the following code:

void Draw (BorderSide side)
{
  if      (side == BorderSide.Left)  {...}
  else if (side == BorderSide.Right) {...}
  else if (side == BorderSide.Top)   {...}
  else                               {...} // Assume BorderSide.Bottom
}

One solution is to add another else clause:

...
else if (side == BorderSide.Bottom) ...
else throw new ArgumentException ("Invalid BorderSide: " + side, "side");

Another workaround is to explicitly check an enum value for validity. The static
Enum.IsDefined method does this job:

BorderSide side = (BorderSide) 12345;
Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side));   // False

Unfortunately, Enum.IsDefined does not work for flagged enums. However, the following
helper method (a trick dependent on the behavior of Enum.ToString()) returns true if a given
flagged enum is valid:

static bool IsFlagDefined (Enum e)
{
  decimal d;
  return !decimal.TryParse(e.ToString(), out d);
}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

static void Main()
{
  for (int i = 0; i <= 16; i++)
  {
    BorderSides side = (BorderSides)i;
    Console.WriteLine (IsFlagDefined (side) + " " + side);
  }
}

Nested Types
A nested type is declared within the scope of another type. For example:

public class TopLevel



{
  public class Nested { }               // Nested class
  public enum Color { Red, Blue, Tan }  // Nested enum
}

A nested type has the following features:
It can access the enclosing type’s private members and everything else the enclosing type
can access.

It can be declared with the full range of access modifiers, rather than just public and
internal.

The default accessibility for a nested type is private rather than internal.

Accessing a nested type from outside the enclosing type requires qualification with the
enclosing type’s name (like when accessing static members).

For example, to access Color.Red from outside our TopLevel class, we’d have to do this:

TopLevel.Color color = TopLevel.Color.Red;

All types (classes, structs, interfaces, delegates, and enums) can be nested inside either a class
or a struct.
Here is an example of accessing a private member of a type from a nested type:

public class TopLevel
{
  static int x;
  class Nested
  {
    static void Foo() { Console.WriteLine (TopLevel.x); }
  }
}

Here is an example of applying the protected access modifier to a nested type:

public class TopLevel
{
  protected class Nested { }
}

public class SubTopLevel : TopLevel
{
  static void Foo() { new TopLevel.Nested(); }
}

Here is an example of referring to a nested type from outside the enclosing type:

public class TopLevel
{
  public class Nested { }
}

class Test
{
  TopLevel.Nested n;
}



Nested types are used heavily by the compiler itself when it generates private classes that
capture state for constructs such as iterators and anonymous methods.

NOTE
If the sole reason for using a nested type is to avoid cluttering a namespace with too many
types, consider using a nested namespace instead. A nested type should be used because of
its stronger access control restrictions, or when the nested class must access private members
of the containing class.

Generics
C# has two separate mechanisms for writing code that is reusable across different types:
inheritance and generics. Whereas inheritance expresses reusability with a base type, generics
express reusability with a “template” that contains “placeholder” types. Generics, when
compared to inheritance, can increase type safety and reduce casting and boxing.

NOTE
C# generics and C++ templates are similar concepts, but they work differently. We explain
this difference in “C# Generics Versus C++ Templates”.

Generic Types
A generic type declares type parameters — placeholder types to be filled in by the consumer
of the generic type, which supplies the type arguments. Here is a generic type Stack<T>,
designed to stack instances of type T. Stack<T> declares a single type parameter T:

public class Stack<T>
{
  int position;
  T[] data = new T[100];
  public void Push (T obj)  => data[position++] = obj;
  public T Pop()            => data[--position];
}

We can use Stack<T> as follows:

var stack = new Stack<int>();
stack.Push (5);
stack.Push (10);
int x = stack.Pop();        // x is 10
int y = stack.Pop();        // y is 5

Stack<int> fills in the type parameter T with the type argument int, implicitly creating a type
on the fly (the synthesis occurs at runtime). Attempting to push a string onto our Stack<int>
would, however, produce a compile-time error. Stack<int> effectively has the following
definition (substitutions appear in bold, with the class name hashed out to avoid confusion):

public class ###
{



  int position;
  int[] data = new int[100];
  public void Push (int obj)  => data[position++] = obj;
  public int Pop()            => data[--position];
}

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed type. At
runtime, all generic type instances are closed — with the placeholder types filled in. This
means that the following statement is illegal:

var stack = new Stack<T>();   // Illegal: What is T?

unless inside a class or method that itself defines T as a type parameter:

public class Stack<T>
{
  ...
  public Stack<T> Clone()
  {
    Stack<T> clone = new Stack<T>();   // Legal
    ...
  } 
}

Why Generics Exist
Generics exist to write code that is reusable across different types. Suppose we needed a stack
of integers, but we didn’t have generic types. One solution would be to hardcode a separate
version of the class for every required element type (e.g., IntStack, StringStack, etc.).
Clearly, this would cause considerable code duplication. Another solution would be to write a
stack that is generalized by using object as the element type:

public class ObjectStack
{
  int position;
  object[] data = new object[10];
  public void Push (object obj) => data[position++] = obj;
  public object Pop()           => data[--position];
}

An ObjectStack, however, wouldn’t work as well as a hardcoded IntStack for specifically
stacking integers. Specifically, an ObjectStack would require boxing and downcasting that
could not be checked at compile time:

// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s");          // Wrong type, but no error!
int i = (int)stack.Pop();  // Downcast - runtime error

What we need is both a general implementation of a stack that works for all element types, and
a way to easily specialize that stack to a specific element type for increased type safety and
reduced casting and boxing. Generics give us precisely this, by allowing us to parameterize the
element type. Stack<T> has the benefits of both ObjectStack and IntStack. Like
ObjectStack, Stack<T> is written once to work generally across all types. Like IntStack,
Stack<T> is specialized for a particular type — the beauty is that this type is T, which we
substitute on the fly.



NOTE
ObjectStack is functionally equivalent to Stack<object>.

Generic Methods
A generic method declares type parameters within the signature of a method.
With generic methods, many fundamental algorithms can be implemented in a general-purpose
way only. Here is a generic method that swaps the contents of two variables of any type T:

static void Swap<T> (ref T a, ref T b)
{
  T temp = a;
  a = b;
  b = temp;
}

Swap<T> can be used as follows:

int x = 5;
int y = 10;
Swap (ref x, ref y);

Generally, there is no need to supply type arguments to a generic method, because the compiler
can implicitly infer the type. If there is ambiguity, generic methods can be called with the type
arguments as follows:

Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless it introduces type parameters
(with the angle bracket syntax). The Pop method in our generic stack merely uses the type’s
existing type parameter, T, and is not classed as a generic method.
Methods and types are the only constructs that can introduce type parameters. Properties,
indexers, events, fields, constructors, operators, and so on cannot declare type parameters,
although they can partake in any type parameters already declared by their enclosing type. In
our generic stack example, for instance, we could write an indexer that returns a generic item:

public T this [int index] => data [index];

Similarly, constructors can partake in existing type parameters, but not introduce them:

public Stack<T>() { }   // Illegal

Declaring Type Parameters
Type parameters can be introduced in the declaration of classes, structs, interfaces, delegates
(covered in Chapter 4), and methods. Other constructs, such as properties, cannot introduce a
type parameter, but can use one. For example, the property Value uses T:

public struct Nullable<T>
{
  public T Value { get; }



}

A generic type or method can have multiple parameters. For example:

class Dictionary<TKey, TValue> {...}

To instantiate:

Dictionary<int,string> myDic = new Dictionary<int,string>();

Or:

var myDic = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number of type
parameters is different. For example, the following three type names do not conflict:

class A        {}
class A<T>     {}
class A<T1,T2> {}

NOTE
By convention, generic types and methods with a single type parameter typically name their
parameter T, as long as the intent of the parameter is clear. When using multiple type
parameters, each parameter is prefixed with T, but has a more descriptive name.

typeof and Unbound Generic Types
Open generic types do not exist at runtime: open generic types are closed as part of
compilation. However, it is possible for an unbound generic type to exist at runtime — purely
as a Type object. The only way to specify an unbound generic type in C# is with the typeof
operator:

class A<T> {}
class A<T1,T2> {}
...

Type a1 = typeof (A<>);   // Unbound type (notice no type arguments).
Type a2 = typeof (A<,>);  // Use commas to indicate multiple type args.

Open generic types are used in conjunction with the Reflection API (Chapter 19).
You can also use the typeof operator to specify a closed type:

Type a3 = typeof (A<int,int>);

or an open type (which is closed at runtime):

class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value



The default keyword can be used to get the default value for a generic type parameter. The
default value for a reference type is null, and the default value for a value type is the result of
bitwise-zeroing the value type’s fields:

static void Zap<T> (T[] array)
{
  for (int i = 0; i < array.Length; i++)
    array[i] = default(T);
}

Generic Constraints
By default, a type parameter can be substituted with any type whatsoever. Constraints can be
applied to a type parameter to require more specific type arguments. These are the possible
constraints:

where T : base-class   // Base-class constraint
where T : interface    // Interface constraint
where T : class        // Reference-type constraint
where T : struct       // Value-type constraint (excludes Nullable types)
where T : new()        // Parameterless constructor constraint
where U : T            // Naked type constraint

In the following example, GenericClass<T,U> requires T to derive from (or be identical to)
SomeClass and implement Interface1, and requires U to provide a parameterless
constructor:

class     SomeClass {}
interface Interface1 {}

class GenericClass<T,U> where T : SomeClass, Interface1
                        where U : new()
{...}

Constraints can be applied wherever type parameters are defined, in both methods and type
definitions.
A base-class constraint specifies that the type parameter must subclass (or match) a particular
class; an interface constraint specifies that the type parameter must implement that interface.
These constraints allow instances of the type parameter to be implicitly converted to that class
or interface. For example, suppose we want to write a generic Max method, which returns the
maximum of two values. We can take advantage of the generic interface defined in the
framework called IComparable<T>:

public interface IComparable<T>   // Simplified version of interface
{
  int CompareTo (T other);
}

CompareTo returns a positive number if this is greater than other. Using this interface as a
constraint, we can write a Max method as follows (to avoid distraction, null checking is
omitted):

static T Max <T> (T a, T b) where T : IComparable<T>
{
  return a.CompareTo (b) > 0 ? a : b;
}



The Max method can accept arguments of any type implementing IComparable<T> (which
includes most built-in types such as int and string):

int z = Max (5, 10);               // 10
string last = Max ("ant", "zoo");  // zoo

The class constraint and struct constraint specify that T must be a reference type or (non-
nullable) value type. A great example of the struct constraint is the System.Nullable<T>
struct (we will discuss this class in depth in “Nullable Types” in Chapter 4):

struct Nullable<T> where T : struct {...}

The parameterless constructor constraint requires T to have a public parameterless
constructor. If this constraint is defined, you can call new() on T:

static void Initialize<T> (T[] array) where T : new()
{
  for (int i = 0; i < array.Length; i++)
    array[i] = new T();
}

The naked type constraint requires one type parameter to derive from (or match) another type
parameter. In this example, the method FilteredStack returns another Stack, containing only
the subset of elements where the type parameter U is of the type parameter T:

class Stack<T>
{
  Stack<U> FilteredStack<U>() where U : T {...}
}

Subclassing Generic Types
A generic class can be subclassed just like a nongeneric class. The subclass can leave the base
class’s type parameters open, as in the following example:

class Stack<T>                   {...}
class SpecialStack<T> : Stack<T> {...}

Or the subclass can close the generic type parameters with a concrete type:

class IntStack : Stack<int>  {...}

A subtype can also introduce fresh type arguments:

class List<T>                     {...}
class KeyedList<T,TKey> : List<T> {...}

NOTE
Technically, all type arguments on a subtype are fresh: you could say that a subtype closes
and then reopens the base type arguments. This means that a subclass can give new (and
potentially more meaningful) names to the type arguments it reopens:

class List<T> {...}



class KeyedList<TElement,TKey> : List<TElement> {...}

Self-Referencing Generic Declarations
A type can name itself as the concrete type when closing a type argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
  public string Color { get; set; }
  public int CC { get; set; }

  public bool Equals (Balloon b)
  {
    if (b == null) return false;
    return b.Color == Color && b.CC == CC;
  }
}

The following are also legal:

class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data
Static data is unique for each closed type:

class Bob<T> { public static int Count; }

class Test
{
  static void Main()
  {
    Console.WriteLine (++Bob<int>.Count);     // 1
    Console.WriteLine (++Bob<int>.Count);     // 2
    Console.WriteLine (++Bob<string>.Count);  // 1
    Console.WriteLine (++Bob<object>.Count);  // 1
  }
}

Type Parameters and Conversions
C#’s cast operator can perform several kinds of conversion, including:

Numeric conversion

Reference conversion

Boxing/unboxing conversion

Custom conversion (via operator overloading; see Chapter 4)

The decision as to which kind of conversion will take place happens at compile time, based on
the known types of the operands. This creates an interesting scenario with generic type
parameters, because the precise operand types are unknown at compile time. If this leads to
ambiguity, the compiler generates an error.



The most common scenario is when you want to perform a reference conversion:

StringBuilder Foo<T> (T arg)
{
  if (arg is StringBuilder)
    return (StringBuilder) arg;   // Will not compile
  ...
}

Without knowledge of T’s actual type, the compiler is concerned that you might have intended
this to be a custom conversion. The simplest solution is to instead use the as operator, which
is unambiguous because it cannot perform custom conversions:

StringBuilder Foo<T> (T arg)
{
  StringBuilder sb = arg as StringBuilder;
  if (sb != null) return sb;
  ...
}

A more general solution is to first cast to object. This works because conversions to/from
object are assumed not to be custom conversions, but reference or boxing/unboxing
conversions. In this case, StringBuilder is a reference type, so it has to be a reference
conversion:

return (StringBuilder) (object) arg;

Unboxing conversions can also introduce ambiguities. The following could be an unboxing,
numeric, or custom conversion:

int Foo<T> (T x) => (int) x;     // Compile-time error

The solution, again, is to first cast to object and then to int (which then unambiguously
signals an unboxing conversion in this case):

int Foo<T> (T x) => (int) (object) x;

Covariance
Assuming A is convertible to B, X has a covariant type parameter if X<A> is convertible to
X<B>.

NOTE
With C#’s notion of covariance (and contravariance), “convertible” means convertible via an
implicit reference conversion — such as A subclassing B, or A implementing B. Numeric
conversions, boxing conversions, and custom conversions are not included.

For instance, type IFoo<T> has a covariant T if the following is legal:

IFoo<string> s = ...;
IFoo<object> b = s;



From C# 4.0, interfaces permit covariant type parameters (as do delegates — see Chapter 4),
but classes do not. Arrays also allow covariance (A[] can be converted to B[] if A has an
implicit reference conversion to B), and are discussed here for comparison.

NOTE
Covariance and contravariance (or simply “variance”) are advanced concepts. The
motivation behind introducing and enhancing variance in C# was to allow generic interface
and generic types (in particular, those defined in the Framework, such as IEnumerable<T>) to
work more as you’d expect. You can benefit from this without understanding the details
behind covariance and contravariance.

Variance is not automatic
To ensure static type safety, type parameters are not automatically variant. Consider the
following:

class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T>   // A simple Stack implementation
{
  int position;
  T[] data = new T[100];
  public void Push (T obj)  => data[position++] = obj;
  public T Pop()            => data[--position]; 
}

The following fails to compile:

Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears;            // Compile-time error

That restriction prevents the possibility of runtime failure with the following code:

animals.Push (new Camel());      // Trying to add Camel to bears

Lack of covariance, however, can hinder reusability. Suppose, for instance, we wanted to write
a method to Wash a stack of animals:

public class ZooCleaner
{
  public static void Wash (Stack<Animal> animals) {...}
}

Calling Wash with a stack of bears would generate a compile-time error. One workaround is to
redefine the Wash method with a constraint:

class ZooCleaner
{
  public static void Wash<T> (Stack<T> animals) where T : Animal { ... }
}

We can now call Wash as follows:



Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);

Another solution is to have Stack<T> implement an interface with a covariant type parameter,
as we’ll see shortly.

Arrays
For historical reasons, array types support covariance. This means that B[] can be cast to A[]
if B subclasses A (and both are reference types). For example:

Bear[] bears = new Bear[3];
Animal[] animals = bears;     // OK

The downside of this reusability is that element assignments can fail at runtime:

animals[0] = new Camel();     // Runtime error

Declaring a covariant type parameter
As of C# 4.0, type parameters on interfaces and delegates can be declared covariant by
marking them with the out modifier. This modifier ensures that, unlike with arrays, covariant
type parameters are fully type-safe.
We can illustrate this with our Stack<T> class by having it implement the following interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output positions (e.g., return types for
methods). The out modifier flags the type parameter as covariant and allows us to do this:

var bears = new Stack<Bear>();
bears.Push (new Bear());
// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears;   // Legal
Animal a = animals.Pop();

The conversion from bears to animals is permitted by the compiler — by virtue of the type
parameter being covariant. This is type-safe because the case the compiler is trying to avoid —
pushing a Camel onto the stack — can’t occur as there’s no way to feed a Camel into an
interface where T can appear only in output positions.

NOTE
Covariance (and contravariance) in interfaces is something that you typically consume: it’s
less common that you need to write variant interfaces.

WARNING
Curiously, method parameters marked as out are not eligible for covariance, due to a
limitation in the CLR.



We can leverage the ability to cast covariantly to solve the reusability problem described
earlier:

public class ZooCleaner
{
  public static void Wash (IPoppable<Animal> animals) { ... }
}

NOTE
The IEnumerator<T> and IEnumerable<T> interfaces described in Chapter 7 have a covariant
T. This allows you to cast IEnumerable<string> to IEnumerable<object>, for instance.

The compiler will generate an error if you use a covariant type parameter in an input position
(e.g., a parameter to a method or a writable property).

NOTE
Covariance (and contravariance) works only for elements with reference conversions — not
boxing conversions. (This applies both to type parameter variance and array variance.) So, if
you wrote a method that accepted a parameter of type IPoppable<object>, you could call it
with IPoppable<string>, but not IPoppable<int>.

Contravariance
We previously saw that, assuming that A allows an implicit reference conversion to B, a type X
has a covariant type parameter if X<A> allows a reference conversion to X<B>. Contravariance
is when you can convert in the reverse direction — from X<B> to X<A>. This is supported if the
type parameter appears only in input positions, and is designated with the in modifier.
Extending our previous example, if the Stack<T> class implements the following interface:

public interface IPushable<in T> { void Push (T obj); }

we can legally do this:

IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals;    // Legal
bears.Push (new Bear());

No member in IPushable outputs a T, so we can’t get into trouble by casting animals to
bears (there’s no way to Pop, for instance, through that interface).

NOTE
Our Stack<T> class can implement both IPushable<T> and IPoppable<T> — despite T having
opposing variance annotations in the two interfaces! This works because you must exercise
variance through the interface and not the class; therefore, you must commit to the lens of
either IPoppable or IPushable before performing a variant conversion. This lens then restricts
you to the operations that are legal under the appropriate variance rules.



This also illustrates why classes do not allow variant type parameters: concrete
implementations typically require data to flow in both directions.

To give another example, consider the following interface, defined as part of the .NET
Framework:

public interface IComparer<in T>
{
  // Returns a value indicating the relative ordering of a and b
  int Compare (T a, T b);
}

Because the interface has a contravariant T, we can use an IComparer<object> to compare
two strings:

var objectComparer = Comparer<object>.Default;
// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;
int result = stringComparer.Compare ("Brett", "Jemaine");

Mirroring covariance, the compiler will report an error if you try to use a contravariant type
parameter in an output position (e.g., as a return value, or in a readable property).

C# Generics Versus C++ Templates
C# generics are similar in application to C++ templates, but they work very differently. In both
cases, a synthesis between the producer and consumer must take place, where the placeholder
types of the producer are filled in by the consumer. However, with C# generics, producer types
(i.e., open types such as List<T>) can be compiled into a library (such as mscorlib.dll). This
works because the synthesis between the producer and the consumer that produces closed types
doesn’t actually happen until runtime. With C++ templates, this synthesis is performed at
compile time. This means that in C++ you don’t deploy template libraries as .dlls — they exist
only as source code. It also makes it difficult to dynamically inspect, let alone create,
parameterized types on the fly.
To dig deeper into why this is the case, consider the Max method in C#, once more:

static T Max <T> (T a, T b) where T : IComparable<T>
  => a.CompareTo (b) > 0 ? a : b;

Why couldn’t we have implemented it like this?

static T Max <T> (T a, T b)
  => (a > b ? a : b);             // Compile error

The reason is that Max needs to be compiled once and work for all possible values of T.
Compilation cannot succeed, because there is no single meaning for > across all values of T —
in fact, not every T even has a > operator. In contrast, the following code shows the same Max
method written with C++ templates. This code will be compiled separately for each value of T,
taking on whatever semantics > has for a particular T, failing to compile if a particular T does
not support the > operator:



template <class T> T Max (T a, T b)
{
  return a > b ? a : b;
}

The reference type may also be System.ValueType or System.Enum (Chapter 6).1



Chapter 4. Advanced C#

In this chapter, we cover advanced C# topics that build on concepts explored in Chapters 2 and
3. You should read the first four sections sequentially; you can read the remaining sections in
any order.

Delegates
A delegate is an object that knows how to call a method.
A delegate type defines the kind of method that delegate instances can call. Specifically, it
defines the method’s return type and its parameter types. The following defines a delegate
type called Transformer:

delegate int Transformer (int x);

Transformer is compatible with any method with an int return type and a single int
parameter, such as this:

static int Square (int x) { return x * x; }

or more tersely:

static int Square (int x) => x * x;

Assigning a method to a delegate variable creates a delegate instance:

Transformer t = Square;

which can be invoked in the same way as a method:

int answer = t(3);    // answer is 9

Here’s a complete example:

delegate int Transformer (int x);

class Test
{
  static void Main()
  {
    Transformer t = Square;          // Create delegate instance
    int result = t(3);               // Invoke delegate
    Console.WriteLine (result);      // 9
  }
  static int Square (int x) => x * x;
}

A delegate instance literally acts as a delegate for the caller: the caller invokes the delegate,
and then the delegate calls the target method. This indirection decouples the caller from the
target method.



The statement:

Transformer t = Square;

is shorthand for:

Transformer t = new Transformer (Square);

NOTE
Technically, we are specifying a method group when we refer to Square without brackets or
arguments. If the method is overloaded, C# will pick the correct overload based on the
signature of the delegate to which it’s being assigned.

The expression:

t(3)

is shorthand for:

t.Invoke(3)

NOTE
A delegate is similar to a callback, a general term that captures constructs such as C function
pointers.

Writing Plug-in Methods with Delegates
A delegate variable is assigned a method at runtime. This is useful for writing plug-in methods.
In this example, we have a utility method named Transform that applies a transform to each
element in an integer array. The Transform method has a delegate parameter, for specifying a
plug-in transform.

public delegate int Transformer (int x);

class Util
{
  public static void Transform (int[] values, Transformer t)
  {
    for (int i = 0; i < values.Length; i++)
      values[i] = t (values[i]);
  }
}

class Test
{
  static void Main()
  {
    int[] values = { 1, 2, 3 };
    Util.Transform (values, Square);      // Hook in the Square method
    foreach (int i in values)
      Console.Write (i + "  ");           // 1   4   9
  }



  static int Square (int x) => x * x;
}

Our Transform method is a higher-order function, because it’s a function that takes a function
as an argument. (A method that returns a delegate would also be a higher-order function.)

Multicast Delegates
All delegate instances have multicast capability. This means that a delegate instance can
reference not just a single target method, but also a list of target methods. The + and +=
operators combine delegate instances. For example:

SomeDelegate d = SomeMethod1;
d += SomeMethod2;

The last line is functionally the same as:

d = d + SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2. Delegates are invoked in the
order they are added.
The - and -= operators remove the right delegate operand from the left delegate operand. For
example:

d -= SomeMethod1;

Invoking d will now cause only SomeMethod2 to be invoked.
Calling + or += on a delegate variable with a null value works, and it is equivalent to
assigning the variable to a new value:

SomeDelegate d = null;
d += SomeMethod1;       // Equivalent (when d is null) to d = SomeMethod1;

Similarly, calling -= on a delegate variable with a single target is equivalent to assigning null
to that variable.

NOTE
Delegates are immutable, so when you call += or -=, you’re in fact creating a new delegate
instance and assigning it to the existing variable.

If a multicast delegate has a nonvoid return type, the caller receives the return value from the
last method to be invoked. The preceding methods are still called, but their return values are
discarded. In most scenarios in which multicast delegates are used, they have void return
types, so this subtlety does not arise.

NOTE
All delegate types implicitly derive from System.MulticastDelegate, which inherits from



System.Delegate. C# compiles +, -, +=, and -= operations made on a delegate to the static
Combine and Remove methods of the System.Delegate class.

Multicast delegate example
Suppose you wrote a method that took a long time to execute. That method could regularly
report progress to its caller by invoking a delegate. In this example, the HardWork method has a
ProgressReporter delegate parameter, which it invokes to indicate progress:

public delegate void ProgressReporter (int percentComplete);

public class Util
{
  public static void HardWork (ProgressReporter p)
  {
    for (int i = 0; i < 10; i++)
    {
      p (i * 10);                           // Invoke delegate
      System.Threading.Thread.Sleep (100);  // Simulate hard work
    }
  }
}

To monitor progress, the Main method creates a multicast delegate instance p, such that
progress is monitored by two independent methods:

class Test
{
  static void Main()
  {
    ProgressReporter p = WriteProgressToConsole;
    p += WriteProgressToFile;
    Util.HardWork (p);
  }

  static void WriteProgressToConsole (int percentComplete)
    => Console.WriteLine (percentComplete);

  static void WriteProgressToFile (int percentComplete)
    => System.IO.File.WriteAllText ("progress.txt",
                                     percentComplete.ToString());
}

Instance Versus Static Method Targets
When an instance method is assigned to a delegate object, the latter must maintain a reference
not only to the method, but also to the instance to which the method belongs. The
System.Delegate class’s Target property represents this instance (and will be null for a
delegate referencing a static method). For example:

public delegate void ProgressReporter (int percentComplete);

class Test
{
  static void Main()
  {
    X x = new X();
    ProgressReporter p = x.InstanceProgress;
    p(99);                                 // 99
    Console.WriteLine (p.Target == x);     // True
    Console.WriteLine (p.Method);          // Void InstanceProgress(Int32)
  }



}

class X
{
  public void InstanceProgress (int percentComplete)
    => Console.WriteLine (percentComplete);
}

Generic Delegate Types
A delegate type may contain generic type parameters. For example:

public delegate T Transformer<T> (T arg);

With this definition, we can write a generalized Transform utility method that works on any
type:

public class Util
{
  public static void Transform<T> (T[] values, Transformer<T> t)
  {
    for (int i = 0; i < values.Length; i++)
      values[i] = t (values[i]);
  }
}

class Test
{
  static void Main()
  {
    int[] values = { 1, 2, 3 };
    Util.Transform (values, Square);      // Hook in Square
    foreach (int i in values)
      Console.Write (i + "  ");           // 1   4   9
  }

  static int Square (int x) => x * x;
}

The Func and Action Delegates
With generic delegates, it becomes possible to write a small set of delegate types that are so
general they can work for methods of any return type and any (reasonable) number of
arguments. These delegates are the Func and Action delegates, defined in the System
namespace (the in and out annotations indicate variance, which we will cover shortly):

delegate TResult Func <out TResult>                ();
delegate TResult Func <in T, out TResult>          (T arg);
delegate TResult Func <in T1, in T2, out TResult>  (T1 arg1, T2 arg2);
... and so on, up to T16

delegate void Action                 ();
delegate void Action <in T>          (T arg);
delegate void Action <in T1, in T2>  (T1 arg1, T2 arg2);
... and so on, up to T16

These delegates are extremely general. The Transformer delegate in our previous example
can be replaced with a Func delegate that takes a single argument of type T and returns a same-
typed value:

public static void Transform<T> (T[] values, Func<T,T> transformer)
{



  for (int i = 0; i < values.Length; i++)
    values[i] = transformer (values[i]);
}

The only practical scenarios not covered by these delegates are ref/out and pointer
parameters.

NOTE
Prior to Framework 2.0, the Func and Action delegates did not exist (because generics did not
exist). It’s for this historical reason that much of the Framework uses custom delegate types
rather than Func and Action.

Delegates Versus Interfaces
A problem that can be solved with a delegate can also be solved with an interface. For
instance, we can rewrite our original example with an interface called ITransformer instead
of a delegate:

public interface ITransformer
{
  int Transform (int x);
}

public class Util
{
 public static void TransformAll (int[] values, ITransformer t)
 {
   for (int i = 0; i < values.Length; i++)
     values[i] = t.Transform (values[i]);
 }
}

class Squarer : ITransformer
{
  public int Transform (int x) => x * x;
}
...

static void Main()
{
  int[] values = { 1, 2, 3 };
  Util.TransformAll (values, new Squarer());
  foreach (int i in values)
    Console.WriteLine (i);
}

A delegate design may be a better choice than an interface design if one or more of these
conditions are true:

The interface defines only a single method.

Multicast capability is needed.

The subscriber needs to implement the interface multiple times.

In the ITransformer example, we don’t need to multicast. However, the interface defines only
a single method. Furthermore, our subscriber may need to implement ITransformer multiple
times, to support different transforms, such as square or cube. With interfaces, we’re forced



into writing a separate type per transform, since Test can implement ITransformer only once.
This is quite cumbersome:

class Squarer : ITransformer
{
  public int Transform (int x) => x * x;
}

class Cuber : ITransformer
{
  public int Transform (int x) => x * x * x;
}
...

static void Main()
{
  int[] values = { 1, 2, 3 };
  Util.TransformAll (values, new Cuber());
  foreach (int i in values)
    Console.WriteLine (i);
}

Delegate Compatibility

Type compatibility
Delegate types are all incompatible with one another, even if their signatures are the same:

delegate void D1();
delegate void D2();
...

D1 d1 = Method1;
D2 d2 = d1;                           // Compile-time error

NOTE
The following, however, is permitted:

D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same method targets:

delegate void D();
...

D d1 = Method1;
D d2 = Method1;
Console.WriteLine (d1 == d2);         // True

Multicast delegates are considered equal if they reference the same methods in the same order.

Parameter compatibility
When you call a method, you can supply arguments that have more specific types than the
parameters of that method. This is ordinary polymorphic behavior. For exactly the same reason,
a delegate can have more specific parameter types than its method target. This is called



contravariance.
Here’s an example:

delegate void StringAction (string s);

class Test
{
  static void Main()
  {
    StringAction sa = new StringAction (ActOnObject);
    sa ("hello");
  }

  static void ActOnObject (object o) => Console.WriteLine (o);   // hello
}

(As with type parameter variance, delegates are variant only for reference conversions.)
A delegate merely calls a method on someone else’s behalf. In this case, the StringAction is
invoked with an argument of type string. When the argument is then relayed to the target
method, the argument gets implicitly upcast to an object.

NOTE
The standard event pattern is designed to help you leverage contravariance through its use of
the common EventArgs base class. For example, you can have a single method invoked by
two different delegates, one passing a MouseEventArgs and the other passing a KeyEventArgs.

Return type compatibility
If you call a method, you may get back a type that is more specific than what you asked for.
This is ordinary polymorphic behavior. For exactly the same reason, a delegate’s target method
may return a more specific type than described by the delegate. This is called covariance. For
example:

delegate object ObjectRetriever();

class Test
{
  static void Main()
  {
    ObjectRetriever o = new ObjectRetriever (RetrieveString);
    object result = o();
    Console.WriteLine (result);      // hello
  }
  static string RetrieveString() => "hello";
}

ObjectRetriever expects to get back an object, but an object subclass will also do:
delegate return types are covariant.

Generic delegate type parameter variance
In Chapter 3 we saw how generic interfaces support covariant and contravariant type
parameters. The same capability exists for delegates too (from C# 4.0 onward).
If you’re defining a generic delegate type, it’s good practice to:



Mark a type parameter used only on the return value as covariant (out).

Mark any type parameters used only on parameters as contravariant (in).

Doing so allows conversions to work naturally by respecting inheritance relationships between
types.
The following delegate (defined in the System namespace) has a covariant TResult:

delegate TResult Func<out TResult>();

allowing:

Func<string> x = ...;
Func<object> y = x;

The following delegate (defined in the System namespace) has a contravariant T:

delegate void Action<in T> (T arg);

allowing:

Action<object> x = ...;
Action<string> y = x;

Events
When using delegates, two emergent roles commonly appear: broadcaster and subscriber.
The broadcaster is a type that contains a delegate field. The broadcaster decides when to
broadcast, by invoking the delegate.
The subscribers are the method target recipients. A subscriber decides when to start and stop
listening, by calling += and -= on the broadcaster’s delegate. A subscriber does not know
about, or interfere with, other subscribers.
Events are a language feature that formalizes this pattern. An event is a construct that exposes
just the subset of delegate features required for the broadcaster/subscriber model. The main
purpose of events is to prevent subscribers from interfering with one another.
The easiest way to declare an event is to put the event keyword in front of a delegate member:

// Delegate definition
public delegate void PriceChangedHandler (decimal oldPrice,
                                          decimal newPrice);
public class Broadcaster
{
  // Event declaration
  public event PriceChangedHandler PriceChanged;
}

Code within the Broadcaster type has full access to PriceChanged and can treat it as a
delegate. Code outside of Broadcaster can only perform += and -= operations on the
PriceChanged event.



HOW DO EVENTS WORK ON THE INSIDE?
Three things happen under the covers when you declare an event as follows:

public class Broadcaster
{
  public event PriceChangedHandler PriceChanged;
}

First, the compiler translates the event declaration into something close to the following:

PriceChangedHandler priceChanged;   // private delegate
public event PriceChangedHandler PriceChanged
{
  add    { priceChanged += value; }
  remove { priceChanged -= value; }
}

The add and remove keywords denote explicit event accessors — which act rather like property
accessors. We’ll describe how to write these later.
Second, the compiler looks within the Broadcaster class for references to PriceChanged that
perform operations other than += or -=, and redirects them to the underlying priceChanged delegate
field.
Third, the compiler translates += and -= operations on the event to calls to the event’s add and
remove accessors. Interestingly, this makes the behavior of += and -= unique when applied to events:
unlike in other scenarios, it’s not simply a shortcut for + and - followed by an assignment.

Consider the following example. The Stock class fires its PriceChanged event every time the
Price of the Stock changes:

public delegate void PriceChangedHandler (decimal oldPrice,
                                          decimal newPrice);
public class Stock
{
  string symbol;
  decimal price;

  public Stock (string symbol) { this.symbol = symbol; }

  public event PriceChangedHandler PriceChanged;

  public decimal Price
  {
    get { return price; }
    set
    {
      if (price == value) return;      // Exit if nothing has changed
      decimal oldPrice = price;
      price = value;
      if (PriceChanged != null)           // If invocation list not
        PriceChanged (oldPrice, price);   // empty, fire event.
    }
  }
}

If we remove the event keyword from our example so that PriceChanged becomes an
ordinary delegate field, our example would give the same results. However, Stock would be
less robust, in that subscribers could do the following things to interfere with each other:

Replace other subscribers by reassigning PriceChanged (instead of using the += operator).



Clear all subscribers (by setting PriceChanged to null).

Broadcast to other subscribers by invoking the delegate.

NOTE
WinRT events have slightly different semantics in that attaching to an event returns a token
which is required to detach from the event. The compiler transparently bridges this gap (by
maintaining an internal dictionary of tokens) so that you can consume WinRT events as
though they were ordinary CLR events.

Standard Event Pattern
The .NET Framework defines a standard pattern for writing events. Its purpose is to provide
consistency across both Framework and user code. At the core of the standard event pattern is
System.EventArgs: a predefined Framework class with no members (other than the static
Empty property). EventArgs is a base class for conveying information for an event. In our
Stock example, we would subclass EventArgs to convey the old and new prices when a
PriceChanged event is fired:

public class PriceChangedEventArgs : System.EventArgs
{
  public readonly decimal LastPrice;
  public readonly decimal NewPrice;

  public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
  {
    LastPrice = lastPrice;
    NewPrice = newPrice;
  }
}

For reusability, the EventArgs subclass is named according to the information it contains
(rather than the event for which it will be used). It typically exposes data as properties or as
read-only fields.
With an EventArgs subclass in place, the next step is to choose or define a delegate for the
event. There are three rules:

It must have a void return type.

It must accept two arguments: the first of type object, and the second a subclass of
EventArgs. The first argument indicates the event broadcaster, and the second argument
contains the extra information to convey.

Its name must end with EventHandler.

The Framework defines a generic delegate called System.EventHandler<> that satisfies
these rules:

public delegate void EventHandler<TEventArgs>
  (object source, TEventArgs e) where TEventArgs : EventArgs;



NOTE
Before generics existed in the language (prior to C# 2.0), we would have had to instead write
a custom delegate as follows:

public delegate void PriceChangedHandler
  (object sender, PriceChangedEventArgs e);

For historical reasons, most events within the Framework use delegates defined in this way.

The next step is to define an event of the chosen delegate type. Here, we use the generic
EventHandler delegate:

public class Stock
{
  ...
  public event EventHandler<PriceChangedEventArgs> PriceChanged;
}

Finally, the pattern requires that you write a protected virtual method that fires the event. The
name must match the name of the event, prefixed with the word On, and then accept a single
EventArgs argument:

public class Stock
{
  ...

  public event EventHandler<PriceChangedEventArgs> PriceChanged;

  protected virtual void OnPriceChanged (PriceChangedEventArgs e)
  {
    if (PriceChanged != null) PriceChanged (this, e);
  }
}

NOTE
In multithreaded scenarios (Chapter 14), you need to assign the delegate to a temporary
variable before testing and invoking it, to avoid a thread-safety error:

var temp = PriceChanged;
if (temp != null) temp (this, e);

We can achieve the same functionality without the temp variable from C# 6 with the null-
conditional operator:

PriceChanged?.Invoke (this, e);

Being both thread-safe and succinct, this is now the best general way to invoke events.

This provides a central point from which subclasses can invoke or override the event
(assuming the class is not sealed).
Here’s the complete example:



using System;

public class PriceChangedEventArgs : EventArgs
{
  public readonly decimal LastPrice;
  public readonly decimal NewPrice;

  public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
  {
    LastPrice = lastPrice; NewPrice = newPrice;
  }
}

public class Stock
{
  string symbol;
  decimal price;

  public Stock (string symbol) {this.symbol = symbol;}

  public event EventHandler<PriceChangedEventArgs> PriceChanged;

  protected virtual void OnPriceChanged (PriceChangedEventArgs e)
  {
    PriceChanged?.Invoke (this, e);
  }

  public decimal Price
  {
    get { return price; }
    set
    {
      if (price == value) return;
      decimal oldPrice = price;
      price = value;
      OnPriceChanged (new PriceChangedEventArgs (oldPrice, price));
    }
  }
}

class Test
{
  static void Main()
  {
    Stock stock = new Stock ("THPW");
    stock.Price = 27.10M;
    // Register with the PriceChanged event
    stock.PriceChanged += stock_PriceChanged;
    stock.Price = 31.59M;
  }

  static void stock_PriceChanged (object sender, PriceChangedEventArgs e)
  {
    if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
      Console.WriteLine ("Alert, 10% stock price increase!");
  }
}

The predefined nongeneric EventHandler delegate can be used when an event doesn’t carry
extra information. In this example, we rewrite Stock such that the PriceChanged event is fired
after the price changes, and no information about the event is necessary, other than it happened.
We also make use of the EventArgs.Empty property, in order to avoid unnecessarily
instantiating an instance of EventArgs.

public class Stock
{
  string symbol;
  decimal price;



  public Stock (string symbol) { this.symbol = symbol; }

  public event EventHandler PriceChanged;

  protected virtual void OnPriceChanged (EventArgs e)
  {
    PriceChanged?.Invoke (this, e);
  }

  public decimal Price
  {
    get { return price; }
    set
    {
      if (price == value) return;
      price = value;
      OnPriceChanged (EventArgs.Empty);
    }
  }
}

Event Accessors
An event’s accessors are the implementations of its += and -= functions. By default, accessors
are implemented implicitly by the compiler. Consider this event declaration:

public event EventHandler PriceChanged;

The compiler converts this to the following:
A private delegate field

A public pair of event accessor functions (add_PriceChanged and
remove_PriceChanged), whose implementations forward the += and -= operations to the
private delegate field

You can take over this process by defining explicit event accessors. Here’s a manual
implementation of the PriceChanged event from our previous example:

private EventHandler priceChanged;         // Declare a private delegate

public event EventHandler PriceChanged
{
  add    { priceChanged += value; }
  remove { priceChanged -= value; }
}

This example is functionally identical to C#’s default accessor implementation (except that C#
also ensures thread safety around updating the delegate via a lock-free compare-and-swap
algorithm — see http://albahari.com/threading). By defining event accessors ourselves, we
instruct C# not to generate default field and accessor logic.
With explicit event accessors, you can apply more complex strategies to the storage and access
of the underlying delegate. There are three scenarios where this is useful:

When the event accessors are merely relays for another class that is broadcasting the event.

When the class exposes a large number of events, where most of the time very few
subscribers exist, such as a Windows control. In such cases, it is better to store the
subscriber’s delegate instances in a dictionary, since a dictionary will contain less storage

http://albahari.com/threading


overhead than dozens of null delegate field references.

When explicitly implementing an interface that declares an event.

Here is an example that illustrates the last point:

public interface IFoo { event EventHandler Ev; }

class Foo : IFoo
{
  private EventHandler ev;

  event EventHandler IFoo.Ev
  {
    add    { ev += value; }
    remove { ev -= value; }
  }
}

NOTE
The add and remove parts of an event are compiled to add_XXX and remove_XXX methods.

Event Modifiers
Like methods, events can be virtual, overridden, abstract, or sealed. Events can also be static:

public class Foo
{
  public static event EventHandler<EventArgs> StaticEvent;
  public virtual event EventHandler<EventArgs> VirtualEvent;
}

Lambda Expressions
A lambda expression is an unnamed method written in place of a delegate instance. The
compiler immediately converts the lambda expression to either:

A delegate instance.

An expression tree, of type Expression<TDelegate>, representing the code inside the
lambda expression in a traversable object model. This allows the lambda expression to be
interpreted later at runtime (see “Building Query Expressions” in Chapter 8).

Given the following delegate type:

delegate int Transformer (int i);

we could assign and invoke the lambda expression x => x * x as follows:

Transformer sqr = x => x * x;
Console.WriteLine (sqr(3));    // 9

NOTE



Internally, the compiler resolves lambda expressions of this type by writing a private method,
and moving the expression’s code into that method.

A lambda expression has the following form:

(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one parameter of
an inferable type.
In our example, there is a single parameter, x, and the expression is x * x:

x => x * x;

Each parameter of the lambda expression corresponds to a delegate parameter, and the type of
the expression (which may be void) corresponds to the return type of the delegate.
In our example, x corresponds to parameter i, and the expression x * x corresponds to the
return type int, therefore being compatible with the Transformer delegate:

delegate int Transformer (int i);

A lambda expression’s code can be a statement block instead of an expression. We can rewrite
our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func and Action delegates, so you will
most often see our earlier expression written as follows:

Func<int,int> sqr = x => x * x;

Here’s an example of an expression that accepts two parameters:

Func<string,string,int> totalLength = (s1, s2) => s1.Length + s2.Length;
int total = totalLength ("hello", "world");   // total is 10;

Lambda expressions were introduced in C# 3.0.

Explicitly Specifying Lambda Parameter Types
The compiler can usually infer the type of lambda parameters contextually. When this is not the
case, you must specify the type of each parameter explicitly. Consider the following two
methods:

void Foo<T> (T x)         {}
void Bar<T> (Action<T> a) {}

The following code will fail to compile, because the compiler cannot infer the type of x:

Bar (x => Foo (x));     // What type is x?



We can fix this by explicitly specify x’s type as follows:

Bar ((int x) => Foo (x));

This particular example is simple enough that it can be fixed in two other ways:

Bar<int> (x => Foo (x));   // Specify type parameter for Bar
Bar<int> (Foo);            // As above, but with method group

Capturing Outer Variables
A lambda expression can reference the local variables and parameters of the method in which
it’s defined (outer variables). For example:

static void Main()
{
  int factor = 2;
  Func<int, int> multiplier = n => n * factor;
  Console.WriteLine (multiplier (3));           // 6
}

Outer variables referenced by a lambda expression are called captured variables. A lambda
expression that captures variables is called a closure.

NOTE
Variables can also be captured by anonymous methods and local methods. The rules for
captured variables, in these cases, are the same.

Captured variables are evaluated when the delegate is actually invoked, not when the variables
were captured:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3));           // 30

Lambda expressions can themselves update captured variables:

int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine (natural());           // 0
Console.WriteLine (natural());           // 1
Console.WriteLine (seed);                // 2

Captured variables have their lifetimes extended to that of the delegate. In the following
example, the local variable seed would ordinarily disappear from scope when Natural
finished executing. But because seed has been captured, its lifetime is extended to that of the
capturing delegate, natural:

static Func<int> Natural()
{
  int seed = 0;
  return () => seed++;      // Returns a closure
}



static void Main()
{
  Func<int> natural = Natural();
  Console.WriteLine (natural());      // 0
  Console.WriteLine (natural());      // 1
}

A local variable instantiated within a lambda expression is unique per invocation of the
delegate instance. If we refactor our previous example to instantiate seed within the lambda
expression, we get a different (in this case, undesirable) result:

static Func<int> Natural()
{    
  return() => { int seed = 0; return seed++; };
}

static void Main()
{
  Func<int> natural = Natural();
  Console.WriteLine (natural());           // 0
  Console.WriteLine (natural());           // 0
}

NOTE
Capturing is internally implemented by “hoisting” the captured variables into fields of a
private class. When the method is called, the class is instantiated and lifetime-bound to the
delegate instance.

Capturing iteration variables
When you capture the iteration variable of a for loop, C# treats that variable as though it was
declared outside the loop. This means that the same variable is captured in each iteration. The
following program writes 333 instead of writing 012:

Action[] actions = new Action[3];

for (int i = 0; i < 3; i++)
  actions [i] = () => Console.Write (i);

foreach (Action a in actions) a();     // 333

Each closure (shown in boldface) captures the same variable, i. (This actually makes sense
when you consider that i is a variable whose value persists between loop iterations; you can
even explicitly change i within the loop body if you want.) The consequence is that when the
delegates are later invoked, each delegate sees i’s value at the time of invocation — which is
3. We can illustrate this better by expanding the for loop as follows:

Action[] actions = new Action[3];
int i = 0;
actions[0] = () => Console.Write (i);
i = 1;
actions[1] = () => Console.Write (i);
i = 2;
actions[2] = () => Console.Write (i);
i = 3;
foreach (Action a in actions) a();    // 333



The solution, if we want to write 012, is to assign the iteration variable to a local variable
that’s scoped inside the loop:

Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
  int loopScopedi = i;
  actions [i] = () => Console.Write (loopScopedi);
}
foreach (Action a in actions) a();     // 012

Because loopScopedi is freshly created on every iteration, each closure captures a different
variable.

NOTE
Prior to C# 5.0, foreach loops worked in the same way:

Action[] actions = new Action[3];
int i = 0;

foreach (char c in "abc")
  actions [i++] = () => Console.Write (c);

foreach (Action a in actions) a();   // ccc in C# 4.0

This caused considerable confusion: unlike with a for loop, the iteration variable in a foreach
loop is immutable, and so one would expect it to be treated as local to the loop body. The
good news is that it’s been fixed since C# 5.0, and the preceding example now writes “abc.”

WARNING
Technically, this is a breaking change because recompiling a C# 4.0 program in C# 5.0 could
create a different result. In general, the C# team tries to avoid breaking changes; however in
this case, a “break” would almost certainly indicate an undetected bug in the C# 4.0 program
rather than intentional reliance on the old behavior.

Lambda Expressions Versus Local Methods
The functionality of C# 7’s local methods (see “Local methods” in Chapter 1) overlaps with
that of lambda expressions. Local methods have the following three advantages:

They can be recursive (they can call themselves), without ugly hacks

They avoid the clutter of specifying a delegate type

They incur slightly less overhead

Local methods are more efficient because they avoid the indirection of a delegate (which costs
some CPU cycles and a memory allocation). They can also access local variables of the
containing method without the compiler having to “hoist” the captured variables into a hidden
class.
However, in many cases you need a delegate, most commonly when calling a higher-order



function, i.e., a method with a delegate-typed parameter:

public void Foo (Func<int,bool> predicate) { ... }

(We’ll see plenty more of these in Chapter 8.) In such cases, you need a delegate anyway, and
it’s in precisely these cases that lambda expressions are usually terser and cleaner.

Anonymous Methods
Anonymous methods are a C# 2.0 feature that has been mostly subsumed by C# 3.0’s lambda
expressions. An anonymous method is like a lambda expression, but it lacks the following
features:

Implicitly typed parameters

Expression syntax (an anonymous method must always be a statement block)

The ability to compile to an expression tree, by assigning to Expression<T>

To write an anonymous method, you include the delegate keyword followed (optionally) by a
parameter declaration and then a method body. For example, given this delegate:

delegate int Transformer (int i);

we could write and call an anonymous method as follows:

Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3));                            // 9

The first line is semantically equivalent to the following lambda expression:

Transformer sqr =       (int x) => {return x * x;};

Or simply:

Transformer sqr =            x  => x * x;

Anonymous methods capture outer variables in the same way lambda expressions do.

NOTE
A unique feature of anonymous methods is that you can omit the parameter declaration
entirely — even if the delegate expects it. This can be useful in declaring events with a
default empty handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event. The following is also legal:

// Notice that we omit the parameters:
Clicked += delegate { Console.WriteLine ("clicked"); };



try Statements and Exceptions
A try statement specifies a code block subject to error-handling or cleanup code. The try
block must be followed by a catch block, a finally block, or both. The catch block
executes when an error occurs in the try block. The finally block executes after execution
leaves the try block (or if present, the catch block), to perform cleanup code, whether or not
an error occurred.
A catch block has access to an Exception object that contains information about the error.
You use a catch block to either compensate for the error or rethrow the exception. You
rethrow an exception if you merely want to log the problem, or if you want to rethrow a new,
higher-level exception type.
A finally block adds determinism to your program: the CLR endeavors to always execute it.
It’s useful for cleanup tasks such as closing network connections.
A try statement looks like this:

try
{
  ... // exception may get thrown within execution of this block
}
catch (ExceptionA ex)
{
  ... // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
  ... // handle exception of type ExceptionB
}
finally
{
  ... // cleanup code
}

Consider the following program:

class Test
{
  static int Calc (int x) => 10 / x;

  static void Main()
  {
    int y = Calc (0);
    Console.WriteLine (y);
  }
}

Because x is zero, the runtime throws a DivideByZeroException, and our program
terminates. We can prevent this by catching the exception as follows:

class Test
{
  static int Calc (int x) => 10 / x;

  static void Main()
  {
    try
    {
      int y = Calc (0);



      Console.WriteLine (y);
    }
    catch (DivideByZeroException ex)
    {
      Console.WriteLine ("x cannot be zero");
    }
    Console.WriteLine ("program completed");
  }
}

OUTPUT:
x cannot be zero
program completed

NOTE
This is a simple example to illustrate exception handling. We could deal with this particular
scenario better in practice by checking explicitly for the divisor being zero before calling Calc.
Checking for preventable errors is preferable to relying on try/catch blocks because
exceptions are relatively expensive to handle, taking hundreds of clock cycles or more.

When an exception is thrown, the CLR performs a test: Is execution currently within a try
statement that can catch the exception?

If so, execution is passed to the compatible catch block. If the catch block successfully
finishes executing, execution moves to the next statement after the try statement (if present,
executing the finally block first).

If not, execution jumps back to the caller of the function, and the test is repeated (after
executing any finally blocks that wrap the statement).

If no function takes responsibility for the exception, an error dialog box is displayed to the
user, and the program terminates.

The catch Clause
A catch clause specifies what type of exception to catch. This must either be System 
.Exception or a subclass of System.Exception.
Catching System.Exception catches all possible errors. This is useful when:

Your program can potentially recover regardless of the specific exception type.

You plan to rethrow the exception (perhaps after logging it).

Your error handler is the last resort, prior to termination of the program.

More typically, though, you catch specific exception types, in order to avoid having to deal
with circumstances for which your handler wasn’t designed (e.g., an OutOf 
MemoryException).
You can handle multiple exception types with multiple catch clauses (again, this example
could be written with explicit argument checking rather than exception handling):

class Test
{



  static void Main (string[] args)
  {
    try
    {
      byte b = byte.Parse (args[0]);
      Console.WriteLine (b);
    }
    catch (IndexOutOfRangeException ex)
    {
      Console.WriteLine ("Please provide at least one argument");
    }
    catch (FormatException ex)
    {
      Console.WriteLine ("That's not a number!");
    }
    catch (OverflowException ex)
    {
      Console.WriteLine ("You've given me more than a byte!");
    }
  }
}

Only one catch clause executes for a given exception. If you want to include a safety net to
catch more general exceptions (such as System.Exception) you must put the more specific
handlers first.
An exception can be caught without specifying a variable, if you don’t need to access its
properties:

catch (OverflowException)   // no variable
{
  ...
}

Furthermore, you can omit both the variable and the type (meaning that all exceptions will be
caught):

catch { ... }

Exception filters (C# 6)
From C# 6.0, you can specify an exception filter in a catch clause by adding a when clause:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
  ...
}

If a WebException is thrown in this example, the Boolean expression following the when
keyword is then evaluated. If the result is false, the catch block in question is ignored, and any
subsequent catch clauses are considered. With exception filters, it can be meaningful to catch
the same exception type again:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{ ... }
catch (WebException ex) when (ex.Status == WebExceptionStatus.SendFailure)
{ ... }

The Boolean expression in the when clause can be side-effecting, such as a method that logs the
exception for diagnostic purposes.



The finally Block
A finally block always executes — whether or not an exception is thrown and whether or not
the try block runs to completion. finally blocks are typically used for cleanup code.
A finally block executes either:

After a catch block finishes

After control leaves the try block because of a jump statement (e.g., return or goto)

After the try block ends

The only things that can defeat a finally block are an infinite loop, or the process ending
abruptly.
A finally block helps add determinism to a program. In the following example, the file that
we open always gets closed, regardless of whether:

The try block finishes normally.

Execution returns early because the file is empty (EndOfStream).

An IOException is thrown while reading the file.

static void ReadFile()
{
  StreamReader reader = null;    // In System.IO namespace
  try
  {
    reader = File.OpenText ("file.txt");
    if (reader.EndOfStream) return;
    Console.WriteLine (reader.ReadToEnd());
  }
  finally
  {
    if (reader != null) reader.Dispose();
  }
}

In this example, we closed the file by calling Dispose on the StreamReader. Calling Dispose
on an object, within a finally block, is a standard convention throughout the .NET
Framework and is supported explicitly in C# through the using statement.

The using statement
Many classes encapsulate unmanaged resources, such as file handles, graphics handles, or
database connections. These classes implement System.IDisposable, which defines a single
parameterless method named Dispose to clean up these resources. The using statement
provides an elegant syntax for calling Dispose on an IDisposable object within a finally
block.
The following:

using (StreamReader reader = File.OpenText ("file.txt"))
{
  ...
}



is precisely equivalent to:

{
  StreamReader reader = File.OpenText ("file.txt");
  try
  {
    ...
  }
  finally
  {
    if (reader != null)
      ((IDisposable)reader).Dispose();
  }
}

We cover the disposal pattern in more detail in Chapter 12.

Throwing Exceptions
Exceptions can be thrown either by the runtime or in user code. In this example, Display
throws a System.ArgumentNullException:

class Test
{
  static void Display (string name)
  {
    if (name == null)
      throw new ArgumentNullException (nameof (name));

    Console.WriteLine (name);
  }

  static void Main()
  {
    try { Display (null); }
    catch (ArgumentNullException ex)
    {
      Console.WriteLine ("Caught the exception");
    }
  }
}

throw expressions (C# 7)
Prior to C# 7, throw was always a statement. Now it can also appear as an expression in
expression-bodied functions:

public string Foo() => throw new NotImplementedException();

A throw expression can also appear in a ternary conditional expression:

string ProperCase (string value) =>
  value == null ? throw new ArgumentException ("value") :
  value == "" ? "" :
  char.ToUpper (value[0]) + value.Substring (1);

Rethrowing an exception
You can capture and rethrow an exception as follows:

try {  ...  }
catch (Exception ex)



{
  // Log error
  ...
  throw;          // Rethrow same exception
}

NOTE
If we replaced throw with throw ex, the example would still work, but the StackTrace
property of the newly propagated exception would no longer reflect the original error.

Rethrowing in this manner lets you log an error without swallowing it. It also lets you back out
of handling an exception should circumstances turn out to be outside what you expected:

using System.Net;       // (See Chapter 16)
...

string s = null;
using (WebClient wc = new WebClient())
  try { s = wc.DownloadString ("http://www.albahari.com/nutshell/");  }
  catch (WebException ex)
  {
    if (ex.Status == WebExceptionStatus.Timeout)
      Console.WriteLine ("Timeout");
    else
      throw;     // Can't handle other sorts of WebException, so rethrow
  }

From C# 6.0, this can be written more tersely with an exception filter:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
  Console.WriteLine ("Timeout");
}

The other common scenario is to rethrow a more specific exception type. For example:

try
{
  ... // Parse a DateTime from XML element data
}
catch (FormatException ex)
{
  throw new XmlException ("Invalid DateTime", ex);
}

Notice that when we constructed XmlException, we passed in the original exception, ex, as
the second argument. This argument populates the InnerException property of the new
exception and aids debugging. Nearly all types of exception offer a similar constructor.
Rethrowing a less specific exception is something you might do when crossing a trust
boundary, so as not to leak technical information to potential hackers.

Key Properties of System.Exception
The most important properties of System.Exception are the following:

StackTrace



A string representing all the methods that are called from the origin of the exception to the
catch block.

Message

A string with a description of the error.

InnerException

The inner exception (if any) that caused the outer exception. This, itself, may have another
InnerException.

NOTE
All exceptions in C# are runtime exceptions — there is no equivalent to Java’s compile-time
checked exceptions.

Common Exception Types
The following exception types are used widely throughout the CLR and .NET Framework. You
can throw these yourself or use them as base classes for deriving custom exception types.

System.ArgumentException

Thrown when a function is called with a bogus argument. This generally indicates a
program bug.

System.ArgumentNullException

Subclass of ArgumentException that’s thrown when a function argument is
(unexpectedly) null.

System.ArgumentOutOfRangeException

Subclass of ArgumentException that’s thrown when a (usually numeric) argument is too
big or too small. For example, this is thrown when passing a negative number into a
function that accepts only positive values.

System.InvalidOperationException

Thrown when the state of an object is unsuitable for a method to successfully execute,
regardless of any particular argument values. Examples include reading an unopened file
or getting the next element from an enumerator where the underlying list has been modified
partway through the iteration.

System.NotSupportedException

Thrown to indicate that a particular functionality is not supported. A good example is
calling the Add method on a collection for which IsReadOnly returns true.

System.NotImplementedException

Thrown to indicate that a function has not yet been implemented.

System.ObjectDisposedException

Thrown when the object upon which the function is called has been disposed.
Another commonly encountered exception type is NullReferenceException. The CLR
throws this exception when you attempt to access a member of an object whose value is null
(indicating a bug in your code). You can throw a NullReference Exception directly (for



testing purposes) as follows:

throw null;

The TryXXX Method Pattern
When writing a method, you have a choice, when something goes wrong, to return some kind of
failure code or throw an exception. In general, you throw an exception when the error is
outside the normal workflow — or if you expect that the immediate caller won’t be able to
cope with it. Occasionally, though, it can be best to offer both choices to the consumer. An
example of this is the int type, which defines two versions of its Parse method:

public int Parse     (string input);
public bool TryParse (string input, out int returnValue);

If parsing fails, Parse throws an exception; TryParse returns false.
You can implement this pattern by having the XXX method call the TryXXX method as follows:

public return-type XXX (input-type input)
{
  return-type returnValue;
  if (!TryXXX (input, out returnValue))
    throw new YYYException (...)
  return returnValue;
}

Alternatives to Exceptions
As with int.TryParse, a function can communicate failure by sending an error code back to
the calling function via a return type or parameter. Although this can work with simple and
predictable failures, it becomes clumsy when extended to all errors, polluting method
signatures and creating unnecessary complexity and clutter. It also cannot generalize to
functions that are not methods, such as operators (e.g., the division operator) or properties. An
alternative is to place the error in a common place where all functions in the call stack can see
it (e.g., a static method that stores the current error per thread). This, though, requires each
function to participate in an error-propagation pattern that is cumbersome and, ironically, itself
error-prone.

Enumeration and Iterators

Enumeration
An enumerator is a read-only, forward-only cursor over a sequence of values. An enumerator
is an object that implements either of the following interfaces:

System.Collections.IEnumerator

System.Collections.Generic.IEnumerator<T>

NOTE
Technically, any object that has a method named MoveNext and a property called Current is



treated as an enumerator. This relaxation was introduced in C# 1.0 to avoid the
boxing/unboxing overhead when enumerating value type elements, but was made redundant
when generics were introduced in C# 2.

The foreach statement iterates over an enumerable object. An enumerable object is the
logical representation of a sequence. It is not itself a cursor, but an object that produces cursors
over itself. An enumerable object either:

Implements IEnumerable or IEnumerable<T>

Has a method named GetEnumerator that returns an enumerator

NOTE
IEnumerator and IEnumerable are defined in System.Collections. IEnumerator<T> and
IEnumerable<T> are defined in System.Collections.Generic.

The enumeration pattern is as follows:

class Enumerator   // Typically implements IEnumerator or IEnumerator<T>
{
  public IteratorVariableType Current { get {...} }
  public bool MoveNext() {...}
}

class Enumerable   // Typically implements IEnumerable or IEnumerable<T>
{
  public Enumerator GetEnumerator() {...}
}

Here is the high-level way of iterating through the characters in the word beer using a foreach
statement:

foreach (char c in "beer")
  Console.WriteLine (c);

Here is the low-level way of iterating through the characters in beer without using a foreach
statement:

using (var enumerator = "beer".GetEnumerator())
  while (enumerator.MoveNext())
  {
    var element = enumerator.Current;
    Console.WriteLine (element);
  }

If the enumerator implements IDisposable, the foreach statement also acts as a using
statement, implicitly disposing the enumerator object.
Chapter 7 explains the enumeration interfaces in further detail.

Collection Initializers
You can instantiate and populate an enumerable object in a single step. For example:



using System.Collections.Generic;
...

List<int> list = new List<int> {1, 2, 3};

The compiler translates this to the following:

using System.Collections.Generic;
...

List<int> list = new List<int>();
list.Add (1);
list.Add (2);
list.Add (3);

This requires that the enumerable object implements the System.Collections.IEnumerable
interface, and that it has an Add method that has the appropriate number of parameters for the
call. You can similarly initialize dictionaries (see “Dictionaries” in Chapter 7) as follows:

var dict = new Dictionary<int, string>()
{
  { 5, "five" },
  { 10, "ten" }
};

Or more succinctly:

var dict = new Dictionary<int, string>()
{
  [3] = "three",
  [10] = "ten"
};

The latter is valid not only with dictionaries, but with any type for which an indexer exists.

Iterators
Whereas a foreach statement is a consumer of an enumerator, an iterator is a producer of an
enumerator. In this example, we use an iterator to return a sequence of Fibonacci numbers
(where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

class Test
{
  static void Main()
  {
    foreach (int fib in Fibs(6))
      Console.Write (fib + "  ");
  }

  static IEnumerable<int> Fibs (int fibCount)
  {
    for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
    {
      yield return prevFib;
      int newFib = prevFib+curFib;
      prevFib = curFib;
      curFib = newFib;
    }
  }



}

OUTPUT: 1  1  2  3  5  8

Whereas a return statement expresses “Here’s the value you asked me to return from this
method,” a yield return statement expresses “Here’s the next element you asked me to yield
from this enumerator.” On each yield statement, control is returned to the caller, but the
callee’s state is maintained so that the method can continue executing as soon as the caller
enumerates the next element. The lifetime of this state is bound to the enumerator, such that the
state can be released when the caller has finished enumerating.

NOTE
The compiler converts iterator methods into private classes that implement IEnumerable<T>
and/or IEnumerator<T>. The logic within the iterator block is “inverted” and spliced into the
MoveNext method and Current property on the compiler-written enumerator class. This means
that when you call an iterator method, all you’re doing is instantiating the compiler-written
class; none of your code actually runs! Your code runs only when you start enumerating over
the resultant sequence, typically with a foreach statement.

Iterators can be local methods (see “Local methods (C# 7)” in Chapter 3).

Iterator Semantics
An iterator is a method, property, or indexer that contains one or more yield statements. An
iterator must return one of the following four interfaces (otherwise, the compiler will generate
an error):

// Enumerable interfaces
System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>

// Enumerator interfaces
System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An iterator has different semantics, depending on whether it returns an enumerable interface or
an enumerator interface. We describe this in Chapter 7.
Multiple yield statements are permitted. For example:

class Test
{
  static void Main()
  {
    foreach (string s in Foo())
      Console.WriteLine(s);         // Prints "One","Two","Three"
  }

  static IEnumerable<string> Foo()
  {
    yield return "One";
    yield return "Two";
    yield return "Three";
  }
}



yield break
The yield break statement indicates that the iterator block should exit early, without returning
more elements. We can modify Foo as follows to demonstrate:

static IEnumerable<string> Foo (bool breakEarly)
{
  yield return "One";
  yield return "Two";

  if (breakEarly)
    yield break;

  yield return "Three";
}

NOTE
A return statement is illegal in an iterator block — you must use a yield break instead.

Iterators and try/catch/finally blocks
A yield return statement cannot appear in a try block that has a catch clause:

IEnumerable<string> Foo()
{
  try { yield return "One"; }    // Illegal
  catch { ... }
}

Nor can yield return appear in a catch or finally block. These restrictions are due to the
fact that the compiler must translate iterators into ordinary classes with MoveNext, Current,
and Dispose members, and translating exception handling blocks would create excessive
complexity.
You can, however, yield within a try block that has (only) a finally block:

IEnumerable<string> Foo()
{
  try { yield return "One"; }    // OK
  finally { ... }
}

The code in the finally block executes when the consuming enumerator reaches the end of the
sequence or is disposed. A foreach statement implicitly disposes the enumerator if you break
early, making this a safe way to consume enumerators. When working with enumerators
explicitly, a trap is to abandon enumeration early without disposing it, circumventing the
finally block. You can avoid this risk by wrapping explicit use of enumerators in a using
statement:

string firstElement = null;
var sequence = Foo();
using (var enumerator = sequence.GetEnumerator())
  if (enumerator.MoveNext())
    firstElement = enumerator.Current;

Composing Sequences



Iterators are highly composable. We can extend our example, this time to output even Fibonacci
numbers only:

using System;
using System.Collections.Generic;

class Test
{
  static void Main()
  {
    foreach (int fib in EvenNumbersOnly (Fibs(6)))
      Console.WriteLine (fib);
  }

  static IEnumerable<int> Fibs (int fibCount)
  {
    for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
    {
      yield return prevFib;
      int newFib = prevFib+curFib;
      prevFib = curFib;
      curFib = newFib;
    }
  }

  static IEnumerable<int> EvenNumbersOnly (IEnumerable<int> sequence)
  {
    foreach (int x in sequence)
      if ((x % 2) == 0)
        yield return x;
  }
}

Each element is not calculated until the last moment — when requested by a MoveNext()
operation. Figure 4-1 shows the data requests and data output over time.



Figure 4-1. Composing sequences

The composability of the iterator pattern is extremely useful in LINQ; we discuss the subject
again in Chapter 8.

Nullable Types
Reference types can represent a nonexistent value with a null reference. Value types, however,
cannot ordinarily represent null values. For example:

string s = null;       // OK, Reference Type
int i = null;          // Compile Error, Value Type cannot be null



To represent null in a value type, you must use a special construct called a nullable type. A
nullable type is denoted with a value type followed by the ? symbol:

int? i = null;                     // OK, Nullable Type
Console.WriteLine (i == null);     // True

Nullable<T> Struct
T? translates into System.Nullable<T>, which is a lightweight immutable structure, having
only two fields, to represent Value and HasValue. The essence of System .Nullable<T> is
very simple:

public struct Nullable<T> where T : struct
{
  public T Value {get;}
  public bool HasValue {get;}
  public T GetValueOrDefault();
  public T GetValueOrDefault (T defaultValue);
  ...
}

The code:

int? i = null;
Console.WriteLine (i == null);              // True

translates to:

Nullable<int> i = new Nullable<int>();
Console.WriteLine (! i.HasValue);           // True

Attempting to retrieve Value when HasValue is false throws an InvalidOperation 
Exception. GetValueOrDefault() returns Value if HasValue is true; otherwise, it returns
new T() or a specified custom default value.
The default value of T? is null.

Implicit and Explicit Nullable Conversions
The conversion from T to T? is implicit, and from T? to T is explicit. For example:

int? x = 5;        // implicit
int y = (int)x;    // explicit

The explicit cast is directly equivalent to calling the nullable object’s Value property. Hence,
an InvalidOperationException is thrown if HasValue is false.

Boxing and Unboxing Nullable Values
When T? is boxed, the boxed value on the heap contains T, not T?. This optimization is
possible because a boxed value is a reference type that can already express null.
C# also permits the unboxing of nullable types with the as operator. The result will be null if
the cast fails:

object o = "string";



int? x = o as int?;
Console.WriteLine (x.HasValue);   // False

Operator Lifting
The Nullable<T> struct does not define operators such as <, >, or even ==. Despite this, the
following code compiles and executes correctly:

int? x = 5;
int? y = 10;
bool b = x < y;      // true

This works because the compiler borrows or “lifts” the less-than operator from the underlying
value type. Semantically, it translates the preceding comparison expression into this:

bool b = (x.HasValue && y.HasValue) ? (x.Value < y.Value) : false;

In other words, if both x and y have values, it compares via int’s less-than operator;
otherwise, it returns false:
Operator lifting means you can implicitly use T’s operators on T?. You can define operators for
T? in order to provide special-purpose null behavior, but in the vast majority of cases, it’s best
to rely on the compiler automatically applying systematic nullable logic for you. Here are some
examples:

int? x = 5;
int? y = null;

// Equality operator examples
Console.WriteLine (x == y);    // False
Console.WriteLine (x == null); // False
Console.WriteLine (x == 5);    // True
Console.WriteLine (y == null); // True
Console.WriteLine (y == 5);    // False
Console.WriteLine (y != 5);    // True

// Relational operator examples
Console.WriteLine (x < 6);     // True
Console.WriteLine (y < 6);     // False
Console.WriteLine (y > 6);     // False

// All other operator examples
Console.WriteLine (x + 5);     // 10
Console.WriteLine (x + y);     // null (prints empty line)

The compiler performs null logic differently depending on the category of operator. The
following sections explain these different rules.

Equality operators (== and !=)
Lifted equality operators handle nulls just like reference types do. This means two null values
are equal:

Console.WriteLine (       null ==        null);   // True
Console.WriteLine ((bool?)null == (bool?)null);   // True

Further:
If exactly one operand is null, the operands are unequal.



If both operands are non-null, their Values are compared.

Relational operators (<, <=, >=, >)
The relational operators work on the principle that it is meaningless to compare null operands.
This means comparing a null value to either a null or a non-null value returns false:

bool b = x < y;    // Translation:

bool b = (x.HasValue && y.HasValue) 
         ? (x.Value < y.Value)
         : false;

// b is false (assuming x is 5 and y is null)

All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~)
These operators return null when any of the operands are null. This pattern should be familiar
to SQL users:

int? c = x + y;   // Translation:

int? c = (x.HasValue && y.HasValue)
         ? (int?) (x.Value + y.Value) 
         : null;

// c is null (assuming x is 5 and y is null)

An exception is when the & and | operators are applied to bool?, which we will discuss
shortly.

Mixing nullable and non-nullable operators
You can mix and match nullable and non-nullable types (this works because there is an implicit
conversion from T to T?):

int? a = null;
int b = 2;
int? c = a + b;   // c is null - equivalent to a + (int?)b

bool? with & and | Operators
When supplied operands of type bool? the & and | operators treat null as an unknown value.
So, null | true is true, because:

If the unknown value is false, the result would be true.

If the unknown value is true, the result would be true.

Similarly, null & false is false. This behavior would be familiar to SQL users. The
following example enumerates other combinations:

bool? n = null;
bool? f = false;
bool? t = true;
Console.WriteLine (n | n);    // (null)
Console.WriteLine (n | f);    // (null)
Console.WriteLine (n | t);    // True
Console.WriteLine (n & n);    // (null)
Console.WriteLine (n & f);    // False



Console.WriteLine (n & t);    // (null)

Nullable Types and Null Operators
Nullable types work particularly well with the ?? operator (see “Null Coalescing Operator” in
Chapter 2). For example:

int? x = null;
int y = x ?? 5;        // y is 5

int? a = null, b = 1, c = 2;
Console.WriteLine (a ?? b ?? c);  // 1 (first non-null value)

Using ?? on a nullable value type is equivalent to calling GetValueOrDefault with an explicit
default value, except that the expression for the default value is never evaluated if the variable
is not null.
Nullable types also work well with the null-conditional operator (see “Null-conditional
Operator (C# 6)” in Chapter 2). In the following example, length evaluates to null:

System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

We can combine this with the null coalescing operator to evaluate to zero instead of null:

int length = sb?.ToString().Length ?? 0;  // Evaluates to 0 if sb is null

Scenarios for Nullable Types
One of the most common scenarios for nullable types is to represent unknown values. This
frequently occurs in database programming, where a class is mapped to a table with nullable
columns. If these columns are strings (e.g., an EmailAddress column on a Customer table),
there is no problem, as string is a reference type in the CLR, which can be null. However, most
other SQL column types map to CLR struct types, making nullable types very useful when
mapping SQL to the CLR. For example:

// Maps to a Customer table in a database
public class Customer
{
  ...
  public decimal? AccountBalance;
}

A nullable type can also be used to represent the backing field of what’s sometimes called an
ambient property. An ambient property, if null, returns the value of its parent. For example:

public class Row
{
  ...
  Grid parent;
  Color? color;

  public Color Color
  {
    get { return color ?? parent.Color; }
    set { color = value == parent.Color ? (Color?)null : value; }
  }
}



Alternatives to Nullable Types
Before nullable types were part of the C# language (i.e., before C# 2.0), there were many
strategies to deal with nullable value types, examples of which still appear in the .NET
Framework for historical reasons. One of these strategies is to designate a particular non-null
value as the “null value”; an example is in the string and array classes. String.IndexOf
returns the magic value of −1 when the character is not found:

int i = "Pink".IndexOf ('b');
Console.WriteLine (i);         // −1

However, Array.IndexOf returns −1 only if the index is 0-bounded. The more general formula
is that IndexOf returns 1 less than the lower bound of the array. In the next example, IndexOf
returns 0 when an element is not found:

// Create an array whose lower bound is 1 instead of 0:

Array a = Array.CreateInstance (typeof (string),
                                new int[] {2}, new int[] {1});
a.SetValue ("a", 1);
a.SetValue ("b", 2);
Console.WriteLine (Array.IndexOf (a, "c"));  // 0

Nominating a “magic value” is problematic for several reasons:
It means that each value type has a different representation of null. In contrast, nullable types
provide one common pattern that works for all value types.

There may be no reasonable designated value. In the previous example, −1 could not always
be used. The same is true for our earlier example representing an unknown account balance.

Forgetting to test for the magic value results in an incorrect value that may go unnoticed until
later in execution — when it pulls an unintended magic trick. Forgetting to test HasValue on
a null value, however, throws an InvalidOperationException on the spot.

The ability for a value to be null is not captured in the type. Types communicate the
intention of a program, allow the compiler to check for correctness, and enable a consistent
set of rules enforced by the compiler.

Extension Methods
Extension methods allow an existing type to be extended with new methods without altering the
definition of the original type. An extension method is a static method of a static class, where
the this modifier is applied to the first parameter. The type of the first parameter will be the
type that is extended. For example:

public static class StringHelper
{
  public static bool IsCapitalized (this string s)
  {
    if (string.IsNullOrEmpty(s)) return false;
    return char.IsUpper (s[0]);
  }
}



The IsCapitalized extension method can be called as though it were an instance method on a
string, as follows:

Console.WriteLine ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back into an ordinary static method
call:

Console.WriteLine (StringHelper.IsCapitalized ("Perth"));

The translation works as follows:

arg0.Method (arg1, arg2, ...);              // Extension method call
StaticClass.Method (arg0, arg1, arg2, ...); // Static method call

Interfaces can be extended, too:

public static T First<T> (this IEnumerable<T> sequence)
{
  foreach (T element in sequence)
    return element;

  throw new InvalidOperationException ("No elements!");
}
...
Console.WriteLine ("Seattle".First());   // S

Extension methods were added in C# 3.0.

Extension Method Chaining
Extension methods, like instance methods, provide a tidy way to chain functions. Consider the
following two functions:

public static class StringHelper
{
  public static string Pluralize (this string s) {...}
  public static string Capitalize (this string s) {...}
}

x and y are equivalent and both evaluate to "Sausages", but x uses extension methods,
whereas y uses static methods:

string x = "sausage".Pluralize().Capitalize();
string y = StringHelper.Capitalize (StringHelper.Pluralize ("sausage"));

Ambiguity and Resolution

Namespaces
An extension method cannot be accessed unless its class is in scope, typically by its namespace
being imported. Consider the extension method IsCapitalized in the following example:

using System;

namespace Utils



{
  public static class StringHelper
  {
    public static bool IsCapitalized (this string s)
    {
      if (string.IsNullOrEmpty(s)) return false;
      return char.IsUpper (s[0]);
    }
  }
}

To use IsCapitalized, the following application must import Utils, in order to avoid a
compile-time error:

namespace MyApp
{
  using Utils;

  class Test
  {
    static void Main() => Console.WriteLine ("Perth".IsCapitalized());
  }
}

Extension methods versus instance methods
Any compatible instance method will always take precedence over an extension method. In the
following example, Test’s Foo method will always take precedence — even when called with
an argument x of type int:

class Test
{
  public void Foo (object x) { }    // This method always wins
}

static class Extensions
{
  public static void Foo (this Test t, int x) { }
}

The only way to call the extension method in this case is via normal static syntax; in other
words, Extensions.Foo(...).

Extension methods versus extension methods
If two extension methods have the same signature, the extension method must be called as an
ordinary static method to disambiguate the method to call. If one extension method has more
specific arguments, however, the more specific method takes precedence.
To illustrate, consider the following two classes:

static class StringHelper
{
  public static bool IsCapitalized (this string s) {...}
}
static class ObjectHelper
{
  public static bool IsCapitalized (this object s) {...}
}

The following code calls StringHelper’s IsCapitalized method:



bool test1 = "Perth".IsCapitalized();

Classes and structs are considered more specific than interfaces.

Anonymous Types
An anonymous type is a simple class created by the compiler on the fly to store a set of values.
To create an anonymous type, use the new keyword followed by an object initializer, specifying
the properties and values the type will contain. For example:

var dude = new { Name = "Bob", Age = 23 };

The compiler translates this to (approximately) the following:

internal class AnonymousGeneratedTypeName
{
  private string name;  // Actual field name is irrelevant
  private int    age;   // Actual field name is irrelevant

  public AnonymousGeneratedTypeName (string name, int age)
  {
    this.name = name; this.age = age;
  }

  public string  Name { get { return name; } }
  public int     Age  { get { return age;  } }

  // The Equals and GetHashCode methods are overridden (see Chapter 6).
  // The ToString method is also overridden.
}
...

var dude = new AnonymousGeneratedTypeName ("Bob", 23);

You must use the var keyword to reference an anonymous type, because it doesn’t have a name.
The property name of an anonymous type can be inferred from an expression that is itself an
identifier (or ends with one). For example:

int Age = 23;
var dude = new { Name = "Bob", Age, Age.ToString().Length };

is equivalent to:

var dude = new { Name = "Bob", Age = Age, Length = Age.ToString().Length };

Two anonymous type instances declared within the same assembly will have the same
underlying type if their elements are named and typed identically:

var a1 = new { X = 2, Y = 4 };
var a2 = new { X = 2, Y = 4 };
Console.WriteLine (a1.GetType() == a2.GetType());   // True

Additionally, the Equals method is overridden to perform equality comparisons:

Console.WriteLine (a1 == a2);         // False
Console.WriteLine (a1.Equals (a2));   // True



You can create arrays of anonymous types as follows:

var dudes = new[]
{
  new { Name = "Bob", Age = 30 },
  new { Name = "Tom", Age = 40 }
};

A method cannot (usefully) return an anonymously typed object, because it is illegal to write a
method whose return type is var:

var Foo() => new { Name = "Bob", Age = 30 };  // Not legal!

Instead, you must use object or dynamic and then whoever calls Foo has to rely on dynamic
binding, with loss of static type safety (and IntelliSense in Visual Studio):

dynamic Foo() => new { Name = "Bob", Age = 30 };  // No static type safety.

Anonymous types are used primarily when writing LINQ queries (see Chapter 8), and were
added in C# 3.0.

Tuples (C# 7)
Like anonymous types, tuples provide a simple way to store a set of values. The main purpose
of tuples is to safely return multiple values from a method without resorting to out parameters
(something you cannot do with anonymous types).

NOTE
Tuples in C# 7 do almost everything that anonymous types do and more. Their one
disadvantage — as we’ll see soon — is runtime type erasure with named elements.

The simplest way to create a tuple literal is to list the desired values in parentheses. This
creates a tuple with unnamed elements, which you refer to as Item1, Item2, and so on:

var bob = ("Bob", 23);    // Allow compiler to infer the element types

Console.WriteLine (bob.Item1);   // Bob
Console.WriteLine (bob.Item2);   // 23

WARNING
C# 7’s tuple functionality relies on a set of supporting generic structs named
System.ValueTuple<...>. These are not part of .NET Framework 4.6, and are contained in
an assembly called System.ValueTuple, available in a NuGet package of the same name. If
you’re using Visual Studio with Framework 4.6, you must download this package explicitly.
(If you are using LINQPad, the required assembly is included automatically.)
System.ValueTuple is built into .NET Framework 4.7, in mscorlib.dll.



Tuples are value types, with mutable (read/write) elements:

var joe = bob;                 // joe is a *copy* of job
joe.Item1 = "Joe";             // Change joe's Item1 from Bob to Joe
Console.WriteLine (bob);       // (Bob, 23)
Console.WriteLine (joe);       // (Joe, 23)

Unlike with anonymous types, you can specify a tuple type explicitly. Just list each of the
element types in parentheses:

(string,int) bob  = ("Bob", 23);   // var is not compulsory with tuples!

This means that you can usefully return a tuple from a method:

static (string,int) GetPerson() => ("Bob", 23);

static void Main()
{
  (string,int) person = GetPerson();   // Could use 'var' here if we want
  Console.WriteLine (person.Item1);    // Bob
  Console.WriteLine (person.Item2);    // 23
}

Tuples play well with generics, so the following types are all legal:

Task<(string,int)>
Dictionary<(string,int),Uri>
IEnumerable<(int ID, string Name)>   // See below for naming elements

Naming Tuple Elements
You can optionally give meaningful names to elements when creating tuple literals:

var tuple = (Name:"Bob", Age:23);

Console.WriteLine (tuple.Name);     // Bob
Console.WriteLine (tuple.Age);      // 23

You can do the same when specifying tuple types:

static (string Name, int Age) GetPerson() => ("Bob", 23);

static void Main()
{
  var person = GetPerson();
  Console.WriteLine (person.Name);    // Bob
  Console.WriteLine (person.Age);     // 23
}

Note that you can still treat the elements as unnamed and refer to them as Item1, Item2, etc.
(although Visual Studio hides these fields from IntelliSense).
Tuples are type-compatible with one another if their element types match up (in order). Their
element names need not:

(string Name, int Age, char Sex)  bob1 = ("Bob", 23, 'M');
(string Age,  int Sex, char Name) bob2 = bob1;   // No error!



Our particular example leads to confusing results:

Console.WriteLine (bob2.Name);    // M
Console.WriteLine (bob2.Age);     // Bob
Console.WriteLine (bob2.Sex);     // 23

Type erasure
We stated previously that the C# compiler handles anonymous types by building custom classes
with named properties for each of the elements. With tuples, C# works differently and
leverages a pre-existing family of generic structs:

public struct ValueTuple<T1>
public struct ValueTuple<T1,T2>
public struct ValueTuple<T1,T2,T3>
...

Each of the ValueType<> structs has fields named Item1, Item2, and so on.
Hence, (string,int) is an alias for ValueTuple<string,int>, and this means that named
tuple elements have no corresponding property names in the underlying types. Instead, the
names exist only in the source code, and in the imagination of the compiler. At runtime, the
names mostly disappear, so if you decompile a program that refers to named tuple elements,
you’ll see just references to Item1, Item2, etc. Further, when you examine a tuple variable in a
debugger after having assigned it to an object (or Dump it in LINQPad), the element names
are not there. And for the most part, you cannot use reflection (Chapter 19) to determine a
tuple’s element names at runtime.

NOTE
We said that the names mostly disappear, because there’s an exception. With
methods/properties that return named tuple types, the compiler emits the element names by
applying a custom attribute called TupleElementNamesAttribute (see “Attributes”) to the
member’s return type. This allows named elements to work when calling methods in a
different assembly (for which the compiler does not have the source code).

ValueTuple.Create
You can also create tuples via a factory method on the (nongeneric) ValueTuple type:

ValueTuple<string,int> bob1 = ValueTuple.Create ("Bob", 23);
(string,int)           bob2 = ValueTuple.Create ("Bob", 23);

Named elements cannot be created in this way, as element naming relies on compiler magic.

Deconstructing Tuples
Tuples implicitly support the deconstruction pattern (see “Deconstructors” in Chapter 1), so
you can easily deconstruct a tuple into individual variables. So, instead of doing this:

var bob = ("Bob", 23);

string name = bob.Item1;
int age = bob.Item2;



you can go:

var bob = ("Bob", 23);

(string name, int age) = bob;   // Deconstruct the bob tuple into
                                // separate variables (name and age).
Console.WriteLine (name);
Console.WriteLine (age);

The syntax for deconstruction is confusingly similar to the syntax for declaring a tuple with
named elements! The following highlights the difference:

(string name, int age)      = bob;   // Deconstructing a tuple
(string name, int age) bob2 = bob;   // Declaring a new tuple

Here’s another example, this time when calling a method, and with type inference (var):

static (string, int, char) GetBob() => ( "Bob", 23, 'M');

static void Main()
{
  var (name, age, sex) = GetBob();
  Console.WriteLine (name);        // Bob
  Console.WriteLine (age);         // 23
  Console.WriteLine (sex);         // M
}

Equality Comparison
As with anonymous types, the ValueTuple<> types override the Equals method to allow
equality comparisons to work meaningfully:

var t1 = ("one", 1);
var t2 = ("one", 1);
Console.WriteLine (t1.Equals (t2));    // True

This also makes it practical to use tuples as keys in dictionaries. We cover equality comparison
in detail in Chapter 6, and dictionaries in Chapter 7.
The ValueTuple<> types also implement IComparable (see “Order Comparison”), making it
possible to use tuples as a sorting key.

The System.Tuple Classes
You’ll find another family of generic types in the System namespace called Tuple (rather than
ValueTuple). These were introduced in .NET Framework 4.0, and are classes (whereas the
ValueTuple types are structs). Defining tuples as classes was in retrospect considered a
mistake: in the typical scenarios where tuples are used, structs have a slight performance
advantage (in that they avoid unnecessary memory allocations), with almost no downside.
Hence when Microsoft added language support for tuples to C# 7, they ignored the existing
Tuple types in favor of the new ValueTuple. You may still come across the Tuple classes in
code written prior to C# 7. They have no special language support, and are used as follows:

Tuple<string,int> t = Tuple.Create ("Bob", 23);  // Factory method 
Console.WriteLine (t.Item1);       // Bob
Console.WriteLine (t.Item2);       // 23



Attributes
You’re already familiar with the notion of attributing code elements of a program with
modifiers, such as virtual or ref. These constructs are built into the language. Attributes are
an extensible mechanism for adding custom information to code elements (assemblies, types,
members, return values, parameters, and generic type parameters). This extensibility is useful
for services that integrate deeply into the type system, without requiring special keywords or
constructs in the C# language.
A good scenario for attributes is serialization — the process of converting arbitrary objects to
and from a particular format. In this scenario, an attribute on a field can specify the translation
between C#’s representation of the field and the format’s representation of the field.

Attribute Classes
An attribute is defined by a class that inherits (directly or indirectly) from the abstract class
System.Attribute. To attach an attribute to a code element, specify the attribute’s type name
in square brackets, before the code element. For example, the following attaches the
ObsoleteAttribute to the Foo class:

[ObsoleteAttribute]
public class Foo {...}

This attribute is recognized by the compiler and will cause compiler warnings if a type or
member marked obsolete is referenced. By convention, all attribute types end in the word
Attribute. C# recognizes this and allows you to omit the suffix when attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the System namespace as follows (simplified for
brevity):

public sealed class ObsoleteAttribute : Attribute {...}

The C# language and the .NET Framework include a number of predefined attributes. We
describe how to write your own attributes in Chapter 19.

Named and Positional Attribute Parameters
Attributes may have parameters. In the following example, we apply XmlElementAttribute
to a class. This attribute tells XML serializer (in System.Xml.Serialization) how an object
is represented in XML and accepts several attribute parameters. The following attribute maps
the CustomerEntity class to an XML element named Customer, belonging to the
http://oreilly.com namespace:

[XmlElement ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional or named. In the preceding
example, the first argument is a positional parameter; the second is a named parameter.
Positional parameters correspond to parameters of the attribute type’s public constructors.



Named parameters correspond to public fields or public properties on the attribute type.
When specifying an attribute, you must include positional parameters that correspond to one of
the attribute’s constructors. Named parameters are optional.
In Chapter 19, we describe the valid parameter types and rules for their evaluation.

Attribute Targets
Implicitly, the target of an attribute is the code element it immediately precedes, which is
typically a type or type member. You can also attach attributes, however, to an assembly. This
requires that you explicitly specify the attribute’s target.
Here is an example of using the CLSCompliant attribute to specify CLS compliance for an
entire assembly:

[assembly:CLSCompliant(true)]

Specifying Multiple Attributes
Multiple attributes can be specified for a single code element. Each attribute can be listed
either within the same pair of square brackets (separated by a comma) or in separate pairs of
square brackets (or a combination of the two). The following three examples are semantically
identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

[Serializable, Obsolete]
[CLSCompliant(false)]
public class Bar {...}

Caller Info Attributes
From C# 5, you can tag optional parameters with one of three caller info attributes, which
instruct the compiler to feed information obtained from the caller’s source code into the
parameter’s default value:

[CallerMemberName] applies the caller’s member name

[CallerFilePath] applies the path to caller’s source code file

[CallerLineNumber] applies the line number in caller’s source code file

The Foo method in the following program demonstrates all three:

using System;
using System.Runtime.CompilerServices;

class Program
{
  static void Main() => Foo();
  static void Foo (
    [CallerMemberName] string memberName = null,
    [CallerFilePath] string filePath = null,



    [CallerLineNumber] int lineNumber = 0)
  {
    Console.WriteLine (memberName);
    Console.WriteLine (filePath);
    Console.WriteLine (lineNumber);
  }
}

Assuming our program resides in c:\source\test\Program.cs, the output would be:

Main
c:\source\test\Program.cs
6

As with standard optional parameters, the substitution is done at the calling site. Hence, our
Main method is syntactic sugar for this:

static void Main() => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for logging — and for implementing patterns such as firing a
single change notification event whenever any property on an object changes. In fact, there’s a
standard interface in the .NET Framework for this called INotifyPropertyChanged (in
System.ComponentModel):

public interface INotifyPropertyChanged
{
  event PropertyChangedEventHandler PropertyChanged;
}

public delegate void PropertyChangedEventHandler
  (object sender, PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs
{
  public PropertyChangedEventArgs (string propertyName);
  public virtual string PropertyName { get; }
}

Notice that PropertyChangedEventArgs requires the name of the property that changed. By
applying the [CallerMemberName] attribute, however, we can implement this interface and
invoke the event without ever specifying property names:

public class Foo : INotifyPropertyChanged
{
  public event PropertyChangedEventHandler PropertyChanged = delegate { };

  void RaisePropertyChanged ([CallerMemberName] string propertyName = null)
  {  
    PropertyChanged (this, new PropertyChangedEventArgs (propertyName));
  }  

  string customerName;
  public string CustomerName
  {  
    get { return customerName; }
    set  
    {  
      if (value == customerName) return;
      customerName = value;
      RaisePropertyChanged();
      // The compiler converts the above line to:
      // RaisePropertyChanged ("CustomerName");
    } 



  }
}

Dynamic Binding
Dynamic binding defers binding — the process of resolving types, members, and operations
— from compile time to runtime: Dynamic binding is useful when at compile time you know
that a certain function, member, or operation exists, but the compiler does not. This commonly
occurs when you are interoperating with dynamic languages (such as IronPython) and COM and
in scenarios when you might otherwise use reflection.
A dynamic type is declared with the contextual keyword dynamic:

dynamic d = GetSomeObject();
d.Quack();

A dynamic type tells the compiler to relax. We expect the runtime type of d to have a Quack
method. We just can’t prove it statically. Since d is dynamic, the compiler defers binding
Quack to d until runtime. To understand what this means requires distinguishing between static
binding and dynamic binding.

Static Binding Versus Dynamic Binding
The canonical binding example is mapping a name to a specific function when compiling an
expression. To compile the following expression, the compiler needs to find the
implementation of the method named Quack:

d.Quack();

Let’s suppose the static type of d is Duck:

Duck d = ...
d.Quack();

In the simplest case, the compiler does the binding by looking for a parameterless method
named Quack on Duck. Failing that, the compiler extends its search to methods taking optional
parameters, methods on base classes of Duck, and extension methods that take Duck as its first
parameter. If no match is found, you’ll get a compilation error. Regardless of what method gets
bound, the bottom line is that the binding is done by the compiler, and the binding utterly
depends on statically knowing the types of the operands (in this case, d). This makes it static
binding.
Now let’s change the static type of d to object:

object d = ...
d.Quack();

Calling Quack gives us a compilation error, because although the value stored in d can contain
a method called Quack, the compiler cannot know it since the only information it has is the type
of the variable, which in this case is object. But let’s now change the static type of d to
dynamic:



dynamic d = ...
d.Quack();

A dynamic type is like object — it’s equally nondescriptive about a type. The difference is
that it lets you use it in ways that aren’t known at compile time. A dynamic object binds at
runtime based on its runtime type, not its compile-time type. When the compiler sees a
dynamically bound expression (which in general is an expression that contains any value of
type dynamic), it merely packages up the expression such that the binding can be done later at
runtime.
At runtime, if a dynamic object implements IDynamicMetaObjectProvider, that interface is
used to perform the binding. If not, binding occurs in almost the same way as it would have had
the compiler known the dynamic object’s runtime type. These two alternatives are called
custom binding and language binding.

NOTE
COM interop can be considered to use a third kind of dynamic binding (see Chapter 25).

Custom Binding
Custom binding occurs when a dynamic object implements IDynamicMetaObjectProvider
(IDMOP). Although you can implement IDMOP on types that you write in C#, and that is useful
to do, the more common case is that you have acquired an IDMOP object from a dynamic
language that is implemented in .NET on the DLR, such as IronPython or IronRuby. Objects
from those languages implicitly implement IDMOP as a means by which to directly control the
meanings of operations performed on them.
We will discuss custom binders in greater detail in Chapter 20, but we will write a simple one
now to demonstrate the feature:

using System;
using System.Dynamic;

public class Test
{
  static void Main()
  {
    dynamic d = new Duck();
    d.Quack();                  // Quack method was called
    d.Waddle();                 // Waddle method was called
  }
}

public class Duck : DynamicObject
{
  public override bool TryInvokeMember (
    InvokeMemberBinder binder, object[] args, out object result)
  {
    Console.WriteLine (binder.Name + " method was called");
    result = null;
    return true;
  }
}

The Duck class doesn’t actually have a Quack method. Instead, it uses custom binding to
intercept and interpret all method calls.



Language Binding
Language binding occurs when a dynamic object does not implement IDynamic 
MetaObjectProvider. Language binding is useful when working around imperfectly designed
types or inherent limitations in the .NET type system (we’ll explore more scenarios in
Chapter 20). A typical problem when using numeric types is that they have no common
interface. We have seen that methods can be bound dynamically; the same is true for operators:

static dynamic Mean (dynamic x, dynamic y) => (x + y) / 2;

static void Main()
{       
  int x = 3, y = 4;
  Console.WriteLine (Mean (x, y));
}

The benefit is obvious — you don’t have to duplicate code for each numeric type. However,
you lose static type safety, risking runtime exceptions rather than compile-time errors.

NOTE
Dynamic binding circumvents static type safety, but not runtime type safety. Unlike with
reflection (Chapter 19), you can’t circumvent member accessibility rules with dynamic
binding.

By design, language runtime binding behaves as similarly as possible to static binding, had the
runtime types of the dynamic objects been known at compile time. In our previous example, the
behavior of our program would be identical if we hardcoded Mean to work with the int type.
The most notable exception in parity between static and dynamic binding is for extension
methods, which we discuss in “Uncallable Functions”.

NOTE
Dynamic binding also incurs a performance hit. Because of the DLR’s caching mechanisms,
however, repeated calls to the same dynamic expression are optimized — allowing you to
efficiently call dynamic expressions in a loop. This optimization brings the typical overhead
for a simple dynamic expression on today’s hardware down to less than 100 ns.

RuntimeBinderException
If a member fails to bind, a RuntimeBinderException is thrown. You can think of this like a
compile-time error at runtime.

dynamic d = 5;
d.Hello();                  // throws RuntimeBinderException

The exception is thrown because the int type has no Hello method.

Runtime Representation of Dynamic



There is a deep equivalence between the dynamic and object types. The runtime treats the
following expression as true:

typeof (dynamic) == typeof (object)

This principle extends to constructed types and array types:

typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an object of any type (except pointer
types):

dynamic x = "hello";
Console.WriteLine (x.GetType().Name);  // String

x = 123;  // No error (despite same variable)
Console.WriteLine (x.GetType().Name);  // Int32

Structurally, there is no difference between an object reference and a dynamic reference. A
dynamic reference simply enables dynamic operations on the object it points to. You can
convert from object to dynamic to perform any dynamic operation you want on an object:

object o = new System.Text.StringBuilder();
dynamic d = o;
d.Append ("hello");
Console.WriteLine (o);   // hello

NOTE
Reflecting on a type exposing (public) dynamic members reveals that those members are
represented as annotated objects. For example:

public class Test
{
  public dynamic Foo;
}

is equivalent to:

public class Test
{
  [System.Runtime.CompilerServices.DynamicAttribute]
  public object Foo;
}

This allows consumers of that type to know that Foo should be treated as dynamic, while
allowing languages that don’t support dynamic binding to fall back to object.

Dynamic Conversions
The dynamic type has implicit conversions to and from all other types:

int i = 7;
dynamic d = i;
long j = d;        // No cast required (implicit conversion)



For the conversion to succeed, the runtime type of the dynamic object must be implicitly
convertible to the target static type. The preceding example worked because an int is
implicitly convertible to a long.
The following example throws a RuntimeBinderException because an int is not implicitly
convertible to a short:

int i = 7;
dynamic d = i;
short j = d;      // throws RuntimeBinderException

var Versus dynamic
The var and dynamic types bear a superficial resemblance, but the difference is deep:

var says, “Let the compiler figure out the type.”

dynamic says, “Let the runtime figure out the type.”

To illustrate:

dynamic x = "hello";  // Static type is dynamic, runtime type is string
var y = "hello";      // Static type is string, runtime type is string
int i = x;            // Runtime error      (cannot convert string to int)
int j = y;            // Compile-time error (cannot convert string to int)

The static type of a variable declared with var can be dynamic:

dynamic x = "hello";
var y = x;            // Static type of y is dynamic
int z = y;            // Runtime error (cannot convert string to int)

Dynamic Expressions
Fields, properties, methods, events, constructors, indexers, operators, and conversions can all
be called dynamically.
Trying to consume the result of a dynamic expression with a void return type is prohibited —
just as with a statically typed expression. The difference is that the error occurs at runtime:

dynamic list = new List<int>();
var result = list.Add (5);         // RuntimeBinderException thrown

Expressions involving dynamic operands are typically themselves dynamic, since the effect of
absent type information is cascading:

dynamic x = 2;
var y = x * 3;       // Static type of y is dynamic

There are a couple of obvious exceptions to this rule. First, casting a dynamic expression to a
static type yields a static expression:

dynamic x = 2;
var y = (int)x;      // Static type of y is int

Second, constructor invocations always yield static expressions — even when called with



dynamic arguments. In this example, x is statically typed to a StringBuilder:

dynamic capacity = 10;
var x = new System.Text.StringBuilder (capacity);

In addition, there are a few edge cases where an expression containing a dynamic argument is
static, including passing an index to an array and delegate creation expressions.

Dynamic Calls Without Dynamic Receivers
The canonical use case for dynamic involves a dynamic receiver. This means that a dynamic
object is the receiver of a dynamic function call:

dynamic x = ...;
x.Foo();          // x is the receiver

However, you can also call statically known functions with dynamic arguments. Such calls are
subject to dynamic overload resolution, and can include:

Static methods

Instance constructors

Instance methods on receivers with a statically known type

In the following example, the particular Foo that gets dynamically bound is dependent on the
runtime type of the dynamic argument:

class Program
{
  static void Foo (int x)    { Console.WriteLine ("1"); }
  static void Foo (string x) { Console.WriteLine ("2"); }

  static void Main()
  {
    dynamic x = 5;
    dynamic y = "watermelon";

    Foo (x);                // 1
    Foo (y);                // 2
  }
}

Because a dynamic receiver is not involved, the compiler can statically perform a basic check
to see whether the dynamic call will succeed. It checks that a function with the right name and
number of parameters exists. If no candidate is found, you get a compile-time error. For
example:

class Program
{
  static void Foo (int x)    { Console.WriteLine ("1"); }
  static void Foo (string x) { Console.WriteLine ("2"); }

  static void Main()
  {
    dynamic x = 5;
    Foo (x, x);          // Compiler error - wrong number of parameters
    Fook (x);            // Compiler error - no such method name
  }



}

Static Types in Dynamic Expressions
It’s obvious that dynamic types are used in dynamic binding. It’s not so obvious that static types
are also used — wherever possible — in dynamic binding. Consider the following:

class Program
{
  static void Foo (object x, object y) { Console.WriteLine ("oo"); }
  static void Foo (object x, string y) { Console.WriteLine ("os"); }
  static void Foo (string x, object y) { Console.WriteLine ("so"); }
  static void Foo (string x, string y) { Console.WriteLine ("ss"); }

  static void Main()
  {
    object o = "hello";
    dynamic d = "goodbye";
    Foo (o, d);               // os
  }
}

The call to Foo(o,d) is dynamically bound because one of its arguments, d, is dynamic. But
since o is statically known, the binding — even though it occurs dynamically — will make use
of that. In this case, overload resolution will pick the second implementation of Foo due to the
static type of o and the runtime type of d. In other words, the compiler is “as static as it can
possibly be.”

Uncallable Functions
Some functions cannot be called dynamically. You cannot call:

Extension methods (via extension method syntax)

Members of an interface, if you need to cast to that interface to do so

Base members hidden by a subclass

Understanding why this is so is useful in understanding dynamic binding.
Dynamic binding requires two pieces of information: the name of the function to call, and the
object upon which to call the function. However, in each of the three uncallable scenarios, an
additional type is involved, which is known only at compile time. As of C# 6, there’s no way
to specify these additional types dynamically.
When calling extension methods, that additional type is implicit. It’s the static class on which
the extension method is defined. The compiler searches for it given the using directives in
your source code. This makes extension methods compile-time-only concepts, since using
directives melt away upon compilation (after they’ve done their job in the binding process in
mapping simple names to namespace-qualified names).
When calling members via an interface, you specify that additional type via an implicit or
explicit cast. There are two scenarios where you might want to do this: when calling explicitly
implemented interface members, and when calling interface members implemented in a type
internal to another assembly. We can illustrate the former with the following two types:

interface IFoo   { void Test();        }



class Foo : IFoo { void IFoo.Test() {} }

To call the Test method, we must cast to the IFoo interface. This is easy with static typing:

IFoo f = new Foo();   // Implicit cast to interface
f.Test();

Now consider the situation with dynamic typing:

IFoo f = new Foo();
dynamic d = f;
d.Test();             // Exception thrown

The implicit cast shown in bold tells the compiler to bind subsequent member calls on f to
IFoo rather than Foo — in other words, to view that object through the lens of the IFoo
interface. However, that lens is lost at runtime, so the DLR cannot complete the binding. The
loss is illustrated as follows:

Console.WriteLine (f.GetType().Name);    // Foo

A similar situation arises when calling a hidden base member: you must specify an additional
type via either a cast or the base keyword — and that additional type is lost at runtime.

Operator Overloading
Operators can be overloaded to provide more natural syntax for custom types. Operator
overloading is most appropriately used for implementing custom structs that represent fairly
primitive data types. For example, a custom numeric type is an excellent candidate for operator
overloading.
The following symbolic operators can be overloaded:

+ (unary) - (unary) ! ˜ ++

-- + - * /

% & | ^ <<

>> == != > <

>= <=    

The following operators are also overloadable:
Implicit and explicit conversions (with the implicit and explicit keywords).

The true and false operators (not literals).

The following operators are indirectly overloaded:
The compound assignment operators (e.g., +=, /=) are implicitly overridden by overriding
the noncompound operators (e.g., +, /).

The conditional operators && and || are implicitly overridden by overriding the bitwise
operators & and |.



Operator Functions
An operator is overloaded by declaring an operator function. An operator function has the
following rules:

The name of the function is specified with the operator keyword followed by an operator
symbol.

The operator function must be marked static and public.

The parameters of the operator function represent the operands.

The return type of an operator function represents the result of an expression.

At least one of the operands must be the type in which the operator function is declared.

In the following example, we define a struct called Note representing a musical note, and then
overload the + operator:

public struct Note
{
  int value;
  public Note (int semitonesFromA) { value = semitonesFromA; }
  public static Note operator + (Note x, int semitones)
  {
    return new Note (x.value + semitones);
  }
}

This overload allows us to add an int to a Note:

Note B = new Note (2);
Note CSharp = B + 2;

Overloading an operator automatically overloads the corresponding compound assignment
operator. In our example, since we overrode +, we can use += too:

CSharp += 2;

Just as with methods and properties, C# 6 allows operator functions comprising a single
expression to be written more tersely with expression-bodied syntax:

public static Note operator + (Note x, int semitones)
                               => new Note (x.value + semitones);

Overloading Equality and Comparison Operators
Equality and comparison operators are sometimes overridden when writing structs, and in rare
cases when writing classes. Special rules and obligations come with overloading the equality
and comparison operators, which we explain in Chapter 6. A summary of these rules is as
follows:

Pairing
The C# compiler enforces operators that are logical pairs to both be defined. These
operators are (== !=), (< >), and (<= >=).



Equals and GetHashCode
In most cases, if you overload (==) and (!=), you will usually need to override the Equals
and GetHashCode methods defined on object in order to get meaningful behavior. The
C# compiler will give a warning if you do not do this. (See “Equality Comparison” for
more details.)

IComparable and IComparable<T>
If you overload (< >) and (<= >=), you should implement IComparable and
IComparable<T>.

Custom Implicit and Explicit Conversions
Implicit and explicit conversions are overloadable operators. These conversions are typically
overloaded to make converting between strongly related types (such as numeric types) concise
and natural.
To convert between weakly related types, the following strategies are more suitable:

Write a constructor that has a parameter of the type to convert from.

Write ToXXX and (static) FromXXX methods to convert between types.

As explained in the discussion on types, the rationale behind implicit conversions is that they
are guaranteed to succeed and not lose information during the conversion. Conversely, an
explicit conversion should be required either when runtime circumstances will determine
whether the conversion will succeed or if information may be lost during the conversion.
In this example, we define conversions between our musical Note type and a double (which
represents the frequency in hertz of that note):

...
// Convert to hertz
public static implicit operator double (Note x)
  => 440 * Math.Pow (2, (double) x.value / 12 );

// Convert from hertz (accurate to the nearest semitone)
public static explicit operator Note (double x)
  => new Note ((int) (0.5 + 12 * (Math.Log (x/440) / Math.Log(2) ) ));
...

Note n = (Note)554.37;  // explicit conversion
double x = n;           // implicit conversion

NOTE
Following our own guidelines, this example might be better implemented with a ToFrequency
method (and a static FromFrequency method) instead of implicit and explicit operators.

WARNING
Custom conversions are ignored by the as and is operators:

Console.WriteLine (554.37 is Note);   // False
Note n = 554.37 as Note;              // Error



Overloading true and false
The true and false operators are overloaded in the extremely rare case of types that are
Boolean “in spirit,” but do not have a conversion to bool. An example is a type that
implements three-state logic: by overloading true and false, such a type can work seamlessly
with conditional statements and operators — namely, if, do, while, for, &&, ||, and ?:. The
System.Data.SqlTypes.SqlBoolean struct provides this functionality. For example:

SqlBoolean a = SqlBoolean.Null;
if (a)
  Console.WriteLine ("True");
else if (!a)
  Console.WriteLine ("False");
else
  Console.WriteLine ("Null");

OUTPUT:
Null

The following code is a reimplementation of the parts of SqlBoolean necessary to demonstrate
the true and false operators:

public struct SqlBoolean
{
  public static bool operator true (SqlBoolean x)
    => x.m_value == True.m_value;

  public static bool operator false (SqlBoolean x)
    => x.m_value == False.m_value;  

  public static SqlBoolean operator ! (SqlBoolean x)
  {
    if (x.m_value == Null.m_value)  return Null;
    if (x.m_value == False.m_value) return True;
    return False;
  }

  public static readonly SqlBoolean Null =  new SqlBoolean(0);
  public static readonly SqlBoolean False = new SqlBoolean(1);
  public static readonly SqlBoolean True =  new SqlBoolean(2);

  private SqlBoolean (byte value) { m_value = value; }
  private byte m_value;
}

Unsafe Code and Pointers
C# supports direct memory manipulation via pointers within blocks of code marked unsafe and
compiled with the /unsafe compiler option. Pointer types are primarily useful for
interoperability with C APIs, but may also be used for accessing memory outside the managed
heap or for performance-critical hotspots.

Pointer Basics
For every value type or reference type V, there is a corresponding pointer type V*. A pointer
instance holds the address of a variable. Pointer types can be (unsafely) cast to any other
pointer type. The main pointer operators are:



Operator Meaning

& The address-of operator returns a pointer to the address of a variable

* The dereference operator returns the variable at the address of a pointer

-> The pointer-to-member operator is a syntactic shortcut, in which x->y is equivalent to (*x).y

Unsafe Code
By marking a type, type member, or statement block with the unsafe keyword, you’re
permitted to use pointer types and perform C++ style pointer operations on memory within that
scope. Here is an example of using pointers to quickly process a bitmap:

unsafe void BlueFilter (int[,] bitmap)
{
  int length = bitmap.Length;
  fixed (int* b = bitmap)
  {
    int* p = b;
    for (int i = 0; i < length; i++)
      *p++ &= 0xFF;
  }
}

Unsafe code can run faster than a corresponding safe implementation. In this case, the code
would have required a nested loop with array indexing and bounds checking. An unsafe C#
method may also be faster than calling an external C function, since there is no overhead
associated with leaving the managed execution environment.

The fixed Statement
The fixed statement is required to pin a managed object, such as the bitmap in the previous
example. During the execution of a program, many objects are allocated and deallocated from
the heap. In order to avoid unnecessary waste or fragmentation of memory, the garbage
collector moves objects around. Pointing to an object is futile if its address could change while
referencing it, so the fixed statement tells the garbage collector to “pin” the object and not
move it around. This may have an impact on the efficiency of the runtime, so fixed blocks
should be used only briefly, and heap allocation should be avoided within the fixed block.
Within a fixed statement, you can get a pointer to any value type, an array of value types, or a
string. In the case of arrays and strings, the pointer will actually point to the first element,
which is a value type.
Value types declared inline within reference types require the reference type to be pinned, as
follows:

class Test
{
  int x;
  static void Main()
  {
    Test test = new Test();
    unsafe
    {
       fixed (int* p = &test.x)   // Pins test
       {
         *p = 9;
       }
       System.Console.WriteLine (test.x);



    }
  }
}

We describe the fixed statement further in “Mapping a Struct to Unmanaged Memory”.

The Pointer-to-Member Operator
In addition to the & and * operators, C# also provides the C++ style -> operator, which can be
used on structs:

struct Test
{
  int x;
  unsafe static void Main()
  {
    Test test = new Test();
    Test* p = &test;
    p->x = 9;
    System.Console.WriteLine (test.x);
  }
}

Arrays

The stackalloc keyword
Memory can be allocated in a block on the stack explicitly using the stackalloc keyword.
Since it is allocated on the stack, its lifetime is limited to the execution of the method, just as
with any other local variable (whose life hasn’t been extended by virtue of being captured by a
lambda expression, iterator block, or asynchronous function). The block may use the []
operator to index into memory:

int* a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
   Console.WriteLine (a[i]);   // Print raw memory

Fixed-size buffers
The fixed keyword has another use, which is to create fixed-size buffers within structs:

unsafe struct UnsafeUnicodeString
{
  public short Length;
  public fixed byte Buffer[30];   // Allocate block of 30 bytes
}

unsafe class UnsafeClass
{
  UnsafeUnicodeString uus;

  public UnsafeClass (string s)
  {
    uus.Length = (short)s.Length;
    fixed (byte* p = uus.Buffer)
      for (int i = 0; i < s.Length; i++)
        p[i] = (byte) s[i];
  }
}
class Test
{
  static void Main() { new UnsafeClass ("Christian Troy"); }



}

The fixed keyword is also used in this example to pin the object on the heap that contains the
buffer (which will be the instance of UnsafeClass). Hence, fixed means two different things:
fixed in size, and fixed in place. The two are often used together, in that a fixed-size buffer
must be fixed in place to be used.

void*
A void pointer (void*) makes no assumptions about the type of the underlying data and is
useful for functions that deal with raw memory. An implicit conversion exists from any pointer
type to void*. A void* cannot be dereferenced, and arithmetic operations cannot be performed
on void pointers. For example:

class Test
{
  unsafe static void Main()
  {
    short[ ] a = {1,1,2,3,5,8,13,21,34,55};
    fixed (short* p = a)
    {
      //sizeof returns size of value-type in bytes
      Zap (p, a.Length * sizeof (short));
    }
    foreach (short x in a)
      System.Console.WriteLine (x);   // Prints all zeros
  }

  unsafe static void Zap (void* memory, int byteCount)
  {
    byte* b = (byte*) memory;
      for (int i = 0; i < byteCount; i++)
        *b++ = 0;
  }
}

Pointers to Unmanaged Code
Pointers are also useful for accessing data outside the managed heap (such as when interacting
with C DLLs or COM), or when dealing with data not in the main memory (such as graphics
memory or a storage medium on an embedded device).

Preprocessor Directives
Preprocessor directives supply the compiler with additional information about regions of code.
The most common preprocessor directives are the conditional directives, which provide a way
to include or exclude regions of code from compilation. For example:

#define DEBUG
class MyClass
{
  int x;
  void Foo()
  {
    #if DEBUG
    Console.WriteLine ("Testing: x = {0}", x);
    #endif
  }
  ...
}



In this class, the statement in Foo is compiled as conditionally dependent upon the presence of
the DEBUG symbol. If we remove the DEBUG symbol, the statement is not compiled.
Preprocessor symbols can be defined within a source file (as we have done), and they can be
passed to the compiler with the /define:symbol command-line option.
With the #if and #elif directives, you can use the ||, &&, and ! operators to perform or, and,
and not operations on multiple symbols. The following directive instructs the compiler to
include the code that follows if the TESTMODE symbol is defined and the DEBUG symbol is not
defined:

#if TESTMODE && !DEBUG
  ... 

Bear in mind, however, that you’re not building an ordinary C# expression, and the symbols
upon which you operate have absolutely no connection to variables — static or otherwise.
The #error and #warning symbols prevent accidental misuse of conditional directives by
making the compiler generate a warning or error given an undesirable set of compilation
symbols. Table 4-1 lists the preprocessor directives.

Table 4-1. Preprocessor directives

Preprocessor
directive

Action

#define symbol Defines symbol

#undef symbol Undefines symbol

#if symbol
[operator
symbol2]...

symbol to test

 operators are ==, !=, &&, and || followed by #else, #elif, and #endif

#else Executes code to subsequent #endif

#elif symbol
[operator symbol2]

Combines #else branch and #if test

#endif Ends conditional directives

#warning text text of the warning to appear in compiler output

#error text text of the error to appear in compiler output

#pragma warning
[disable | restore]

Disables/restores compiler warning(s)

#line [ number
["file"] | hidden]

number specifies the line in source code; file is the filename to appear in computer output; hidden
instructs debuggers to skip over code from this point until the next #line directive

#region name Marks the beginning of an outline

#endregion Ends an outline region

Conditional Attributes
An attribute decorated with the Conditional attribute will be compiled only if a given
preprocessor symbol is present. For example:

// file1.cs
#define DEBUG
using System;
using System.Diagnostics;
[Conditional("DEBUG")]



public class TestAttribute : Attribute {}

// file2.cs
#define DEBUG
[Test]
class Foo
{
  [Test]
  string s;
}

The compiler will only incorporate the [Test] attributes if the DEBUG symbol is in scope for
file2.cs.

Pragma Warning
The compiler generates a warning when it spots something in your code that seems
unintentional. Unlike errors, warnings don’t ordinarily prevent your application from
compiling.
Compiler warnings can be extremely valuable in spotting bugs. Their usefulness, however, is
undermined when you get false warnings. In a large application, maintaining a good signal-to-
noise ratio is essential if the “real” warnings are to get noticed.
To this effect, the compiler allows you to selectively suppress warnings with the #pragma
warning directive. In this example, we instruct the compiler not to warn us about the field
Message not being used:

public class Foo
{
  static void Main() { }

  #pragma warning disable 414
  static string Message = "Hello";
  #pragma warning restore 414
}

Omitting the number in the #pragma warning directive disables or restores all warning codes.
If you are thorough in applying this directive, you can compile with the /warnaserror switch
— this tells the compiler to treat any residual warnings as errors.

XML Documentation
A documentation comment is a piece of embedded XML that documents a type or member. A
documentation comment comes immediately before a type or member declaration, and starts
with three slashes:

/// <summary>Cancels a running query.</summary>
public void Cancel() { ... }

Multiline comments can be done either like this:

/// <summary>
/// Cancels a running query
/// </summary>
public void Cancel() { ... }



or like this (notice the extra star at the start):

/** 
    <summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }

If you compile with the /doc directive (in Visual Studio, go to the Build tab of Project
Properties), the compiler extracts and collates documentation comments into a single XML
file. This has two main uses:

If placed in the same folder as the compiled assembly, Visual Studio (and LINQPad)
automatically read the XML file and use the information to provide IntelliSense member
listings to consumers of the assembly of the same name.

Third-party tools (such as Sandcastle and NDoc) can transform the XML file into an HTML
help file.

Standard XML Documentation Tags
Here are the standard XML tags that Visual Studio and documentation generators recognize:

<summary>

<summary>...</summary>

Indicates the tool tip that IntelliSense should display for the type or member; typically a
single phrase or sentence.

<remarks>

<remarks>...</remarks>

Additional text that describes the type or member. Documentation generators pick this up
and merge it into the bulk of a type or member’s description.

<param>

<param name="name">...</param>

Explains a parameter on a method.

<returns>

<returns>...</returns>

Explains the return value for a method.

<exception>

<exception [cref="type"]>...</exception>

Lists an exception that a method may throw (cref refers to the exception type).

<permission>



<permission [cref="type"]>...</permission>

Indicates an IPermission type required by the documented type or member.

<example>

<example>...</example>

Denotes an example (used by documentation generators). This usually contains both
description text and source code (source code is typically within a <c> or <code> tag).

<c>

<c>...</c>

Indicates an inline code snippet. This tag is usually used inside an <example> block.

<code>

<code>...</code>

Indicates a multiline code sample. This tag is usually used inside an <example> block.

<see>

<see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML documentation
generators typically convert this to a hyperlink. The compiler emits a warning if the type
or member name is invalid. To refer to generic types, use curly braces; for example,
cref="Foo{T,U}".

<seealso>

<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation generators typically write this
into a separate “See Also” section at the bottom of the page.

<paramref>

<paramref name="name"/>

References a parameter from within a <summary> or <remarks> tag.

<list>

<list type=[ bullet | number | table ]>
  <listheader>
    <term>...</term>
    <description>...</description>
  </listheader>
  <item>
    <term>...</term>
    <description>...</description>
  </item>
</list>



Instructs documentation generators to emit a bulleted, numbered, or table-style list.

<para>

<para>...</para>

Instructs documentation generators to format the contents into a separate paragraph.

<include>

<include file='filename' path='tagpath[@name="id"]'>...</include>

Merges an external XML file that contains documentation. The path attribute denotes an
XPath query to a specific element in that file.

User-Defined Tags
Little is special about the predefined XML tags recognized by the C# compiler, and you are
free to define your own. The only special processing done by the compiler is on the <param>
tag (in which it verifies the parameter name and that all the parameters on the method are
documented) and the cref attribute (in which it verifies that the attribute refers to a real type or
member and expands it to a fully qualified type or member ID). The cref attribute can also be
used in your own tags and is verified and expanded just as it is in the predefined <exception>,
<permission>, <see>, and <seealso> tags.

Type or Member Cross-References
Type names and type or member cross-references are translated into IDs that uniquely define
the type or member. These names are composed of a prefix that defines what the ID represents
and a signature of the type or member. The member prefixes are:

XML type prefix ID prefixes applied to...

N Namespace

T Type (class, struct, enum, interface, delegate)

F Field

P Property (includes indexers)

M Method (includes special methods)

E Event

! Error

The rules describing how the signatures are generated are well documented, although fairly
complex.
Here is an example of a type and the IDs that are generated:

// Namespaces do not have independent signatures
namespace NS
{
  /// T:NS.MyClass
  class MyClass
  {
    /// F:NS.MyClass.aField
    string aField;



    /// P:NS.MyClass.aProperty
    short aProperty {get {...} set {...}}

    /// T:NS.MyClass.NestedType
    class NestedType {...};

    /// M:NS.MyClass.X()
    void X() {...}

    /// M:NS.MyClass.Y(System.Int32,System.Double@,System.Decimal@)
    void Y(int p1, ref double p2, out decimal p3) {...}

    /// M:NS.MyClass.Z(System.Char[ ],System.Single[0:,0:])
    void Z(char[ ] p1, float[,] p2) {...}

    /// M:NS.MyClass.op_Addition(NS.MyClass,NS.MyClass)
    public static MyClass operator+(MyClass c1, MyClass c2) {...}

    /// M:NS.MyClass.op_Implicit(NS.MyClass)˜System.Int32
    public static implicit operator int(MyClass c) {...}

    /// M:NS.MyClass.#ctor
    MyClass() {...}

    /// M:NS.MyClass.Finalize
    ˜MyClass() {...}

    /// M:NS.MyClass.#cctor
    static MyClass() {...}
  }
}



Chapter 5. Framework Overview

Almost all the capabilities of the .NET Framework are exposed via a vast set of managed
types. These types are organized into hierarchical namespaces and packaged into a set of
assemblies, which together with the CLR (Common Language Runtime) comprise the .NET
platform.
Some of the .NET types are used directly by the CLR and are essential for the managed hosting
environment. These types reside in an assembly called mscorlib.dll and include C#’s built-in
types, as well as the basic collection classes, types for stream processing, serialization,
reflection, threading, and native interoperability (“mscorlib” is an abbreviation for “Multi-
language Standard Common Object Runtime Library”).
At a level above this are additional types that “flesh out” the CLR-level functionality,
providing features such as XML, networking, and LINQ. These reside in System.dll,
System.Xml.dll, and System.Core.dll, and together with mscorlib, they provide a rich
programming environment upon which the rest of the Framework is built. This “core
framework” largely defines the scope of the rest of this book.
The remainder of the .NET Framework consists of applied APIs, most of which cover three
areas of functionality:

User-interface technologies

Backend technologies

Distributed system technologies

Table 5-1 shows the history of compatibility between each version of C#, the CLR, and the
.NET Framework.

Table 5-1. C#, CLR, and .NET Framework versions

C# version CLR version .NET Framework versions

1.0 1.0 1.0

1.2 1.1 1.1

2.0 2.0 2.0, 3.0

3.0 2.0 (SP2) 3.5

4.0 4.0 4.0

5.0 4.5 (Patched CLR 4.0) 4.5

6.0 4.6 (Patched CLR 4.0) 4.6

7.0 4.6/4.7 (Patched CLR 4.0) 4.6/4.7

This chapter skims all key areas of the .NET Framework — starting with the core types
covered in this book and finishing with an overview of the applied technologies.

WHAT’S NEW IN .NET FRAMEWORK 4.6
The Garbage Collector (GC) offers more control over when (not) to collect via new methods



on the GC class. There are also more fine-tuning options when calling GC.Collect.

There’s a brand-new faster 64-bit JIT compiler.

The System.Numerics namespace now includes hardware-accelerated matrix, vector types,
BigInteger and Complex.

There’s a new System.AppContext class, designed to give library authors a consistent
mechanism for letting consumers switch new API features in or out.

Tasks now pick up the current thread’s culture and UI culture when created.

More collection types now implement IReadOnlyCollection<T>.

WPF has further improvements, including better touch and high-DPI handling.

ASP.NET now supports HTTP/2 and the Token Binding Protocol in Windows 10.

NOTE
Assemblies and namespaces in the .NET Framework cross-cut. The most extreme examples
are mscorlib.dll and System.Core.dll, both defining types in dozens of namespaces, none of
which is prefixed with mscorlib or System.Core. The less obvious cases are the more
confusing ones, however, such as the types in System.Security.Cryptography. Most types in
this namespace reside in System.dll, except for a handful, which reside in System.Security.dll.
The book’s companion website contains a complete mapping of Framework namespaces to
assemblies (www.albahari.com/nutshell/NamespaceReference.aspx).

Many of the core types are defined in the following assemblies: mscorlib.dll, System.dll, and
System.Core.dll. The first of these, mscorlib.dll, comprises the types required by the runtime
environment itself; System.dll and System.Core.dll contain additional core types required by
you as a programmer. The reason the latter two are separate is historical: when Microsoft
introduced Framework 3.5, they made it additive insofar as it ran as a layer over the existing
CLR 2.0. Therefore, almost all new core types (such as the classes supporting LINQ) went into
a new assembly that Microsoft called System.Core.dll.

WHAT’S NEW IN .NET FRAMEWORK 4.7
Framework 4.7 is more of a maintenance release than a new-feature release, with numerous bug
fixes and minor improvements. Additionally:

The System.ValueTuple struct is part of Framework 4.7, so you can use tuples in C# 7 without
referencing the System.ValueTuple.dll assembly.

WPF has better touch support.

Windows Forms has better support for high-DPI monitors.

.NET Standard 2.0

http://www.albahari.com/nutshell/NamespaceReference.aspx


In Chapter 1, we described the three main alternatives to the .NET Framework for cross-
platform development:

UWP for Windows 10 devices/desktop

.NET Core/ASP.NET Core for Windows, Linux, and MacOS

Xamarin for mobile devices (iOS, Android, and Windows 10 devices)

The good news is that as of .NET Core 2.0, these frameworks — along with .NET Framework
4.6.1 and later — have converged in their core functionality, and now all offer a base class
library (BCL) with similar types and members. This commonality has been formalized into a
standard called .NET Standard 2.0.
When you write a library in Visual Studio 2017, you can choose to target .NET Standard 2.0
instead of a specific framework. Your library is then portable, and the same assembly will run
without modification on (modern versions of) all four frameworks.

NOTE
.NET Standard is not a Framework; it’s merely a specification describing a minimum baseline
of functionality (types and members), which guarantees compatibility with a certain set of
frameworks. The concept is similar to C# interfaces: .NET Standard is like an interface that
concrete types (frameworks) can implement.

This book covers most of what’s in .NET Standard 2.0.

Older .NET Standards
There are also older .NET Standards in use, most notably 1.1, 1.2, 1.3, and 1.6. A higher-
numbered standard is always a strict superset of a lower-numbered standard. For instance, if
you write a library that targets .NET Standard 1.6, you will support not only recent versions of
the four major frameworks, but also .NET Core 1.0. And if you target .NET Standard 1.3, you
support everything we’ve already mentioned plus .NET Framework 4.6.0 (see Table 5-2).

Table 5-2. Older .NET Standards

If you target... You also support...

Standard 1.6 .NET Core 1.0

Standard 1.3 Above plus .NET 4.6.0

Standard 1.2 Above plus .NET 4.5.1, Windows Phone 8.1, WinRT for Windows 8.1

Standard 1.1 Above plus .NET 4.5.0, Windows Phone 8.0, WinRT for Windows 8.0

WARNING
The 1.x standards lack thousands of APIs that are present in 2.0, including much of what we
describe in this book. This can make targeting a 1.x standard significantly more challenging,
especially if you need to integrate existing code or libraries.
If you need to support older frameworks but don’t need cross-platform compatibility, a better



option is to target an older version of a specific framework. In the case of Windows, a good
choice is .NET Framework 4.5 because it’s widely deployed (pre-installed on all machines
running Windows 8 and later), and it contains most of what’s in .NET Framework 4.7.

You can also think of .NET Standard as a lowest common denominator. In the case of .NET
Standard 2.0, the four frameworks that implement it have a similar Base Class Library, so the
lowest common denominator is big and useful. However, if you also want compatibility with
.NET Core 1.0 (with its significantly cut-down BCL), the lowest common denominator —
.NET Standard 1.x — becomes much smaller and less useful.

Reference Assemblies
When compiling a program, you must reference the assemblies that contain the portions of the
framework that your program consumes. For instance, a simple Console program for .NET
Framework that includes a LINQ-to-XML query would require mscorlib.dll, System.dll,
System.Xml.dll, System.Xml.Linq.dll, and System.Core.dll.
In Visual Studio, this is done by adding references to the project (the ones we just listed are
added automatically when creating projects that target .NET Framework 4.x). The assemblies
that you reference, however, only need exist for the benefit of the compiler, and don’t need to
be the same ones that are used at runtime. Hence, it’s permissible to use special reference
assemblies that exist as empty shells, without any compiled code. This is how .NET Standard
works: you add a reference assembly called netstandard.dll, which contains all of the
allowable types and members in .NET Standard 2.0 (but no actual compiled code). Then,
through assembly redirection attributes, the “real” assemblies are loaded at runtime. (The
choice of “real” assemblies will depend on which framework the assembly eventually runs
on.)
Reference assemblies also allow you to target a lower Framework version than is installed on
your machine. For instance, if you’ve installed .NET Framework 4.7 along with Visual Studio
2017, you can still tell your project to target .NET Framework 4.0. Thanks to a set of
Framework 4.0 reference assemblies, your project will only be able to see the types/members
of Framework 4.0.

The CLR and Core Framework

System Types
The most fundamental types live directly in the System namespace. These include C#’s built-in
types, the Exception base class, the Enum, Array, and Delegate base classes, and Nullable,
Type, DateTime, TimeSpan, and Guid. The System namespace also includes types for
performing mathematical functions (Math), generating random numbers (Random), and
converting between various types (Convert and BitConverter).
Chapter 6 describes these types — as well as the interfaces that define standard protocols used
across the .NET Framework for such tasks as formatting (IFormattable) and order
comparison (IComparable).
The System namespace also defines the IDisposable interface and the GC class for interacting
with the garbage collector. These topics are saved for Chapter 12.



Text Processing
The System.Text namespace contains the StringBuilder class (the editable or mutable
cousin of string), and the types for working with text encodings, such as UTF-8 (Encoding
and its subtypes). We cover this in Chapter 6.
The System.Text.RegularExpressions namespace contains types that perform advanced
pattern-based search-and-replace operations; these are described in Chapter 26.

Collections
The .NET Framework offers a variety of classes for managing collections of items. These
include both list- and dictionary-based structures, and work in conjunction with a set of
standard interfaces that unify their common characteristics. All collection types are defined in
the following namespaces, covered in Chapter 7:

System.Collections                 // Nongeneric collections
System.Collections.Generic         // Generic collections
System.Collections.Specialized     // Strongly typed collections
System.Collections.ObjectModel     // Bases for your own collections
System.Collections.Concurrent      // Thread-safe collection (Chapter 23)

Queries
Language Integrated Query (LINQ) was added in Framework 3.5. LINQ allows you to perform
type-safe queries over local and remote collections (e.g., SQL Server tables) and is described
in Chapters 8 through 10. A big advantage of LINQ is that it presents a consistent querying API
across a variety of domains. The essential types reside in the following namespaces, and are
part of .NET Standard 2.0:

System.Linq                  // LINQ to Objects and PLINQ
System.Linq.Expressions      // For building expressions manually
System.Xml.Linq              // LINQ to XML

The full .NET Framework also includes the following, which we describe in “Backend
Technologies”:

System.Data.Linq             // LINQ to SQL
System.Data.Entity           // LINQ to Entities (Entity Framework)

XML
XML is used widely within the .NET Framework, and so is supported extensively. Chapter 10
focuses entirely on LINQ to XML — a lightweight XML document object model that can be
constructed and queried through LINQ. Chapter 11 describes the older W3C DOM, as well as
the performant low-level reader/writer classes and the Framework’s support for XML
schemas, stylesheets, and XPath. The XML namespaces are:

System.Xml                // XmlReader, XmlWriter + the old W3C DOM
System.Xml.Linq           // The LINQ to XML DOM
System.Xml.Schema         // Support for XSD
System.Xml.Serialization  // Declarative XML serialization for .NET types
System.Xml.XPath          // XPath query language
System.Xml.Xsl            // Stylesheet support



Diagnostics
In Chapter 13, we cover .NET’s logging and assertion facilities and describe how to interact
with other processes, write to the Windows event log, and use performance counters for
monitoring. The types for this are defined in and under System.Diagnostics. Windows-
specific features are not part of .NET Standard, and are available only in the .NET Framework.

Concurrency and Asynchrony
Many modern applications need to deal with more than one thing happening at a time. Since C#
5.0, this has become easier through asynchronous functions and high-level constructs such as
tasks and task combinators. Chapter 14 explains all of this in detail, after starting with the
basics of multithreading. Types for working with threads and asynchronous operations are in
the System.Threading and System.Threading.Tasks namespaces.

Streams and I/O
The Framework provides a stream-based model for low-level input/output. Streams are
typically used to read and write directly to files and network connections, and can be chained
or wrapped in decorator streams to add compression or encryption functionality. Chapter 15
describes .NET’s stream architecture, as well as the specific support for working with files
and directories, compression, isolated storage, pipes, and memory-mapped files. The .NET
Stream and I/O types are defined in and under the System.IO namespace, and the WinRT
types for file I/O are in and under Windows.Storage.

Networking
You can directly access standard network protocols such as HTTP, FTP, TCP/IP, and SMTP
via the types in System.Net. In Chapter 16, we demonstrate how to communicate using each of
these protocols, starting with simple tasks such as downloading from a web page, and finishing
with using TCP/IP directly to retrieve POP3 email. Here are the namespaces we cover:

System.Net
System.Net.Http          // HttpClient
System.Net.Mail          // For sending mail via SMTP
System.Net.Sockets       // TCP, UDP, and IP

The latter two namespaces are unavailable to Windows Store applications if you’re targeting
Windows 8/8.1 (WinRT), but are available to Windows 10 Store apps (UWP) as part of the
.NET Standard 2.0 contract. For WinRT apps, use third-party libraries for sending mail, and
the WinRT types in Windows.Networking.Sockets for working with sockets.

Serialization
The Framework provides several systems for saving and restoring objects to a binary or text
representation. Such systems are required for distributed application technologies, such as
WCF, Web Services, and Remoting, and also to save and restore objects to a file. In
Chapter 17, we cover the three major serialization engines: the data contract serializer, the
binary serializer, and the XML serializer. (There is also a JSON serializer now available in the
.NET Framework.) The types for serialization reside in the following namespaces:



System.Runtime.Serialization
System.Xml.Serialization

Assemblies, Reflection, and Attributes
The assemblies into which C# programs compile comprise executable instructions (stored as
intermediate language or IL) and metadata, which describes the program’s types, members, and
attributes. Through reflection, you can inspect this metadata at runtime, and do such things as
dynamically invoke methods. With Reflection.Emit, you can construct new code on the fly.
In Chapter 18, we describe the makeup of assemblies and how to sign them, use the global
assembly cache (GAC) and resources, and resolve file references. In Chapter 19, we cover
reflection and attributes — describing how to inspect metadata, dynamically invoke functions,
write custom attributes, emit new types, and parse raw IL. The types for using reflection and
working with assemblies reside in the following namespaces:

System
System.Reflection
System.Reflection.Emit  // .NET Framework only

Dynamic Programming
In Chapter 20, we look at some of the patterns for dynamic programming and leveraging the
Dynamic Language Runtime, which has been a part of the CLR since Framework 4.0. We
describe how to implement the Visitor pattern, write custom dynamic objects, and interoperate
with IronPython. The types for dynamic programming are in System.Dynamic.

Security
The .NET Framework provides its own security layer, allowing you to both sandbox other
assemblies and be sandboxed yourself. In Chapter 21, we cover code access, role, and identity
security, and the transparency model introduced in CLR 4.0. We then describe cryptography in
the Framework, covering encryption, hashing, and data protection. The types for this are
defined in:

System.Security
System.Security.Permissions
System.Security.Policy
System.Security.Cryptography

Advanced Threading
C#’s asynchronous functions make concurrent programming significantly easier because they
lessen the need for lower-level techniques. However, there are still times when you need
signaling constructs, thread-local storage, reader/writer locks, and so on. Chapter 22 explains
this in depth. Threading types are in the System.Threading namespace.

Parallel Programming
In Chapter 23, we cover in detail the libraries and types for leveraging multicore processors,
including APIs for task parallelism, imperative data parallelism, and functional parallelism
(PLINQ).



Application Domains
The CLR provides an additional level of isolation within a process, called an application
domain. In Chapter 24, we examine the properties of an application domain with which you
can interact, and demonstrate how to create and use additional application domains within the
same process for such purposes as unit testing. We also describe how to use Remoting to
communicate with these application domains.
Creating separate application domains is not part of .NET Standard 2.0, although you can
interact with the current domain via the AppDomain class in the System namespace.

Native and COM Interoperability
You can interoperate with both native and COM code. Native interoperability allows you to
call functions in unmanaged DLLs, register callbacks, map data structures, and interoperate
with native data types. COM interoperability allows you to call COM types and expose .NET
types to COM. The types that support these functions are in
System.Runtime.InteropServices, and we cover them in Chapter 25.5

Applied Technologies

User-Interface APIs
User-interface–based applications can be divided into two categories: thin client, which
amounts to a website, and rich client, which is a program the end user must download and
install on a computer or mobile device.
For thin client applications, .NET provides ASP.NET and ASP.NET Core.
For rich-client applications that target Windows 7/8/10 desktop, .NET provides the WPF and
Windows Forms APIs. For rich-client apps that target iOS, Android, and Windows Phone,
there’s Xamarin, and for writing rich-client store apps for Windows 10 desktop and devices,
there’s UWP (see Table 1-1 in Chapter 1).
Finally, there’s a hybrid technology called Silverlight, which has been largely abandoned since
the rise of HTML5.

ASP.NET
Applications written using ASP.NET host under Windows IIS and can be accessed from any
web browser. Here are the advantages of ASP.NET over rich-client technologies:

There is zero deployment at the client end.

Clients can run a non-Windows platform.

Updates are easily deployed.

Further, because most of what you write in an ASP.NET application runs on the server, you
design your data access layer to run in the same application domain — without limiting
security or scalability. In contrast, a rich client that does the same is not generally as secure or
scalable. (The solution, with the rich client, is to insert a middle tier between the client and
database. The middle tier runs on a remote application server [often alongside the database



server] and communicates with the rich clients via WCF, Web Services, or Remoting.)
In writing your web pages, you can choose between the traditional Web Forms and the newer
MVC (Model-View-Controller) API. Both build on the ASP.NET infrastructure. Web Forms
has been part of the Framework since its inception; MVC was written much later in response to
the success of Ruby on Rails and MonoRail. It provides, in general, a better programming
abstraction than Web Forms; it also allows more control over the generated HTML. What you
lose over Web Forms is a designer. This makes Web Forms still a good choice for web pages
with predominately static content.
The limitations of ASP.NET are largely a reflection of the limitations of thin client systems in
general:

While a web browser can offer a rich compelling interface with HTML5 and AJAX, it’s
still inferior to a native rich-client API such as WPF in capability and performance.

Maintaining state on the client — or on behalf of the client — can be cumbersome.

The types for writing ASP.NET applications are in the System.Web.UI namespace and its
subnamespaces, and are in the System.Web.dll assembly. ASP.NET 5 is available on NuGet.

ASP.NET Core
A relatively recent addition, ASP.NET Core is similar to ASP.NET, but runs on both .NET
Framework and .NET Core (allowing for cross-platform deployment). ASP.NET Core features
a lighter-weight modular architecture, with the ability to self-host in a custom process, and an
open source license. Unlike its predecessors, ASP.NET Core is not dependent on System.Web
and the historical baggage of Web Forms. It’s particularly suitable for micro-services and
deployment inside containers.

Windows Presentation Foundation (WPF)
WPF was introduced in Framework 3.0 for writing rich-client applications. The benefits of
WPF over its predecessor, Windows Forms, are as follows:

It supports sophisticated graphics, such as arbitrary transformations, 3D rendering,
multimedia, and true transparency. Skinning is supported through styles and templates.

Its primary measurement unit is not pixel-based, so applications display correctly at any
DPI (dots per inch) setting.

It has extensive and flexible layout support, which means you can localize an application
without danger of elements overlapping.

Rendering uses DirectX and is fast, taking good advantage of graphics hardware
acceleration.

It offers reliable data binding.

User interfaces can be described declaratively in XAML files that can be maintained
independently of the “code-behind” files — this helps to separate appearance from
functionality.

WPF’s size and complexity, however, create a big learning curve.



The types for writing WPF applications are in the System.Windows namespace and all
subnamespaces except for System.Windows.Forms.

Windows Forms
Windows Forms is a rich-client API that’s as old as the .NET Framework. Compared to WPF,
Windows Forms is a relatively simple technology that provides most of the features you need
in writing a typical Windows application. It also has significant relevancy in maintaining
legacy applications. It has a number of drawbacks, though, compared to WPF:

Controls are positioned and sized in pixels, making it easy to write applications that break
on clients whose DPI settings differ from the developer’s (although this has improved
somewhat in Framework 4.7).

The API for drawing nonstandard controls is GDI+, which, although reasonably flexible, is
slow in rendering large areas (and without double buffering, may flicker).

Controls lack true transparency.

Most controls are noncompositional. For instance, you can’t put an image control inside a
tab control header. Customizing list views and combo boxes is time-consuming and painful.

Dynamic layout is difficult to get right reliably.

The last point is an excellent reason to favor WPF over Windows Forms — even if you’re
writing a business application that needs just a user interface and not a “user experience.” The
layout elements in WPF, such as Grid, make it easy to assemble labels and text boxes such that
they always align — even after language-changing localization — without messy logic and
without any flickering. Further, you don’t have to bow to the lowest common denominator in
screen resolution — WPF layout elements have been designed from the outset to adapt
properly to resizing.
On the positive side, Windows Forms is relatively simple to learn and still has a good number
of third-party controls.
The Windows Forms types are in the System.Windows.Forms (in System.Windows.Forms.dll)
and System.Drawing (in System.Drawing.dll) namespaces. The latter also contains the GDI+
types for drawing custom controls.

Xamarin
Xamarin, now owned by Microsoft, lets you write mobile apps in C# that target iOS and
Android, as well as Windows Phone. Being cross-platform, this runs not on the .NET
Framework, but its own framework (a derivation of the open source Mono framework). See
https://www.xamarin.com for more information.

UWP (Universal Windows Platform)
UWP is for writing apps that target Windows 10 desktop and devices, distributed via the
Windows Store. Its rich-client API is designed for writing touch-first user interfaces, and was
inspired by WPF and uses XAML for layout. The namespaces are Windows.UI and
Windows.UI.Xaml.

Silverlight

https://www.xamarin.com


Silverlight is also distinct from the .NET Framework, and lets you write a graphical UI that
runs in a web browser, much like Macromedia’s Flash. With the rise of HTML5, Microsoft has
abandoned Silverlight.

Backend Technologies

ADO.NET
ADO.NET is the managed data access API. Although the name is derived from the 1990s-era
ADO (ActiveX Data Objects), the technology is completely different. ADO.NET contains two
major low-level components:

Provider layer
The provider model defines common classes and interfaces for low-level access to
database providers. These interfaces comprise connections, commands, adapters, and
readers (forward-only, read-only cursors over a database). The Framework ships with
native support for Microsoft SQL Server, and numerous third-party drivers are available
for other databases.

DataSet model
A DataSet is a structured cache of data. It resembles a primitive in-memory database,
which defines SQL constructs such as tables, rows, columns, relationships, constraints,
and views. By programming against a cache of data, you can reduce the number of trips to
the server, increasing server scalability and the responsiveness of a rich-client user
interface. DataSets are serializable and are designed to be sent across the wire between
client and server applications.

Sitting above the provider layer are three APIs that offer the ability to query databases via
LINQ:

Entity Framework (.NET Framework only)

Entity Framework Core (.NET Framework and .NET Core)

LINQ to SQL (.NET Framework only)

All three technologies include object/relational mappers (ORMs), meaning they automatically
map objects (based on classes that you define) to rows in the database. This allows you to
query those objects via LINQ (instead of writing SQL SELECT statements) — and update them
without manually writing SQL INSERT/DELETE/UPDATE statements. This cuts the volume of
code in an application’s data access layer (particularly the “plumbing” code) and provides
strong static type safety. These technologies also avoid the need for DataSets as receptacles of
data — although DataSets still provide the unique ability to store and serialize state changes
(something particularly useful in multitier applications). You can use Entity Framework or
LINQ to SQL in conjunction with DataSets, although the process is somewhat clumsy and
DataSets are inherently ungainly. In other words, there’s no straightforward out-of-the-box
solution for writing n-tier applications with Microsoft’s ORMs as yet.
LINQ to SQL is simpler than Entity Framework, and has historically produced better SQL
(although Entity Framework has benefited from numerous updates). Entity Framework is more
flexible in that you can create elaborate mappings between the database and the classes that



you query (Entity Data Model), and offers a model that allows third-party support for
databases other than SQL Server.
Entity Framework Core (EF Core) is a rewrite of Entity Framework with a simpler design
inspired by LINQ to SQL. It abandons the complex Entity Data Model and runs on both .NET
Framework and .NET Core.

NOTE
.NET Standard 2.0 includes the common interfaces in the provider layer, as well as DataSets,
but excludes SQL Server-specific types and the object-relational mappers.

Windows Workflow (.NET Framework only)
Windows Workflow is a framework for modeling and managing potentially long-running
business processes. Workflow targets a standard runtime library, providing consistency and
interoperability. Workflow also helps reduce coding for dynamically controlled decision-
making trees.
Windows Workflow is not strictly a backend technology — you can use it anywhere (an
example is page flow, in the UI).
Workflow came originally with .NET Framework 3.0, with its types defined in the
System.WorkFlow namespace. Workflow was substantially revised in Framework 4.0; the new
types live in and under the System.Activities namespace.

COM+ and MSMQ (.NET Framework only)
The Framework allows you to interoperate with COM+ for services such as distributed
transactions, via types in the System.EnterpriseServices namespace. It also supports
MSMQ (Microsoft Message Queuing) for asynchronous, one-way messaging through types in
System.Messaging.

Distributed System Technologies

Windows Communication Foundation (WCF)
WCF is a sophisticated communications infrastructure introduced in Framework 3.0. WCF is
flexible and configurable enough to make both of its predecessors — Remoting and (.ASMX)
Web Services — mostly redundant.
WCF, Remoting, and Web Services are all alike in that they implement the following basic
model in allowing a client and server application to communicate:

On the server, you indicate what methods you’d like remote client applications to be able to
call.

On the client, you specify or infer the signatures of the server methods you’d like to call.

On both the server and the client, you choose a transport and communication protocol (in
WCF, this is done through a binding).

The client establishes a connection to the server.



The client calls a remote method, which executes transparently on the server.

WCF further decouples the client and server through service contracts and data contracts.
Conceptually, the client sends an (XML or binary) message to an endpoint on a remote service,
rather than directly invoking a remote method. One of the benefits of this decoupling is that
clients have no dependency on the .NET platform or on any proprietary communication
protocols.
WCF is highly configurable and provides extensive support for standardized SOAP-based
messaging protocols (Simple Object Access Protocol), including the WS-* extensions for
security. This lets you communicate with parties running different software — possibly on
different platforms — while still supporting advanced features such as encryption. In practice,
however, the complexity of these protocols has limited their adoption across other platforms,
and the best option right now for interoperable messaging is REST over HTTP, which
Microsoft supports through the Web API layer over ASP.NET.
For .NET-to-.NET communication, however, WCF offers richer serialization and better tooling
than with REST APIs. It’s also potentially faster as it’s not tied to HTTP and can use binary
serialization.
The types for communicating with WCF are in, and below, the System.Service Model
namespace.

Web API
Web API runs over ASP.NET/ASP.NET Core and is architecturally similar to Microsoft’s
MVC API, except that it’s designed to expose services and data instead of web pages. Its
advantage over WCF is in allowing you to follow popular REST-over-HTTP conventions,
offering easy interoperability with the widest range of platforms.
REST implementations are internally simpler than the SOAP and WS- protocols that WCF
relies on for interoperability. REST APIs are also architecturally more elegant for loosely-
coupled systems, building on de-facto standards and making excellent use of what HTTP
already provides.

Remoting and .ASMX Web Services (.NET Framework only)
Remoting and .ASMX Web Services are WCF’s predecessors. Remoting is almost redundant in
WCF’s wake, and .ASMX Web Services has become entirely redundant.
Remoting’s remaining niche is in communicating between application domains within the same
process (see Chapter 24). Remoting is geared toward tightly coupled applications. A typical
example is when the client and server are both .NET applications written by the same company
(or companies sharing common assemblies). Communication typically involves exchanging
potentially complex custom .NET objects that the Remoting infrastructure serializes and
deserializes without needing intervention.
The types for Remoting are in or under System.Runtime.Remoting; the types for Web
Services are under System.Web.Services.



Chapter 6. Framework Fundamentals

Many of the core facilities that you need when programming are provided not by the C#
language, but by types in the .NET Framework. In this chapter, we cover the Framework’s role
in fundamental programming tasks, such as virtual equality comparison, order comparison, and
type conversion. We also cover the basic Framework types, such as String, DateTime, and
Enum.
The types in this section reside in the System namespace, with the following exceptions:

StringBuilder is defined in System.Text, as are the types for text encodings.

CultureInfo and associated types are defined in System.Globalization.

XmlConvert is defined in System.Xml.

String and Text Handling

Char
A C# char represents a single Unicode character and aliases the System.Char struct. In
Chapter 2, we described how to express char literals. For example:

char c = 'A';
char newLine = '\n';

System.Char defines a range of static methods for working with characters, such as ToUpper,
ToLower, and IsWhiteSpace. You can call these through either the System .Char type or its
char alias:

Console.WriteLine (System.Char.ToUpper ('c'));    // C
Console.WriteLine (char.IsWhiteSpace ('\t'));     // True

ToUpper and ToLower honor the end user’s locale, which can lead to subtle bugs. The
following expression evaluates to false in Turkey:

char.ToUpper ('i') == 'I'

because in Turkey, char.ToUpper ('i') is 'İ' (notice the dot on top!). To avoid this
problem, System.Char (and System.String) also provides culture-invariant versions of
ToUpper and ToLower ending with the word Invariant. These always apply English culture
rules:

Console.WriteLine (char.ToUpperInvariant ('i'));    // I

This is a shortcut for:

Console.WriteLine (char.ToUpper ('i', CultureInfo.InvariantCulture))



For more on locales and culture, see “Formatting and parsing”.
Most of char’s remaining static methods are related to categorizing characters and are listed in
Table 6-1.

Table 6-1. Static methods for categorizing characters

Static method Characters included Unicode categories
included

IsLetter A–Z, a–z, and letters of other alphabets UpperCaseLetter
LowerCaseLetter
TitleCaseLetter
ModifierLetter
OtherLetter

IsUpper Uppercase letters UpperCaseLetter

IsLower Lowercase letters LowerCaseLetter

IsDigit 0–9 plus digits of other alphabets DecimalDigitNumber

IsLetterOrDigit Letters plus digits (IsLetter, IsDigit)

IsNumber All digits plus Unicode fractions and Roman numeral symbols DecimalDigitNumber
LetterNumber
OtherNumber

IsSeparator Space plus all Unicode separator characters LineSeparator
ParagraphSeparator

IsWhiteSpace All separators plus \n, \r, \t, \f, and \v LineSeparator
ParagraphSeparator

IsPunctuation Symbols used for punctuation in Western and other alphabets DashPunctuation
ConnectorPunctuation
InitialQuotePunctuation
FinalQuotePunctuation

IsSymbol Most other printable symbols MathSymbol
ModifierSymbol
OtherSymbol

IsControl Nonprintable “control” characters below 0x20, such as \r, \n, \t, \0, and
characters between 0x7F and 0x9A

(None)

For more granular categorization, char provides a static method called GetUnicodeCategory;
this returns a UnicodeCategory enumeration whose members are shown in the rightmost
column of Table 6-1.

NOTE
By explicitly casting from an integer, it’s possible to produce a char outside the allocated
Unicode set. To test a character’s validity, call char.GetUnicodeCategory: if the result is
UnicodeCategory.OtherNotAssigned, the character is invalid.

A char is 16 bits wide — enough to represent any Unicode character in the Basic Multilingual
Plane. To go outside this, you must use surrogate pairs: we describe the methods for doing this
in “Text Encodings and Unicode”.

String
A C# string (== System.String) is an immutable (unchangeable) sequence of characters. In
Chapter 2, we described how to express string literals, perform equality comparisons, and



concatenate two strings. This section covers the remaining functions for working with strings,
exposed through the static and instance members of the System.String class.

Constructing strings
The simplest way to construct a string is to assign a literal, as we saw in Chapter 2:

string s1 = "Hello";
string s2 = "First Line\r\nSecond Line";
string s3 = @"\\server\fileshare\helloworld.cs";

To create a repeating sequence of characters, you can use string’s constructor:

Console.Write (new string ('*', 10));      // **********

You can also construct a string from a char array. The ToCharArray method does the reverse:

char[] ca = "Hello".ToCharArray();
string s = new string (ca);              // s = "Hello"

string’s constructor is also overloaded to accept various (unsafe) pointer types, in order to
create strings from types such as char*.

Null and empty strings
An empty string has a length of zero. To create an empty string, you can use either a literal or
the static string.Empty field; to test for an empty string, you can either perform an equality
comparison or test its Length property:

string empty = "";
Console.WriteLine (empty == "");              // True
Console.WriteLine (empty == string.Empty);    // True
Console.WriteLine (empty.Length == 0);        // True

Because strings are reference types, they can also be null:

string nullString = null;
Console.WriteLine (nullString == null);        // True
Console.WriteLine (nullString == "");          // False
Console.WriteLine (nullString.Length == 0);    // NullReferenceException

The static string.IsNullOrEmpty method is a useful shortcut for testing whether a given
string is either null or empty.

Accessing characters within a string
A string’s indexer returns a single character at the given index. As with all functions that
operate on strings, this is zero-indexed:

string str  = "abcde";
char letter = str[1];        // letter == 'b'

string also implements IEnumerable<char>, so you can foreach over its characters:

foreach (char c in "123") Console.Write (c + ",");    // 1,2,3,



Searching within strings
The simplest methods for searching within strings are StartsWith, EndsWith and Contains.
These all return true or false:

Console.WriteLine ("quick brown fox".EndsWith ("fox"));      // True
Console.WriteLine ("quick brown fox".Contains ("brown"));    // True

StartsWith and EndsWith are overloaded to let you specify a StringComparison enum or a
CultureInfo object to control case and culture sensitivity (see “Ordinal versus culture
comparison”). The default is to perform a case-sensitive match using rules applicable to the
current (localized) culture. The following instead performs a case-insensitive search using the
invariant culture’s rules:

"abcdef".StartsWith ("aBc", StringComparison.InvariantCultureIgnoreCase)

The Contains method doesn’t offer the convenience of this overload, although you can achieve
the same result with the IndexOf method.
IndexOf is more powerful: it returns the first position of a given character or substring (or -1
if the substring isn’t found):

Console.WriteLine ("abcde".IndexOf ("cd"));   // 2

IndexOf is also overloaded to accept a startPosition (an index from which to begin
searching), as well as a StringComparison enum:

Console.WriteLine ("abcde abcde".IndexOf ("CD", 6,
                   StringComparison.CurrentCultureIgnoreCase));    // 8

LastIndexOf is like IndexOf, but works backward through the string.
IndexOfAny returns the first matching position of any one of a set of characters:

Console.Write ("ab,cd ef".IndexOfAny (new char[] {' ', ','} ));       // 2
Console.Write ("pas5w0rd".IndexOfAny ("0123456789".ToCharArray() ));  // 3

LastIndexOfAny does the same in the reverse direction.

Manipulating strings
Because String is immutable, all the methods that “manipulate” a string return a new one,
leaving the original untouched (the same goes for when you reassign a string variable).
Substring extracts a portion of a string:

string left3 = "12345".Substring (0, 3);     // left3 = "123";
string mid3  = "12345".Substring (1, 3);     // mid3 = "234";

If you omit the length, you get the remainder of the string:

string end3  = "12345".Substring (2);        // end3 = "345";

Insert and Remove insert or remove characters at a specified position:



string s1 = "helloworld".Insert (5, ", ");    // s1 = "hello, world"
string s2 = s1.Remove (5, 2);                 // s2 = "helloworld";

PadLeft and PadRight pad a string to a given length with a specified character (or a space if
unspecified):

Console.WriteLine ("12345".PadLeft (9, '*'));  // ****12345
Console.WriteLine ("12345".PadLeft (9));       //     12345

If the input string is longer than the padding length, the original string is returned unchanged.
TrimStart and TrimEnd remove specified characters from the beginning or end of a string;
Trim does both. By default, these functions remove whitespace characters (including spaces,
tabs, new lines, and Unicode variations of these):

Console.WriteLine ("  abc \t\r\n ".Trim().Length);   // 3

Replace replaces all (nonoverlapping) occurrences of a particular character or substring:

Console.WriteLine ("to be done".Replace (" ", " | ") );  // to | be | done
Console.WriteLine ("to be done".Replace (" ", "")    );  // tobedone

ToUpper and ToLower return upper- and lowercase versions of the input string. By default,
they honor the user’s current language settings; ToUpperInvariant and ToLowerInvariant
always apply English alphabet rules.

Splitting and joining strings
Split divides a string up into pieces:

string[] words = "The quick brown fox".Split();

foreach (string word in words)
  Console.Write (word + "|");    // The|quick|brown|fox|

By default, Split uses whitespace characters as delimiters; it’s also overloaded to accept a
params array of char or string delimiters. Split also optionally accepts a
StringSplitOptions enum, which has an option to remove empty entries: this is useful when
words are separated by several delimiters in a row.
The static Join method does the reverse of Split. It requires a delimiter and string array:

string[] words = "The quick brown fox".Split();
string together = string.Join (" ", words);      // The quick brown fox

The static Concat method is similar to Join but accepts only a params string array and applies
no separator. Concat is exactly equivalent to the + operator (the compiler, in fact, translates +
to Concat):

string sentence     = string.Concat ("The", " quick", " brown", " fox");
string sameSentence = "The" + " quick" + " brown" + " fox";

String.Format and composite format strings
The static Format method provides a convenient way to build strings that embed variables.



The embedded variables (or values) can be of any type; the Format simply calls ToString on
them.
The master string that includes the embedded variables is called a composite format string.
When calling String.Format, you provide a composite format string followed by each of the
embedded variables. For example:

string composite = "It's {0} degrees in {1} on this {2} morning";
string s = string.Format (composite, 35, "Perth", DateTime.Now.DayOfWeek);

// s == "It's 35 degrees in Perth on this Friday morning"

(And that’s Celsius!)
From C# 6, we can use interpolated string literals to the same effect (see “String Type”). Just
precede the string with the $ symbol and put the expressions in braces:

string s = $"It's hot this {DateTime.Now.DayOfWeek} morning";

Each number in curly braces is called a format item. The number corresponds to the argument
position and is optionally followed by:

A comma and a minimum width to apply

A colon and a format string

The minimum width is useful for aligning columns. If the value is negative, the data is left-
aligned; otherwise, it’s right-aligned. For example:

string composite = "Name={0,-20} Credit Limit={1,15:C}";

Console.WriteLine (string.Format (composite, "Mary", 500));
Console.WriteLine (string.Format (composite, "Elizabeth", 20000));

Here’s the result:

Name=Mary                 Credit Limit=        $500.00
Name=Elizabeth            Credit Limit=     $20,000.00

The equivalent without using string.Format is this:

string s = "Name=" + "Mary".PadRight (20) +
           " Credit Limit=" + 500.ToString ("C").PadLeft (15);

The credit limit is formatted as currency by virtue of the "C" format string. We describe format
strings in detail in “Formatting and parsing”.

Comparing Strings
In comparing two values, the .NET Framework differentiates the concepts of equality
comparison and order comparison. Equality comparison tests whether two instances are
semantically the same; order comparison tests which of two (if any) instances comes first when
arranging them in ascending or descending sequence.



NOTE
Equality comparison is not a subset of order comparison; the two systems have different
purposes. It’s legal, for instance, to have two unequal values in the same ordering position.
We resume this topic in “Equality Comparison”.

For string equality comparison, you can use the == operator or one of string’s Equals
methods. The latter are more versatile because they allow you to specify options such as case
insensitivity.

WARNING
Another difference is that == does not work reliably on strings if the variables are cast to the
object type. We explain why this is so in “Equality Comparison”.

For string order comparison, you can use either the CompareTo instance method or the static
Compare and CompareOrdinal methods: these return a positive or negative number, or zero,
depending on whether the first value comes after, before, or alongside the second.
Before going into the details of each, we need to examine .NET’s underlying string comparison
algorithms.

Ordinal versus culture comparison
There are two basic algorithms for string comparison: ordinal and culture-sensitive. Ordinal
comparisons interpret characters simply as numbers (according to their numeric Unicode
value); culture-sensitive comparisons interpret characters with reference to a particular
alphabet. There are two special cultures: the “current culture,” which is based on settings
picked up from the computer’s control panel, and the “invariant culture,” which is the same on
every computer (and closely matches American culture).
For equality comparison, both ordinal and culture-specific algorithms are useful. For ordering,
however, culture-specific comparison is nearly always preferable: to order strings
alphabetically, you need an alphabet. Ordinal relies on the numeric Unicode point values,
which happen to put English characters in alphabetical order — but even then not exactly as
you might expect. For example, assuming case sensitivity, consider the strings “Atom”, “atom”,
and “Zamia”. The invariant culture puts them in the following order:

"atom", "Atom", "Zamia"

Ordinal arranges them instead as follows:

"Atom", "Zamia", "atom"

This is because the invariant culture encapsulates an alphabet, which considers uppercase
characters adjacent to their lowercase counterparts (aAbBcCdD...). The ordinal algorithm,
however, puts all the uppercase characters first, and then all lowercase characters (A...Z, a...z).
This is essentially a throwback to the ASCII character set invented in the 1960s.



String equality comparison
Despite ordinal’s limitations, string’s == operator always performs ordinal case-sensitive
comparison. The same goes for the instance version of string.Equals when called without
arguments; this defines the “default” equality comparison behavior for the string type.

NOTE
The ordinal algorithm was chosen for string’s == and Equals functions because it’s both
highly efficient and deterministic. String equality comparison is considered fundamental and
is performed far more frequently than order comparison.
A “strict” notion of equality is also consistent with the general use of the == operator.

The following methods allow culture-aware or case-insensitive comparisons:

public bool Equals(string value, StringComparison comparisonType);

public static bool Equals (string a, string b,
                           StringComparison comparisonType);

The static version is advantageous in that it still works if one or both of the strings are null.
StringComparison is an enum defined as follows:

public enum StringComparison
{
  CurrentCulture,               // Case-sensitive
  CurrentCultureIgnoreCase,
  InvariantCulture,             // Case-sensitive
  InvariantCultureIgnoreCase,
  Ordinal,                      // Case-sensitive
  OrdinalIgnoreCase
}

For example:

Console.WriteLine (string.Equals ("foo", "FOO",
                   StringComparison.OrdinalIgnoreCase));   // True

Console.WriteLine ("ṻ" == "ǖ");                            // False

Console.WriteLine (string.Equals ("ṻ", "ǖ",
                   StringComparison.CurrentCulture));      // ?

(The result of the third example is determined by the computer’s current language settings.)

String order comparison
String’s CompareTo instance method performs culture-sensitive, case-sensitive order
comparison. Unlike the == operator, CompareTo does not use ordinal comparison: for ordering,
a culture-sensitive algorithm is much more useful.
Here’s the method’s definition:

public int CompareTo (string strB);



NOTE
The CompareTo instance method implements the generic IComparable interface, a standard
comparison protocol used across the .NET Framework. This means string’s CompareTo
defines the default ordering behavior of strings, in such applications as sorted collections, for
instance. For more information on IComparable, see “Order Comparison”.

For other kinds of comparison, you can call the static Compare and CompareOrdinal methods:

public static int Compare (string strA, string strB,
                           StringComparison comparisonType);

public static int Compare (string strA, string strB, bool ignoreCase,
                           CultureInfo culture);

public static int Compare (string strA, string strB, bool ignoreCase);

public static int CompareOrdinal (string strA, string strB);

The last two methods are simply shortcuts for calling the first two methods.
All of the order comparison methods return a positive number, a negative number, or zero,
depending on whether the first value comes after, before, or alongside the second value:

Console.WriteLine ("Boston".CompareTo ("Austin"));    // 1
Console.WriteLine ("Boston".CompareTo ("Boston"));    // 0
Console.WriteLine ("Boston".CompareTo ("Chicago"));   // -1
Console.WriteLine ("ṻ".CompareTo ("ǖ"));              // 0
Console.WriteLine ("foo".CompareTo ("FOO"));          // -1

The following performs a case-insensitive comparison using the current culture:

Console.WriteLine (string.Compare ("foo", "FOO", true));   // 0

By supplying a CultureInfo object, you can plug in any alphabet:

// CultureInfo is defined in the System.Globalization namespace

CultureInfo german = CultureInfo.GetCultureInfo ("de-DE");
int i = string.Compare ("Müller", "Muller", false, german);

StringBuilder
The StringBuilder class (System.Text namespace) represents a mutable (editable) string.
With a StringBuilder, you can Append, Insert, Remove, and Replace substrings without
replacing the whole StringBuilder.
StringBuilder’s constructor optionally accepts an initial string value, as well as a starting
size for its internal capacity (default is 16 characters). If you go above this, StringBuilder
automatically resizes its internal structures to accommodate (at a slight performance cost) up to
its maximum capacity (default is int.MaxValue).
A popular use of StringBuilder is to build up a long string by repeatedly calling Append.
This approach is much more efficient than repeatedly concatenating ordinary string types:

StringBuilder sb = new StringBuilder();



for (int i = 0; i < 50; i++) sb.Append (i + ",");

To get the final result, call ToString():

Console.WriteLine (sb.ToString());

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

NOTE
In our example, the expression i + "," means that we’re still repeatedly concatenating
strings. However, this incurs only a small performance cost in that the strings in question are
small and don’t grow with each loop iteration. For maximum performance, however, we
could change the loop body to this:

{ sb.Append (i); sb.Append (","); }

AppendLine performs an Append that adds a new line sequence ("\r\n" in Windows).
AppendFormat accepts a composite format string, just like String.Format.
As well as the Insert, Remove, and Replace methods (Replace works like string’s Replace),
StringBuilder defines a Length property and a writable indexer for getting/setting
individual characters.
To clear the contents of a StringBuilder, either instantiate a new one or set its Length to
zero.

WARNING
Setting a StringBuilder’s Length to zero doesn’t shrink its internal capacity. So, if the
StringBuilder previously contained one million characters, it will continue to occupy around
2 MB of memory after zeroing its Length. If you want to release the memory, you must
create a new StringBuilder and allow the old one to drop out of scope (and be garbage-
collected).

Text Encodings and Unicode
A character set is an allocation of characters, each with a numeric code or code point. There
are two character sets in common use: Unicode and ASCII. Unicode has an address space of
approximately one million characters, of which about 100,000 are currently allocated. Unicode
covers most spoken world languages, as well as some historical languages and special
symbols. The ASCII set is simply the first 128 characters of the Unicode set, which covers
most of what you see on a US-style keyboard. ASCII predates Unicode by 30 years and is still
sometimes used for its simplicity and efficiency: each character is represented by one byte.
The .NET type system is designed to work with the Unicode character set. ASCII is implicitly
supported, though, by virtue of being a subset of Unicode.
A text encoding maps characters from their numeric code point to a binary representation. In
.NET, text encodings come into play primarily when dealing with text files or streams. When



you read a text file into a string, a text encoder translates the file data from binary into the
internal Unicode representation that the char and string types expect. A text encoding can
restrict what characters can be represented, as well as impacting storage efficiency.
There are two categories of text encoding in .NET:

Those that map Unicode characters to another character set

Those that use standard Unicode encoding schemes

The first category contains legacy encodings such as IBM’s EBCDIC and 8-bit character sets
with extended characters in the upper-128 region that were popular prior to Unicode
(identified by a code page). The ASCII encoding is also in this category: it encodes the first
128 characters and drops everything else. This category contains the nonlegacy GB18030 as
well, which is the mandatory standard for applications written in China — or sold to China —
since 2000.
In the second category are UTF-8, UTF-16, and UTF-32 (and the obsolete UTF-7). Each
differs in space efficiency. UTF-8 is the most space-efficient for most kinds of text: it uses
between 1 and 4 bytes to represent each character. The first 128 characters require only a
single byte, making it compatible with ASCII. UTF-8 is the most popular encoding for text files
and streams (particularly on the Internet), and it is the default for stream I/O in .NET (in fact,
it’s the default for almost everything that implicitly uses an encoding).
UTF-16 uses one or two 16-bit words to represent each character, and is what .NET uses
internally to represent characters and strings. Some programs also write files in UTF-16.
UTF-32 is the least space-efficient: it maps each code point directly to 32 bits, so every
character consumes 4 bytes. UTF-32 is rarely used for this reason. It does, however, make
random access very easy because every character takes an equal number of bytes.

Obtaining an Encoding object
The Encoding class in System.Text is the common base type for classes that encapsulate text
encodings. There are several subclasses — their purpose is to encapsulate families of
encodings with similar features. The easiest way to instantiate a correctly configured class is to
call Encoding.GetEncoding with a standard IANA (Internet Assigned Numbers Authority)
Character Set name:

Encoding utf8 = Encoding.GetEncoding ("utf-8");
Encoding chinese = Encoding.GetEncoding ("GB18030");

The most common encodings can also be obtained through dedicated static properties on
Encoding:

Encoding name Static property on Encoding

UTF-8 Encoding.UTF8

UTF-16 Encoding.Unicode (not UTF16)

UTF-32 Encoding.UTF32

ASCII Encoding.ASCII

The static GetEncodings method returns a list of all supported encodings, with their standard
IANA names:



foreach (EncodingInfo info in Encoding.GetEncodings())
  Console.WriteLine (info.Name);

The other way to obtain an encoding is to directly instantiate an encoding class. Doing so
allows you to set various options via constructor arguments, including:

Whether to throw an exception if an invalid byte sequence is encountered when decoding.
The default is false.

Whether to encode/decode UTF-16/UTF-32 with the most significant bytes first (big
endian) or the least significant bytes first (little endian). The default is little endian, the
standard on the Windows operating system.

Whether to emit a byte-order mark (a prefix that indicates endianness).

Encoding for file and stream I/O
The most common application for an Encoding object is to control how text is read and written
to a file or stream. For example, the following writes “Testing...” to a file called data.txt in
UTF-16 encoding:

System.IO.File.WriteAllText ("data.txt", "testing", Encoding.Unicode);

If you omit the final argument, WriteAllText applies the ubiquitous UTF-8 encoding.

NOTE
UTF-8 is the default text encoding for all file and stream I/O.

We resume this subject in Chapter 15, in “Stream Adapters”.

Encoding to byte arrays
You can also use an Encoding object to go to and from a byte array. The GetBytes method
converts from string to byte[] with the given encoding; GetString converts from byte[] to
string:

byte[] utf8Bytes  = System.Text.Encoding.UTF8.GetBytes    ("0123456789");
byte[] utf16Bytes = System.Text.Encoding.Unicode.GetBytes ("0123456789");
byte[] utf32Bytes = System.Text.Encoding.UTF32.GetBytes   ("0123456789");

Console.WriteLine (utf8Bytes.Length);    // 10
Console.WriteLine (utf16Bytes.Length);   // 20
Console.WriteLine (utf32Bytes.Length);   // 40

string original1 = System.Text.Encoding.UTF8.GetString    (utf8Bytes);
string original2 = System.Text.Encoding.Unicode.GetString (utf16Bytes);
string original3 = System.Text.Encoding.UTF32.GetString   (utf32Bytes);

Console.WriteLine (original1);          // 0123456789
Console.WriteLine (original2);          // 0123456789
Console.WriteLine (original3);          // 0123456789

UTF-16 and surrogate pairs
Recall that .NET stores characters and strings in UTF-16. Because UTF-16 requires one or



two 16-bit words per character, and a char is only 16 bits in length, some Unicode characters
require two chars to represent. This has a couple of consequences:

A string’s Length property may be greater than its real character count.

A single char is not always enough to fully represent a Unicode character.

Most applications ignore this, because nearly all commonly used characters fit into a section of
Unicode called the Basic Multilingual Plane (BMP), which requires only one 16-bit word in
UTF-16. The BMP covers several dozen world languages and includes more than 30,000
Chinese characters. Excluded are characters of some ancient languages, symbols for musical
notation, and some less common Chinese characters.
If you need to support two-word characters, the following static methods in char convert a 32-
bit code point to a string of two chars, and back again:

string ConvertFromUtf32 (int utf32)
int    ConvertToUtf32   (char highSurrogate, char lowSurrogate)

Two-word characters are called surrogates. They are easy to spot because each word is in the
range 0xD800 to 0xDFFF. You can use the following static methods in char to assist:

bool IsSurrogate     (char c)
bool IsHighSurrogate (char c)
bool IsLowSurrogate  (char c)
bool IsSurrogatePair (char highSurrogate, char lowSurrogate)

The StringInfo class in the System.Globalization namespace also provides a range of
methods and properties for working with two-word characters.
Characters outside the BMP typically require special fonts and have limited operating system
support.

Dates and Times
Three immutable structs in the System namespace do the job of representing dates and times:
DateTime, DateTimeOffset, and TimeSpan. C# doesn’t define any special keywords that map
to these types.

TimeSpan
A TimeSpan represents an interval of time — or a time of the day. In the latter role, it’s simply
the “clock” time (without the date), which is equivalent to the time since midnight, assuming no
daylight saving transition. A TimeSpan has a resolution of 100 ns, has a maximum value of
about 10 million days, and can be positive or negative.
There are three ways to construct a TimeSpan:

Through one of the constructors

By calling one of the static From... methods

By subtracting one DateTime from another



Here are the constructors:

public TimeSpan (int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds,
                                                   int milliseconds);
public TimeSpan (long ticks);   // Each tick = 100ns

The static From... methods are more convenient when you want to specify an interval in just a
single unit, such as minutes, hours, and so on:

public static TimeSpan FromDays (double value);
public static TimeSpan FromHours (double value);
public static TimeSpan FromMinutes (double value);
public static TimeSpan FromSeconds (double value);
public static TimeSpan FromMilliseconds (double value);

For example:

Console.WriteLine (new TimeSpan (2, 30, 0));     // 02:30:00
Console.WriteLine (TimeSpan.FromHours (2.5));    // 02:30:00
Console.WriteLine (TimeSpan.FromHours (-2.5));   // -02:30:00

TimeSpan overloads the < and > operators, as well as the + and - operators. The following
expression evaluates to a TimeSpan of 2.5 hours:

TimeSpan.FromHours(2) + TimeSpan.FromMinutes(30);

The next expression evaluates to one second short of 10 days:

TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);   // 9.23:59:59

Using this expression, we can illustrate the integer properties Days, Hours, Minutes, Seconds,
and Milliseconds:

TimeSpan nearlyTenDays = TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);

Console.WriteLine (nearlyTenDays.Days);          // 9
Console.WriteLine (nearlyTenDays.Hours);         // 23
Console.WriteLine (nearlyTenDays.Minutes);       // 59
Console.WriteLine (nearlyTenDays.Seconds);       // 59
Console.WriteLine (nearlyTenDays.Milliseconds);  // 0

In contrast, the Total... properties return values of type double describing the entire time
span:

Console.WriteLine (nearlyTenDays.TotalDays);          // 9.99998842592593
Console.WriteLine (nearlyTenDays.TotalHours);         // 239.999722222222
Console.WriteLine (nearlyTenDays.TotalMinutes);       // 14399.9833333333
Console.WriteLine (nearlyTenDays.TotalSeconds);       // 863999
Console.WriteLine (nearlyTenDays.TotalMilliseconds);  // 863999000

The static Parse method does the opposite of ToString, converting a string to a TimeSpan.
TryParse does the same, but returns false rather than throwing an exception if the conversion
fails. The XmlConvert class also provides TimeSpan/string conversion methods that follow
standard XML formatting protocols.



The default value for a TimeSpan is TimeSpan.Zero.
TimeSpan can also be used to represent the time of the day (the elapsed time since midnight).
To obtain the current time of day, call DateTime.Now.TimeOfDay.

DateTime and DateTimeOffset
DateTime and DateTimeOffset are immutable structs for representing a date, and optionally,
a time. They have a resolution of 100 ns, and a range covering the years 0001 through 9999.
DateTimeOffset was added in Framework 3.5 and is functionally similar to DateTime. Its
distinguishing feature is that it also stores a UTC offset; this allows more meaningful results
when comparing values across different time zones.

NOTE
An excellent article on the rationale behind the introduction of DateTimeOffset is available on
the MSDN BCL blogs. The title is “A Brief History of DateTime,” by Anthony Moore.

Choosing between DateTime and DateTimeOffset
DateTime and DateTimeOffset differ in how they handle time zones. A DateTime
incorporates a three-state flag indicating whether the DateTime is relative to:

The local time on the current computer

UTC (the modern equivalent of Greenwich Mean Time)

Unspecified

A DateTimeOffset is more specific — it stores the offset from UTC as a TimeSpan:

July 01 2017 03:00:00 -06:00

This influences equality comparisons, which is the main factor in choosing between DateTime
and DateTimeOffset. Specifically:

DateTime ignores the three-state flag in comparisons and considers two values equal if they
have the same year, month, day, hour, minute, and so on.

DateTimeOffset considers two values equal if they refer to the same point in time.

WARNING
Daylight saving time can make this distinction important even if your application doesn’t need
to handle multiple geographic time zones.

So, DateTime considers the following two values different, whereas DateTimeOffset
considers them equal:

July 01 2017 09:00:00 +00:00 (GMT)



July 01 2017 03:00:00 -06:00 (local time, Central America)

In most cases, DateTimeOffset’s equality logic is preferable. For example, in calculating
which of two international events is more recent, a DateTimeOffset implicitly gives the right
answer. Similarly, a hacker plotting a distributed denial of service attack would reach for a
DateTimeOffset! To do the same with DateTime requires standardizing on a single time zone
(typically UTC) throughout your application. This is problematic for two reasons:

To be friendly to the end user, UTC DateTimes require explicit conversion to local time
prior to formatting.

It’s easy to forget and incorporate a local DateTime.

DateTime is better, though, at specifying a value relative to the local computer at runtime —
for example, if you want to schedule an archive at each of your international offices for next
Sunday, at 3 A.M. local time (when there’s least activity). Here, DateTime would be more
suitable because it would respect each site’s local time.

NOTE
Internally, DateTimeOffset uses a short integer to store the UTC offset in minutes. It doesn’t
store any regional information, so there’s nothing present to indicate whether an offset of
+08:00, for instance, refers to Singapore time or Perth time.

We revisit time zones and equality comparison in more depth in “Dates and Time Zones”.

NOTE
SQL Server 2008 introduced direct support for DateTimeOffset through a new data type of
the same name.

Constructing a DateTime
DateTime defines constructors that accept integers for the year, month, and day — and
optionally, the hour, minute, second, and millisecond:

public DateTime (int year, int month, int day);

public DateTime (int year, int month, int day,
                 int hour, int minute, int second, int millisecond);

If you specify only a date, the time is implicitly set to midnight (0:00).
The DateTime constructors also allow you to specify a DateTimeKind — an enum with the
following values:

Unspecified, Local, Utc

This corresponds to the three-state flag described in the preceding section. Unspecified is the
default, and it means that the DateTime is time-zone-agnostic. Local means relative to the



local time zone on the current computer. A local DateTime does not include information about
which particular time zone it refers to, nor, unlike DateTimeOffset, the numeric offset from
UTC.
A DateTime’s Kind property returns its DateTimeKind.
DateTime’s constructors are also overloaded to accept a Calendar object as well — this
allows you to specify a date using any of the Calendar subclasses defined in
System.Globalization. For example:

DateTime d = new DateTime (5767, 1, 1,
                          new System.Globalization.HebrewCalendar());

Console.WriteLine (d);    // 12/12/2006 12:00:00 AM

(The formatting of the date in this example depends on your computer’s control panel settings.)
A DateTime always uses the default Gregorian calendar — this example, a one-time
conversion, takes place during construction. To perform computations using another calendar,
you must use the methods on the Calendar subclass itself.
You can also construct a DateTime with a single ticks value of type long, where ticks is the
number of 100 ns intervals from midnight 01/01/0001.
For interoperability, DateTime provides the static FromFileTime and FromFileTimeUtc
methods for converting from a Windows file time (specified as a long) and FromOADate for
converting from an OLE automation date/time (specified as a double).
To construct a DateTime from a string, call the static Parse or ParseExact method. Both
methods accept optional flags and format providers; ParseExact also accepts a format string.
We discuss parsing in greater detail in “Formatting and parsing”.

Constructing a DateTimeOffset
DateTimeOffset has a similar set of constructors. The difference is that you also specify a
UTC offset as a TimeSpan:

public DateTimeOffset (int year, int month, int day,
                       int hour, int minute, int second,
                       TimeSpan offset);

public DateTimeOffset (int year, int month, int day,
                       int hour, int minute, int second, int millisecond,
                       TimeSpan offset);

The TimeSpan must amount to a whole number of minutes, or an exception is thrown.
DateTimeOffset also has constructors that accept a Calendar object, a long ticks value, and
static Parse and ParseExact methods that accept a string.
You can construct a DateTimeOffset from an existing DateTime either by using these
constructors:

public DateTimeOffset (DateTime dateTime);
public DateTimeOffset (DateTime dateTime, TimeSpan offset);

or with an implicit cast:

DateTimeOffset dt = new DateTime (2000, 2, 3);



NOTE
The implicit cast from DateTime to DateTimeOffset is handy because most of the .NET
Framework supports DateTime — not DateTimeOffset.

If you don’t specify an offset, it’s inferred from the DateTime value using these rules:
If the DateTime has a DateTimeKind of Utc, the offset is zero.

If the DateTime has a DateTimeKind of Local or Unspecified (the default), the offset is
taken from the current local time zone.

To convert in the other direction, DateTimeOffset provides three properties that return values
of type DateTime:

The UtcDateTime property returns a DateTime in UTC time.

The LocalDateTime property returns a DateTime in the current local time zone (converting
it if necessary).

The DateTime property returns a DateTime in whatever zone it was specified, with a Kind
of Unspecified (i.e., it returns the UTC time plus the offset).

The current DateTime/DateTimeOffset
Both DateTime and DateTimeOffset have a static Now property that returns the current date
and time:

Console.WriteLine (DateTime.Now);         // 11/11/2015 1:23:45 PM
Console.WriteLine (DateTimeOffset.Now);   // 11/11/2015 1:23:45 PM -06:00

DateTime also provides a Today property that returns just the date portion:

Console.WriteLine (DateTime.Today);       // 11/11/2015 12:00:00 AM

The static UtcNow property returns the current date and time in UTC:

Console.WriteLine (DateTime.UtcNow);        // 11/11/2015 7:23:45 AM
Console.WriteLine (DateTimeOffset.UtcNow);  // 11/11/2015 7:23:45 AM +00:00

The precision of all these methods depends on the operating system and is typically in the 10–
20 ms region.

Working with dates and times
DateTime and DateTimeOffset provide a similar set of instance properties that return various
date/time elements:

DateTime dt = new DateTime (2000, 2, 3,
                            10, 20, 30);

Console.WriteLine (dt.Year);         // 2000
Console.WriteLine (dt.Month);        // 2
Console.WriteLine (dt.Day);          // 3
Console.WriteLine (dt.DayOfWeek);    // Thursday



Console.WriteLine (dt.DayOfYear);    // 34

Console.WriteLine (dt.Hour);         // 10
Console.WriteLine (dt.Minute);       // 20
Console.WriteLine (dt.Second);       // 30
Console.WriteLine (dt.Millisecond);  // 0
Console.WriteLine (dt.Ticks);        // 630851700300000000
Console.WriteLine (dt.TimeOfDay);    // 10:20:30  (returns a TimeSpan)

DateTimeOffset also has an Offset property of type TimeSpan.
Both types provide the following instance methods to perform computations (most accept an
argument of type double or int):

AddYears  AddMonths   AddDays
AddHours  AddMinutes  AddSeconds  AddMilliseconds  AddTicks

These all return a new DateTime or DateTimeOffset, and they take into account such things
as leap years. You can pass in a negative value to subtract.
The Add method adds a TimeSpan to a DateTime or DateTimeOffset. The + operator is
overloaded to do the same job:

TimeSpan ts = TimeSpan.FromMinutes (90);
Console.WriteLine (dt.Add (ts));
Console.WriteLine (dt + ts);             // same as above

You can also subtract a TimeSpan from a DateTime/DateTimeOffset and subtract one
DateTime/DateTimeOffset from another. The latter gives you a TimeSpan:

DateTime thisYear = new DateTime (2015, 1, 1);
DateTime nextYear = thisYear.AddYears (1);
TimeSpan oneYear = nextYear - thisYear;

Formatting and parsing
Calling ToString on a DateTime formats the result as a short date (all numbers) followed by
a long time (including seconds). For example:

11/11/2015 11:50:30 AM

The operating system’s control panel, by default, determines such things as whether the day,
month, or year comes first, the use of leading zeros, and whether 12- or 24-hour time is used.
Calling ToString on a DateTimeOffset is the same, except that the offset is returned also:

11/11/2015 11:50:30 AM -06:00

The ToShortDateString and ToLongDateString methods return just the date portion. The
long date format is also determined by the control panel; an example is “Wednesday, 11
November 2015”. ToShortTimeString and ToLongTimeString return just the time portion,
such as 17:10:10 (the former excludes seconds).
These four methods just described are actually shortcuts to four different format strings.
ToString is overloaded to accept a format string and provider, allowing you to specify a wide
range of options and control how regional settings are applied. We describe this in “Formatting
and parsing”.



WARNING
DateTimes and DateTimeOffsets can be misparsed if the culture settings differ from those in
force when formatting takes place. You can avoid this problem by using ToString in
conjunction with a format string that ignores culture settings (such as “o”):

DateTime dt1 = DateTime.Now;
string cannotBeMisparsed = dt1.ToString ("o");
DateTime dt2 = DateTime.Parse (cannotBeMisparsed);

The static Parse/TryParse and ParseExact/TryParseExact methods do the reverse of
ToString, converting a string to a DateTime or DateTimeOffset. These methods are also
overloaded to accept a format provider. The Try* methods return false instead of throwing a
FormatException.

Null DateTime and DateTimeOffset values
Because DateTime and DateTimeOffset are structs, they are not intrinsically nullable. When
you need nullability, there are two ways around this:

Use a Nullable type (i.e., DateTime? or DateTimeOffset?).

Use the static field DateTime.MinValue or DateTimeOffset.MinValue (the default
values for these types).

A nullable type is usually the best approach because the compiler helps to prevent mistakes.
DateTime.MinValue is useful for backward compatibility with code written prior to C# 2.0
(when nullable types were introduced).

WARNING
Calling ToUniversalTime or ToLocalTime on a DateTime.MinValue can result in it no longer
being DateTime.MinValue (depending on which side of GMT you are on). If you’re right on
GMT (England, outside daylight saving), the problem won’t arise at all because local and
UTC times are the same. This is your compensation for the English winter!

Dates and Time Zones
In this section, we examine in more detail how time zones influence DateTime and
DateTimeOffset. We also look at the TimeZone and TimeZoneInfo types, which provide
information on time zone offsets and daylight saving time.

DateTime and Time Zones
DateTime is simplistic in its handling of time zones. Internally, it stores a DateTime using two
pieces of information:

A 62-bit number, indicating the number of ticks since 1/1/0001

A 2-bit enum, indicating the DateTimeKind (Unspecified, Local, or Utc)



When you compare two DateTime instances, only their ticks values are compared; their
DateTimeKinds are ignored:

DateTime dt1 = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Local);
DateTime dt2 = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Utc);
Console.WriteLine (dt1 == dt2);          // True
DateTime local = DateTime.Now;
DateTime utc = local.ToUniversalTime();
Console.WriteLine (local == utc);        // False

The instance methods ToUniversalTime/ToLocalTime convert to universal/local time. These
apply the computer’s current time zone settings and return a new DateTime with a
DateTimeKind of Utc or Local. No conversion happens if you call ToUniversalTime on a
DateTime that’s already Utc, or ToLocalTime on a DateTime that’s already Local. You will
get a conversion, however, if you call ToUniversalTime or ToLocalTime on a DateTime
that’s Unspecified.
You can construct a DateTime that differs from another only in Kind with the static
DateTime.SpecifyKind method:

DateTime d = new DateTime (2015, 12, 12);  // Unspecified
DateTime utc = DateTime.SpecifyKind (d, DateTimeKind.Utc);
Console.WriteLine (utc);            // 12/12/2015 12:00:00 AM

DateTimeOffset and Time Zones
Internally, DateTimeOffset comprises a DateTime field whose value is always in UTC, and a
16-bit integer field for the UTC offset in minutes. Comparisons look only at the (UTC)
DateTime; the Offset is used primarily for formatting.
The ToUniversalTime/ToLocalTime methods return a DateTimeOffset representing the
same point in time, but with a UTC or local offset. Unlike with DateTime, these methods don’t
affect the underlying date/time value, only the offset:

DateTimeOffset local = DateTimeOffset.Now;
DateTimeOffset utc   = local.ToUniversalTime();

Console.WriteLine (local.Offset);   // -06:00:00 (in Central America)
Console.WriteLine (utc.Offset);     // 00:00:00

Console.WriteLine (local == utc);                 // True

To include the Offset in the comparison, you must use the EqualsExact method:

Console.WriteLine (local.EqualsExact (utc));      // False

TimeZone and TimeZoneInfo
The TimeZone and TimeZoneInfo classes provide information on time zone names, UTC
offsets, and daylight saving time rules. TimeZoneInfo is the more powerful of the two and was
introduced in Framework 3.5.
The biggest difference between the two types is that TimeZone lets you access only the current
local time zone, whereas TimeZoneInfo provides access to all the world’s time zones.
Further, TimeZoneInfo exposes a richer (although at times, more awkward) rules-based model
for describing daylight saving time.



TimeZone
The static TimeZone.CurrentTimeZone method returns a TimeZone object based on the
current local settings. The following demonstrates the result if run in California:

TimeZone zone = TimeZone.CurrentTimeZone;
Console.WriteLine (zone.StandardName);      // Pacific Standard Time
Console.WriteLine (zone.DaylightName);      // Pacific Daylight Time

The IsDaylightSavingTime and GetUtcOffset methods work as follows:

DateTime dt1 = new DateTime (2015, 1, 1);
DateTime dt2 = new DateTime (2015, 6, 1);
Console.WriteLine (zone.IsDaylightSavingTime (dt1));     // True
Console.WriteLine (zone.IsDaylightSavingTime (dt2));     // False
Console.WriteLine (zone.GetUtcOffset (dt1));             // 08:00:00
Console.WriteLine (zone.GetUtcOffset (dt2));             // 09:00:00

The GetDaylightChanges method returns specific daylight saving time information for a
given year:

DaylightTime day = zone.GetDaylightChanges (2015);
Console.WriteLine (day.Start.ToString ("M"));       // 08 March
Console.WriteLine (day.End.ToString ("M"));         // 01 November
Console.WriteLine (day.Delta);                      // 01:00:00

TimeZoneInfo
The TimeZoneInfo class works in a similar manner. TimeZoneInfo.Local returns the current
local time zone:

TimeZoneInfo zone = TimeZoneInfo.Local;
Console.WriteLine (zone.StandardName);      // Pacific Standard Time
Console.WriteLine (zone.DaylightName);      // Pacific Daylight Time

TimeZoneInfo also provides IsDaylightSavingTime and GetUtcOffset methods — the
difference is that they accept either a DateTime or a DateTimeOffset.
You can obtain a TimeZoneInfo for any of the world’s time zones by calling
FindSystemTimeZoneById with the zone ID. This feature is unique to TimeZoneInfo, as is
everything else that we demonstrate from this point on. We’ll switch to Western Australia for
reasons that will soon become clear:

TimeZoneInfo wa = TimeZoneInfo.FindSystemTimeZoneById
                  ("W. Australia Standard Time");

Console.WriteLine (wa.Id);                   // W. Australia Standard Time
Console.WriteLine (wa.DisplayName);          // (GMT+08:00) Perth
Console.WriteLine (wa.BaseUtcOffset);        // 08:00:00
Console.WriteLine (wa.SupportsDaylightSavingTime);     // True

The Id property corresponds to the value passed to FindSystemTimeZoneById. The static
GetSystemTimeZones method returns all world time zones; hence, you can list all valid zone
ID strings as follows:

foreach (TimeZoneInfo z in TimeZoneInfo.GetSystemTimeZones())
  Console.WriteLine (z.Id);



NOTE
You can also create a custom time zone by calling TimeZoneInfo.CreateCustomTimeZone.
Because TimeZoneInfo is immutable, you must pass in all the relevant data as method
arguments.
You can serialize a predefined or custom time zone to a (semi) human-readable string by
calling ToSerializedString — and deserialize it by calling
TimeZoneInfo.FromSerializedString.

The static ConvertTime method converts a DateTime or DateTimeOffset from one time zone
to another. You can include either just a destination TimeZoneInfo, or both source and
destination TimeZoneInfo objects. You can also convert directly from or to UTC with the
methods ConvertTimeFromUtc and ConvertTimeToUtc.
For working with daylight saving time, TimeZoneInfo provides the following additional
methods:

IsInvalidTime returns true if a DateTime is within the hour (or delta) that’s skipped
when the clocks move forward.

IsAmbiguousTime returns true if a DateTime or DateTimeOffset is within the hour (or
delta) that’s repeated when the clocks move back.

GetAmbiguousTimeOffsets returns an array of TimeSpans representing the valid offset
choices for an ambiguous DateTime or DateTimeOffset.

Unlike with TimeZone, you can’t obtain simple dates from a TimeZoneInfo indicating the start
and end of daylight saving time. Instead, you must call GetAdjustmentRules, which returns a
declarative summary of all daylight saving rules that apply to all years. Each rule has a
DateStart and DateEnd indicating the date range within which the rule is valid:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
  Console.WriteLine ("Rule: applies from " + rule.DateStart +
                                    " to " + rule.DateEnd);

Western Australia first introduced daylight saving time in 2006, midseason (and then rescinded
it in 2009). This required a special rule for the first year; hence, there are two rules:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM

Each AdjustmentRule has a DaylightDelta property of type TimeSpan (this is one hour in
almost every case) and properties called DaylightTransitionStart and
DaylightTransitionEnd. The latter two are of type TimeZoneInfo.TransitionTime,
which has the following properties:

public bool IsFixedDateRule { get; }
public DayOfWeek DayOfWeek { get; }
public int Week { get; }
public int Day { get; }
public int Month { get; }
public DateTime TimeOfDay { get; }



A transition time is somewhat complicated in that it needs to represent both fixed and floating
dates. An example of a floating date is “the last Sunday in March.” Here are the rules for
interpreting a transition time:

1. If, for an end transition, IsFixedDateRule is true, Day is 1, Month is 1, and TimeOfDay
is DateTime.MinValue, there is no end to daylight saving time in that year (this can
happen only in the southern hemisphere, upon the initial introduction of daylight saving
time to a region).

2. Otherwise, if IsFixedDateRule is true, the Month, Day, and TimeOfDay properties
determine the start or end of the adjustment rule.

3. Otherwise, if IsFixedDateRule is false, the Month, DayOfWeek, Week, and TimeOfDay
properties determine the start or end of the adjustment rule.

In the last case, Week refers to the week of the month, with “5” meaning the last week. We can
demonstrate this by enumerating the adjustment rules for our wa time zone:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
{
  Console.WriteLine ("Rule: applies from " + rule.DateStart +
                                    " to " + rule.DateEnd);

  Console.WriteLine ("   Delta: " + rule.DaylightDelta);

  Console.WriteLine ("   Start: " + FormatTransitionTime
                                   (rule.DaylightTransitionStart, false));

  Console.WriteLine ("   End:   " + FormatTransitionTime
                                   (rule.DaylightTransitionEnd, true));
  Console.WriteLine();
}

In FormatTransitionTime, we honor the rules just described:

static string FormatTransitionTime (TimeZoneInfo.TransitionTime tt,
                                    bool endTime)
{
  if (endTime && tt.IsFixedDateRule
              && tt.Day == 1 && tt.Month == 1
              && tt.TimeOfDay == DateTime.MinValue)
    return "-";

  string s;
  if (tt.IsFixedDateRule)
    s = tt.Day.ToString();
  else
    s = "The " +
        "first second third fourth last".Split() [tt.Week - 1] +
        " " + tt.DayOfWeek + " in";

  return s + " " + DateTimeFormatInfo.CurrentInfo.MonthNames [tt.Month-1]
           + " at " + tt.TimeOfDay.TimeOfDay;
}

The result with Western Australia is interesting in that it demonstrates both fixed and floating
date rules — as well as an absent end date:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
   Delta: 01:00:00
   Start: 3 December at 02:00:00



   End:   -

Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM
   Delta: 01:00:00
   Start: The last Sunday in October at 02:00:00
   End:   The last Sunday in March at 03:00:00

NOTE
Western Australia is actually unique in this regard. Here’s how we found it:

from zone in TimeZoneInfo.GetSystemTimeZones()
let rules = zone.GetAdjustmentRules()
where
  rules.Any
   (r => r.DaylightTransitionEnd.IsFixedDateRule) &&
  rules.Any
   (r => !r.DaylightTransitionEnd.IsFixedDateRule)
select zone

Daylight Saving Time and DateTime
If you use a DateTimeOffset or a UTC DateTime, equality comparisons are unimpeded by the
effects of daylight saving time. But with local DateTimes, daylight saving can be problematic.
The rules can be summarized as follows:

Daylight saving impacts local time but not UTC time.

When the clocks turn back, comparisons that rely on time moving forward will break if (and
only if) they use local DateTimes.

You can always reliably round-trip between UTC and local times (on the same computer)
— even as the clocks turn back.

The IsDaylightSavingTime tells you whether a given local DateTime is subject to daylight
saving time. UTC times always return false:

Console.Write (DateTime.Now.IsDaylightSavingTime());     // True or False
Console.Write (DateTime.UtcNow.IsDaylightSavingTime());  // Always False

Assuming dto is a DateTimeOffset, the following expression does the same:

dto.LocalDateTime.IsDaylightSavingTime

The end of daylight saving time presents a particular complication for algorithms that use local
time. When the clocks go back, the same hour (or more precisely, Delta) repeats itself. We can
demonstrate this by instantiating a DateTime right in the “twilight zone” on your computer, and
then subtracting Delta (this example requires that you practice daylight saving time to be
interesting!):

DaylightTime changes = TimeZone.CurrentTimeZone.GetDaylightChanges (2010);
TimeSpan halfDelta = new TimeSpan (changes.Delta.Ticks / 2);
DateTime utc1 = changes.End.ToUniversalTime() - halfDelta;
DateTime utc2 = utc1 - changes.Delta;



Converting these variables to local times demonstrates why you should use UTC and not local
time if your code relies on time moving forward:

DateTime loc1 = utc1.ToLocalTime();  // (Pacific Standard Time)
DateTime loc2 = utc2.ToLocalTime();
Console.WriteLine (loc1);            // 2/11/2010 1:30:00 AM
Console.WriteLine (loc2);            // 2/11/2010 1:30:00 AM
Console.WriteLine (loc1 == loc2);    // True

Despite loc1 and loc2 reporting as equal, they are different inside. DateTime reserves a
special bit for indicating on which side of the twilight zone an ambiguous local date lies! This
bit is ignored in comparison — as we just saw — but comes into play when you format the
DateTime unambiguously:

Console.Write (loc1.ToString ("o"));  // 2010-11-02T02:30:00.0000000-08:00
Console.Write (loc2.ToString ("o"));  // 2010-11-02T02:30:00.0000000-07:00

This bit also is read when you convert back to UTC, ensuring perfect round-tripping between
local and UTC times:

Console.WriteLine (loc1.ToUniversalTime() == utc1);   // True
Console.WriteLine (loc2.ToUniversalTime() == utc2);   // True

NOTE
You can reliably compare any two DateTimes by first calling ToUniversalTime on each. This
strategy fails if (and only if) exactly one of them has a DateTimeKind of Unspecified. This
potential for failure is another reason for favoring DateTimeOffset.

Formatting and Parsing
Formatting means converting to a string; parsing means converting from a string. The need to
format or parse arises frequently in programming, in a variety of situations. Hence, the .NET
Framework provides a variety of mechanisms:

ToString and Parse
These methods provide default functionality for many types.

Format providers
These manifest as additional ToString (and Parse) methods that accept a format string
and/or a format provider. Format providers are highly flexible and culture-aware. The
.NET Framework includes format providers for the numeric types and
DateTime/DateTimeOffset.

XmlConvert

This is a static class with methods that format and parse while honoring XML standards.
XmlConvert is also useful for general-purpose conversion when you need culture
independence or you want to preempt misparsing. XmlConvert supports the numeric
types, bool, DateTime, DateTimeOffset, TimeSpan, and Guid.

Type converters



These target designers and XAML parsers.
In this section, we discuss the first two mechanisms, focusing particularly on format providers.
In the section following, we describe XmlConvert and type converters, as well as other
conversion mechanisms.

ToString and Parse
The simplest formatting mechanism is the ToString method. It gives meaningful output on all
simple value types (bool, DateTime, DateTimeOffset, TimeSpan, Guid, and all the numeric
types).For the reverse operation, each of these types defines a static Parse method. For
example:

string s = true.ToString();     // s = "True"
bool b = bool.Parse (s);        // b = true

If the parsing fails, a FormatException is thrown. Many types also define a TryParse
method, which returns false if the conversion fails, rather than throwing an exception:

int i;
bool failure = int.TryParse ("qwerty", out i);
bool success = int.TryParse ("123", out i);

If you anticipate an error, calling TryParse is faster and more elegant than calling Parse in an
exception handling block.
The Parse and TryParse methods on DateTime(Offset) and the numeric types respect local
culture settings; you can change this by specifying a CultureInfo object. Specifying invariant
culture is often a good idea. For instance, parsing “1.234” into a double gives us 1234 in
Germany:

Console.WriteLine (double.Parse ("1.234"));   // 1234  (In Germany)

This is because in Germany, the period indicates a thousands separator rather than a decimal
point. Specifying invariant culture fixes this:

double x = double.Parse ("1.234", CultureInfo.InvariantCulture);

The same applies when calling ToString():

string x = 1.234.ToString (CultureInfo.InvariantCulture);

Format Providers
Sometimes you need more control over how formatting and parsing take place. There are
dozens of ways to format a DateTime(Offset), for instance. Format providers allow extensive
control over formatting and parsing, and are supported for numeric types and date/times.
Format providers are also used by user interface controls for formatting and parsing.
The gateway to using a format provider is IFormattable. All numeric types — and
DateTime(Offset) — implement this interface:

public interface IFormattable
{



  string ToString (string format, IFormatProvider formatProvider);
}

The first argument is the format string; the second is the format provider. The format string
provides instructions; the format provider determines how the instructions are translated. For
example:

NumberFormatInfo f = new NumberFormatInfo();
f.CurrencySymbol = "$$";
Console.WriteLine (3.ToString ("C", f));          // $$ 3.00

Here, "C" is a format string that indicates currency, and the NumberFormatInfo object is a
format provider that determines how currency — and other numeric representations — are
rendered. This mechanism allows for globalization.

NOTE
All format strings for numbers and dates are listed in “Standard Format Strings and Parsing
Flags”.

If you specify a null format string or provider, a default is applied. The default format
provider is CultureInfo.CurrentCulture, which, unless reassigned, reflects the computer’s
runtime control panel settings. For example, on this computer:

Console.WriteLine (10.3.ToString ("C", null));  // $10.30

For convenience, most types overload ToString such that you can omit a null provider:

Console.WriteLine (10.3.ToString ("C"));     // $10.30
Console.WriteLine (10.3.ToString ("F4"));    // 10.3000 (Fix to 4 D.P.)

Calling ToString on a DateTime(Offset) or a numeric type with no arguments is equivalent
to using a default format provider, with an empty format string.
The .NET Framework defines three format providers (all of which implement
IFormatProvider):

NumberFormatInfo
DateTimeFormatInfo
CultureInfo

NOTE
All enum types are also formattable, though there’s no special IFormatProvider class.

Format providers and CultureInfo
Within the context of format providers, CultureInfo acts as an indirection mechanism for the
other two format providers, returning a NumberFormatInfo or DateTimeFormatInfo object
applicable to the culture’s regional settings.



In the following example, we request a specific culture (english language in Great Britain):

CultureInfo uk = CultureInfo.GetCultureInfo ("en-GB");
Console.WriteLine (3.ToString ("C", uk));      // £3.00

This executes using the default NumberFormatInfo object applicable to the en-GB culture.
The next example formats a DateTime with invariant culture. Invariant culture is always the
same, regardless of the computer’s settings:

DateTime dt = new DateTime (2000, 1, 2);
CultureInfo iv = CultureInfo.InvariantCulture;
Console.WriteLine (dt.ToString (iv));            // 01/02/2000 00:00:00
Console.WriteLine (dt.ToString ("d", iv));       // 01/02/2000

NOTE
Invariant culture is based on American culture, with the following differences:

The currency symbol is ☼ instead of $.

Dates and times are formatted with leading zeros (though still with the month first).

Time uses the 24-hour format rather than an AM/PM designator.

Using NumberFormatInfo or DateTimeFormatInfo
In the next example, we instantiate a NumberFormatInfo and change the group separator from
a comma to a space. We then use it to format a number to three decimal places:

NumberFormatInfo f = new NumberFormatInfo ();
f.NumberGroupSeparator = " ";
Console.WriteLine (12345.6789.ToString ("N3", f));   // 12 345.679

The initial settings for a NumberFormatInfo or DateTimeFormatInfo are based on the
invariant culture. Sometimes, however, it’s more useful to choose a different starting point. To
do this, you can Clone an existing format provider:

NumberFormatInfo f = (NumberFormatInfo)
                      CultureInfo.CurrentCulture.NumberFormat.Clone();

A cloned format provider is always writable — even if the original was read-only.

Composite formatting
Composite format strings allow you to combine variable substitution with format strings. The
static string.Format method accepts a composite format string — we illustrated this in
“String.Format and composite format strings”:

string composite = "Credit={0:C}";
Console.WriteLine (string.Format (composite, 500));   // Credit=$500.00

The Console class itself overloads its Write and WriteLine methods to accept composite
format strings, allowing us to shorten this example slightly:



Console.WriteLine ("Credit={0:C}", 500);   // Credit=$500.00

You can also append a composite format string to a StringBuilder (via AppendFormat), and
to a TextWriter for I/O (see Chapter 15).
string.Format accepts an optional format provider. A simple application for this is to call
ToString on an arbitrary object while passing in a format provider. For example:

string s = string.Format (CultureInfo.InvariantCulture, "{0}", someObject);

This is equivalent to:

string s;
if (someObject is IFormattable)
  s = ((IFormattable)someObject).ToString (null,
                                           CultureInfo.InvariantCulture);
else if (someObject == null)
  s = "";
else
  s = someObject.ToString();

Parsing with format providers
There’s no standard interface for parsing through a format provider. Instead, each participating
type overloads its static Parse (and TryParse) method to accept a format provider, and
optionally, a NumberStyles or DateTimeStyles enum.
NumberStyles and DateTimeStyles control how parsing work: they let you specify such
things as whether parentheses or a currency symbol can appear in the input string. (By default,
the answer to both of these questions is no.) For example:

int error = int.Parse ("(2)");   // Exception thrown

int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
                                 NumberStyles.AllowParentheses);   // OK

decimal fivePointTwo = decimal.Parse ("£5.20", NumberStyles.Currency,
                       CultureInfo.GetCultureInfo ("en-GB"));

The next section lists all NumberStyles and DateTimeStyles members — as well as the
default parsing rules for each type.

IFormatProvider and ICustomFormatter
All format providers implement IFormatProvider:

public interface IFormatProvider { object GetFormat (Type formatType); }

The purpose of this method is to provide indirection — this is what allows CultureInfo to
defer to an appropriate NumberFormatInfo or DateTimeInfo object to do the work.
By implementing IFormatProvider — along with ICustomFormatter — you can also write
your own format provider that works in conjunction with existing types. ICustomFormatter
defines a single method as follows:

string Format (string format, object arg, IFormatProvider formatProvider);



The following custom format provider writes numbers as words:

// Program can be downloaded from http://www.albahari.com/nutshell/

public class WordyFormatProvider : IFormatProvider, ICustomFormatter
{
  static readonly string[] _numberWords =
   "zero one two three four five six seven eight nine minus point".Split();

  IFormatProvider _parent;   // Allows consumers to chain format providers

  public WordyFormatProvider () : this (CultureInfo.CurrentCulture) { }
  public WordyFormatProvider (IFormatProvider parent)
  {
    _parent = parent;
  }

  public object GetFormat (Type formatType)
  {
    if (formatType == typeof (ICustomFormatter)) return this;
    return null;
  }

  public string Format (string format, object arg, IFormatProvider prov)
  {
    // If it's not our format string, defer to the parent provider:
    if (arg == null || format != "W")
      return string.Format (_parent, "{0:" + format + "}", arg);

    StringBuilder result = new StringBuilder();
    string digitList = string.Format (CultureInfo.InvariantCulture,
                                      "{0}", arg);
    foreach (char digit in digitList)
    {
      int i = "0123456789-.".IndexOf (digit);
      if (i == -1) continue;
      if (result.Length > 0) result.Append (' ');
      result.Append (_numberWords[i]);
    }
    return result.ToString();
  }
}

Notice that in the Format method, we used string.Format to convert the input number to a
string — with InvariantCulture. It would have been much simpler just to call ToString()
on arg, but then CurrentCulture would have been used instead. The reason for needing the
invariant culture is evident a few lines later:

int i = "0123456789-.".IndexOf (digit);

It’s critical here that the number string comprises only the characters 0123456789-. and not
any internationalized versions of these.
Here’s an example of using WordyFormatProvider:

double n = -123.45;
IFormatProvider fp = new WordyFormatProvider();
Console.WriteLine (string.Format (fp, "{0:C} in words is {0:W}", n));

// -$123.45 in words is minus one two three point four five

Custom format providers can be used only in composite format strings.



Standard Format Strings and Parsing Flags
The standard format strings control how a numeric type or DateTime/DateTimeOffset is
converted to a string. There are two kinds of format strings:

Standard format strings
With these, you provide general guidance. A standard format string consists of a single
letter, followed, optionally, by a digit (whose meaning depends on the letter). An example
is "C" or "F2".

Custom format strings
With these, you micromanage every character with a template. An example is
"0:#.000E+00".

Custom format strings are unrelated to custom format providers.

Numeric Format Strings
Table 6-2 lists all standard numeric format strings.

Table 6-2. Standard numeric format strings

Letter Meaning Sample
input

Result Notes

G or g “General” 1.2345,
"G"
0.00001,
"G"
0.00001,
"g"
1.2345,
"G3"
12345,
"G3"

1.2345
1E-05
1e-05
1.23
1.23E04

Switches to exponential notation for small or large
numbers
G3 limits precision to three digits in total (before + after
point)

F Fixed point 2345.678,
"F2"
2345.6,
"F2"

2345.68
2345.60

F2 rounds to two decimal places

N Fixed point with group
separator (“Numeric”)

2345.678,
"N2"
2345.6,
"N2"

2,345.68
2,345.60

As above, with group (1000s) separator (details from
format provider)

D Pad with leading zeros 123, "D5"
123, "D1"

00123
123

For integral types only
D5 pads left to five digits; does not truncate

E or e Force exponential notation 56789,
"E"
56789,
"e"
56789,
"E2"

5.678900E+004
5.678900e+004
5.68E+004

Six-digit default precision

C Currency 1.2, "C"
1.2, "C4"

$1.20
$1.2000

C with no digit uses default number of D.P. from format
provider

P Percent .503, "P"
.503,
"P0"

50.30 %
50 %

Uses symbol and layout from format provider
Decimal places can optionally be overridden

X or x Hexadecimal 47, "X"
47, "x"
47, "X4"

2F
2f
002F

X for uppercase hex digits; x for lowercase hex digits
Integrals only

R or
G17

Round-trip 1f / 3f,
"R"

0.333333343 For the float and double types, R or G17 squeeze out
all digits to ensure exact round-tripping



Supplying no numeric format string (or a null or blank string) is equivalent to using the "G"
standard format string followed by no digit. This exhibits the following behavior:

Numbers smaller than 10-4 or larger than the type’s precision are expressed in exponential
(scientific) notation.

The two decimal places at the limit of float or double’s precision are rounded away to
mask the inaccuracies inherent in conversion to decimal from their underlying binary form.

NOTE
The automatic rounding just described is usually beneficial and goes unnoticed. However, it
can cause trouble if you need to round-trip a number; in other words, convert it to a string
and back again (maybe repeatedly) while preserving value equality. For this reason, the "R"
and "G17" format strings exist to circumvent this implicit rounding.
In Framework 4.6, "R" and "G17" do the same thing; in prior Frameworks, "R" is essentially a
buggy version of "G17" and should not be used.

Table 6-3 lists custom numeric format strings.

Table 6-3. Custom numeric format strings

Specifier Meaning Sample
input

Result Notes

# Digit
placeholder

12.345,
".##"
12.345,
".####"

12.35
12.345

Limits digits after D.P.

0 Zero
placeholder

12.345,
".00"
12.345,
".0000"
99,
"000.00"

12.35
12.3450
099.00

As above, but also pads with zeros before and after D.P.

. Decimal point   Indicates D.P.
Actual symbol comes from NumberFormatInfo

, Group
separator

1234,
"#,###,###"
1234,
"0,000,000"

1,234
0,001,234

Symbol comes from NumberFormatInfo

,
(as above)

Multiplier 1000000,
"#,"
1000000,
"#,,

1000
1

If comma is at end or before D.P., it acts as a multiplier —
dividing result by 1,000, 1,000,000, etc.

% Percent
notation

0.6, "00%" 60% First multiplies by 100 and then substitutes percent symbol
obtained from NumberFormatInfo

E0, e0, E+0, e+0
E-0, e-0

Exponent
notation

1234, "0E0"
1234,
"0E+0"
1234,
"0.00E00"
1234,
"0.00e00"

1E3
1E+3
1.23E03
1.23e03

 

\ Literal
character
quote

50, @"\#0" #50 Use in conjunction with an @ prefix on the string — or use \\

'xx''xx' Literal string
quote

50, "0
'...'"

50 ...  



; Section
separator

15, "#;
(#);zero"

15 (If positive)

  -5, "#;
(#);zero"

(5) (If negative)

  0, "#;
(#);zero"

zero (If zero)

Any other char Literal 35.2, "$0 .
00c"

$35 . 20c  

NumberStyles
Each numeric type defines a static Parse method that accepts a NumberStyles argument.
NumberStyles is a flags enum that lets you determine how the string is read as it’s converted
to a numeric type. It has the following combinable members:

AllowLeadingWhite    AllowTrailingWhite
AllowLeadingSign     AllowTrailingSign
AllowParentheses     AllowDecimalPoint
AllowThousands       AllowExponent
AllowCurrencySymbol  AllowHexSpecifier

NumberStyles also defines these composite members:

None  Integer  Float  Number  HexNumber  Currency  Any

Except for None, all composite values include AllowLeadingWhite and
AllowTrailingWhite. Their remaining makeup is shown in Figure 6-1, with the most useful
three emphasized.



Figure 6-1. Composite NumberStyles

When you call Parse without specifying any flags, the defaults in Figure 6-2 are applied.

Figure 6-2. Default parsing flags for numeric types

If you don’t want the defaults shown in Figure 6-2, you must explicitly specify NumberStyles:

int thousand = int.Parse ("3E8", NumberStyles.HexNumber);
int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
                                 NumberStyles.AllowParentheses);
double aMillion = double.Parse ("1,000,000", NumberStyles.Any);
decimal threeMillion = decimal.Parse ("3e6", NumberStyles.Any);
decimal fivePointTwo = decimal.Parse ("$5.20", NumberStyles.Currency);

Because we didn’t specify a format provider, this example works with your local currency
symbol, group separator, decimal point, and so on. The next example is hardcoded to work
with the euro sign and a blank group separator for currencies:

NumberFormatInfo ni = new NumberFormatInfo();
ni.CurrencySymbol = "€";
ni.CurrencyGroupSeparator = " ";
double million = double.Parse ("€1 000 000", NumberStyles.Currency, ni);

Date/Time Format Strings
Format strings for DateTime/DateTimeOffset can be divided into two groups, based on
whether they honor culture and format provider settings. Those that do are listed in Table 6-4;
those that don’t are listed in Table 6-5. The sample output comes from formatting the following
DateTime (with invariant culture, in the case of Table 6-4):

new DateTime (2000, 1, 2,  17, 18, 19);

Table 6-4. Culture-sensitive date/time format strings

Format string Meaning Sample output



d Short date 01/02/2000

D Long date Sunday, 02 January 2000

t Short time 17:18

T Long time 17:18:19

f Long date + short time Sunday, 02 January 2000 17:18

F Long date + long time Sunday, 02 January 2000 17:18:19

g Short date + short time 01/02/2000 17:18

G (default) Short date + long time 01/02/2000 17:18:19

m, M Month and day 02 January

y, Y Year and month January 2000

Table 6-5. Culture-insensitive date/time format strings

Format
string

Meaning Sample output Notes

o Round-trippable 2000-01-02T17:18:19.0000000 Will append time zone information unless DateTimeKind is
Unspecified

r, R RFC 1123
standard

Sun, 02 Jan 2000 17:18:19
GMT

You must explicitly convert to UTC with
DateTime.ToUniversalTime

s Sortable; ISO
8601

2000-01-02T17:18:19 Compatible with text-based sorting

u “Universal”
sortable

2000-01-02 17:18:19Z Similar to above; must explicitly convert to UTC

U UTC Sunday, 02 January 2000
17:18:19

Long date + short time, converted to UTC

The format strings "r", "R", and "u" emit a suffix that implies UTC; yet they don’t
automatically convert a local to a UTC DateTime (so you must do the conversion yourself).
Ironically, "U" automatically converts to UTC, but doesn’t write a time zone suffix! In fact, "o"
is the only format specifier in the group that can write an unambiguous DateTime without
intervention.
DateTimeFormatInfo also supports custom format strings: these are analogous to numeric
custom format strings. The list is fairly exhaustive and you can find it in the MSDN. An
example of a custom format string is:

yyyy-MM-dd HH:mm:ss

Parsing and misparsing DateTimes
Strings that put the month or day first are ambiguous and can easily be misparsed —
particularly if you or any of your customers live outside the United States. This is not a
problem in user interface controls because the same settings are in force when parsing as when
formatting. But when writing to a file, for instance, day/month misparsing can be a real
problem. There are two solutions:

Always state the same explicit culture when formatting and parsing (e.g., invariant culture).

Format DateTime and DateTimeOffsets in a manner independent of culture.



The second approach is more robust — particularly if you choose a format that puts the four-
digit year first: such strings are much harder to misparse by another party. Further, strings
formatted with a standards-compliant year-first format (such as "o") can parse correctly
alongside locally formatted strings — rather like a “universal donor.” (Dates formatted with
"s" or "u" have the further benefit of being sortable.)
To illustrate, suppose we generate a culture-insensitive DateTime string s as follows:

string s = DateTime.Now.ToString ("o");

NOTE
The "o" format string includes milliseconds in the output. The following custom format string
gives the same result as "o", but without milliseconds:

yyyy-MM-ddTHH:mm:ss K

We can reparse this in two ways. ParseExact demands strict compliance with the specified
format string:

DateTime dt1 = DateTime.ParseExact (s, "o", null);

(You can achieve a similar result with XmlConvert’s ToString and ToDateTime methods.)
Parse, however, implicitly accepts both the "o" format and the CurrentCulture format:

DateTime dt2 = DateTime.Parse (s);

This works with both DateTime and DateTimeOffset.

NOTE
ParseExact is usually preferable if you know the format of the string that you’re parsing. It
means that if the string is incorrectly formatted, an exception will be thrown — which is
usually better than risking a misparsed date.

DateTimeStyles
DateTimeStyles is a flags enum that provides additional instructions when calling Parse on a
DateTime(Offset). Here are its members:

None,
AllowLeadingWhite, AllowTrailingWhite, AllowInnerWhite,
AssumeLocal, AssumeUniversal, AdjustToUniversal,
NoCurrentDateDefault, RoundTripKind

There is also a composite member, AllowWhiteSpaces:

AllowWhiteSpaces = AllowLeadingWhite | AllowTrailingWhite | AllowInnerWhite



The default is None. This means that extra whitespace is normally prohibited (whitespace that’s
part of a standard DateTime pattern is exempt).
AssumeLocal and AssumeUniversal apply if the string doesn’t have a time zone suffix (such
as Z or +9:00). AdjustToUniversal still honors time zone suffixes, but then converts to UTC
using the current regional settings.
If you parse a string comprising a time but no date, today’s date is applied by default. If you
apply the NoCurrentDateDefault flag, however, it instead uses 1st January 0001.

Enum Format Strings
In “Enums”, we describe formatting and parsing enum values. Table 6-6 lists each format string
and the result of applying it to the following expression:

Console.WriteLine (System.ConsoleColor.Red.ToString (formatString));

Table 6-6. Enum format strings

Format
string

Meaning Sample
output

Notes

G or g “General” Red Default

F or f Treat as though Flags attribute were
present

Red Works on combined members even if enum has no Flags
attribute

D or d Decimal value 12 Retrieves underlying integral value

X or x Hexadecimal value 0000000C Retrieves underlying integral value

Other Conversion Mechanisms
In the previous two sections, we covered format providers — .NET’s primary mechanism for
formatting and parsing. Other important conversion mechanisms are scattered through various
types and namespaces. Some convert to and from string, and some do other kinds of
conversions. In this section, we discuss the following topics:

The Convert class and its functions:
Real to integral conversions that round rather than truncate

Parsing numbers in base 2, 8, and 16

Dynamic conversions

Base 64 translations

XmlConvert and its role in formatting and parsing for XML

Type converters and their role in formatting and parsing for designers and XAML

BitConverter, for binary conversions

Convert



The .NET Framework calls the following types base types:
bool, char, string, System.DateTime, and System.DateTimeOffset

All of the C# numeric types

The static Convert class defines methods for converting every base type to every other base
type. Unfortunately, most of these methods are useless: either they throw exceptions or they are
redundant alongside implicit casts. Among the clutter, however, are some useful methods, listed
in the following sections.

NOTE
All base types (explicitly) implement IConvertible, which defines methods for converting to
every other base type. In most cases, the implementation of each of these methods simply
calls a method in Convert. On rare occasions, it can be useful to write a method that accepts
an argument of type IConvertible.

Rounding real to integral conversions
In Chapter 2, we saw how implicit and explicit casts allow you to convert between numeric
types. In summary:

Implicit casts work for nonlossy conversions (e.g., int to double).

Explicit casts are required for lossy conversions (e.g., double to int).

Casts are optimized for efficiency; hence, they truncate data that won’t fit. This can be a
problem when converting from a real number to an integer, because often you want to round
rather than truncate. Convert’s numerical conversion methods address just this issue; they
always round:

double d = 3.9;
int i = Convert.ToInt32 (d);    // i == 4

Convert uses banker’s rounding, which snaps midpoint values to even integers (this avoids
positive or negative bias). If banker’s rounding is a problem, first call Math.Round on the real
number: this accepts an additional argument that allows you to control midpoint rounding.

Parsing numbers in base 2, 8, and 16
Hidden among the To(integral-type) methods are overloads that parse numbers in another
base:

int thirty = Convert.ToInt32  ("1E", 16);    // Parse in hexadecimal
uint five  = Convert.ToUInt32 ("101", 2);    // Parse in binary

The second argument specifies the base. It can be any base you like — as long as it’s 2, 8, 10,
or 16!

Dynamic conversions
Occasionally, you need to convert from one type to another — but you don’t know what the



types are until runtime. For this, the Convert class provides a ChangeType method:

public static object ChangeType (object value, Type conversionType);

The source and target types must be one of the “base” types. ChangeType also accepts an
optional IFormatProvider argument. Here’s an example:

Type targetType = typeof (int);
object source = "42";

object result = Convert.ChangeType (source, targetType);

Console.WriteLine (result);             // 42
Console.WriteLine (result.GetType());   // System.Int32

An example of when this might be useful is in writing a deserializer that can work with
multiple types. It can also convert any enum to its integral type (see “Enums”).
A limitation of ChangeType is that you cannot specify a format string or parsing flag.

Base 64 conversions
Sometimes you need to include binary data such as a bitmap within a text document such as an
XML file or email message. Base 64 is a ubiquitous means of encoding binary data as readable
characters, using 64 characters from the ASCII set.
Convert’s ToBase64String method converts from a byte array to base 64;
FromBase64String does the reverse.

XmlConvert
If you’re dealing with data that’s originated from or destined for an XML file, XmlConvert (in
the System.Xml namespace) provides the most suitable methods for formatting and parsing.
The methods in XmlConvert handle the nuances of XML formatting without needing special
format strings. For instance, true in XML is “true” and not “True”. The .NET Framework
internally uses XmlConvert extensively. XmlConvert is also good for general-purpose culture-
independent serialization.
The formatting methods in XmlConvert are all provided as overloaded ToString methods; the
parsing methods are called ToBoolean, ToDateTime, and so on. For example:

string s = XmlConvert.ToString (true);         // s = "true"
bool isTrue = XmlConvert.ToBoolean (s);

The methods that convert to and from DateTime accept an XmlDateTimeSerializationMode
argument. This is an enum with the following values:

Unspecified, Local, Utc, RoundtripKind

Local and Utc cause a conversion to take place when formatting (if the DateTime is not
already in that time zone). The time zone is then appended to the string:

2010-02-22T14:08:30.9375           // Unspecified
2010-02-22T14:07:30.9375+09:00     // Local
2010-02-22T05:08:30.9375Z          // Utc



Unspecified strips away any time zone information embedded in the DateTime (i.e.,
DateTimeKind) before formatting. RoundtripKind honors the DateTime’s DateTimeKind —
so when it’s reparsed, the resultant DateTime struct will be exactly as it was originally.

Type Converters
Type converters are designed to format and parse in design-time environments. They also parse
values in XAML (Extensible Application Markup Language) documents — as used in
Windows Presentation Foundation and Workflow Foundation.
In the .NET Framework, there are more than 100 type converters — covering such things as
colors, images, and URIs. In contrast, format providers are implemented for only a handful of
simple value types.
Type converters typically parse strings in a variety of ways — without needing hints. For
instance, in an ASP.NET application in Visual Studio, if you assign a control a BackColor by
typing "Beige" into the property window, Color’s type converter figures out that you’re
referring to a color name and not an RGB string or system color. This flexibility can sometimes
make type converters useful in contexts outside of designers and XAML documents.
All type converters subclass TypeConverter in System.ComponentModel. To obtain a
TypeConverter, call TypeDescriptor.GetConverter. The following obtains a
TypeConverter for the Color type (in the System.Drawing namespace, System.Drawing.dll):

TypeConverter cc = TypeDescriptor.GetConverter (typeof (Color));

Among many other methods, TypeConverter defines methods to ConvertToString and
ConvertFromString. We can call these as follows:

Color beige  = (Color) cc.ConvertFromString ("Beige");
Color purple = (Color) cc.ConvertFromString ("#800080");
Color window = (Color) cc.ConvertFromString ("Window");

By convention, type converters have names ending in Converter and are usually in the same
namespace as the type they’re converting. A type links to its converter via a
TypeConverterAttribute, allowing designers to pick up converters automatically.
Type converters can also provide design-time services such as generating standard value lists
for populating a drop-down list in a designer or assisting with code serialization.

BitConverter
Most base types can be converted to a byte array, by calling BitConverter.GetBytes:

foreach (byte b in BitConverter.GetBytes (3.5))
  Console.Write (b + " ");                          // 0 0 0 0 0 0 12 64

BitConverter also provides methods, such as ToDouble, for converting in the other direction.
The decimal and DateTime(Offset) types are not supported by BitConverter. You can,
however, convert a decimal to an int array by calling decimal.GetBits. To go the other
way around, decimal provides a constructor that accepts an int array.
In the case of DateTime, you can call ToBinary on an instance — this returns a long (upon



which you can then use BitConverter). The static DateTime.FromBinary method does the
reverse.

Globalization
There are two aspects to internationalizing an application: globalization and localization.
Globalization is concerned with three tasks (in decreasing order of importance):

1. Making sure that your program doesn’t break when run in another culture

2. Respecting a local culture’s formatting rules — for instance, when displaying dates

3. Designing your program so that it picks up culture-specific data and strings from satellite
assemblies that you can later write and deploy

Localization means concluding that last task by writing satellite assemblies for specific
cultures. This can be done after writing your program — we cover the details in “Resources
and Satellite Assemblies” in Chapter 18.
The .NET Framework helps you with the second task by applying culture-specific rules by
default. We’ve already seen how calling ToString on a DateTime or number respects local
formatting rules. Unfortunately, this makes it easy to fail the first task and have your program
break because you’re expecting dates or numbers to be formatted according to an assumed
culture. The solution, as we’ve seen, is either to specify a culture (such as the invariant culture)
when formatting and parsing, or to use culture-independent methods such as those in
XmlConvert.

Globalization Checklist
We’ve already covered the important points in this chapter. Here’s a summary of the essential
work required:

Understand Unicode and text encodings (see “Text Encodings and Unicode”).

Be mindful that methods such as ToUpper and ToLower on char and string are culture-
sensitive: use ToUpperInvariant/ToLowerInvariant unless you want culture sensitivity.

Favor culture-independent formatting and parsing mechanisms for DateTime and
DateTimeOffsets such as ToString("o") and XmlConvert.

Otherwise, specify a culture when formatting/parsing numbers or date/times (unless you
want local-culture behavior).

Testing
You can test against different cultures by reassigning Thread’s CurrentCulture property (in
System.Threading). The following changes the current culture to Turkey:

Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo ("tr-TR");

Turkey is a particularly good test case because:



"i".ToUpper() != "I" and "I".ToLower() != "i".

Dates are formatted as day.month.year (note the period separator).

The decimal point indicator is a comma instead of a period.

You can also experiment by changing the number and date formatting settings in the Windows
Control Panel: these are reflected in the default culture (Culture Info.CurrentCulture).
CultureInfo.GetCultures() returns an array of all available cultures.

NOTE
Thread and CultureInfo also support a CurrentUICulture property. This is concerned more
with localization: we cover this in Chapter 18.

Working with Numbers

Conversions
We covered numeric conversions in previous chapters and sections; Table 6-7 summarizes all
the options.

Table 6-7. Summary of numeric conversions

Task Functions Examples

Parsing base 10 numbers Parse
TryParse

double d = double.Parse ("3.5");
int i;
bool ok = int.TryParse ("3", out i);

Parsing from base 2, 8, or 16 Convert.ToIntegral int i = Convert.ToInt32 ("1E", 16);

Formatting to hexadecimal ToString ("X") string hex = 45.ToString ("X");

Lossless numeric conversion Implicit cast int i = 23;
double d = i;

Truncating numeric conversion Explicit cast double d = 23.5;
int i = (int) d;

Rounding numeric conversion (real to integral) Convert.ToIntegral double d = 23.5;
int i = Convert.ToInt32 (d);

Math
Table 6-8 lists the members of the static Math class. The trigonometric functions accept
arguments of type double; other methods such as Max are overloaded to operate on all numeric
types. The Math class also defines the mathematical constants E (e) and PI.

Table 6-8. Methods in the static Math class

Category Methods

Rounding Round, Truncate, Floor, Ceiling

Maximum/minimum Max, Min

Absolute value and sign Abs, Sign



Square root Sqrt

Raising to a power Pow, Exp

Logarithm Log, Log10

Trigonometric Sin, Cos, Tan
Sinh, Cosh, Tanh
Asin, Acos, Atan

The Round method lets you specify the number of decimal places with which to round, as well
as how to handle midpoints (away from zero, or with banker’s rounding). Floor and Ceiling
round to the nearest integer: Floor always rounds down and Ceiling always rounds up —
even with negative numbers.
Max and Min accept only two arguments. If you have an array or sequence of numbers, use the
Max and Min extension methods in System.Linq.Enumerable.

BigInteger
The BigInteger struct is a specialized numeric type introduced in .NET Framework 4.0. It
lives in the new System.Numerics namespace in System.Numerics.dll and allows you to
represent an arbitrarily large integer without any loss of precision.
C# doesn’t provide native support for BigInteger, so there’s no way to represent
BigInteger literals. You can, however, implicitly convert from any other integral type to a
BigInteger. For instance:

BigInteger twentyFive = 25;      // implicit conversion from integer

To represent a bigger number, such as one googol (10100), you can use one of BigInteger’s
static methods, such as Pow (raise to the power):

BigInteger googol = BigInteger.Pow (10, 100);

Alternatively, you can Parse a string:

BigInteger googol = BigInteger.Parse ("1".PadRight (100, '0'));

Calling ToString() on this prints every digit:

Console.WriteLine (googol.ToString()); // 10000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000

You can perform potentially lossy conversions between BigInteger and the standard numeric
types with the explicit cast operator:

double g2 = (double) googol;        // Explicit cast
BigInteger g3 = (BigInteger) g2;    // Explicit cast
Console.WriteLine (g3);

The output from this demonstrates the loss of precision:

9999999999999999673361688041166912...



BigInteger overloads all the arithmetic operators including remainder (%), as well as the
comparison and equality operators.
You can also construct a BigInteger from a byte array. The following code generates a 32-
byte random number suitable for cryptography and then assigns it to a BigInteger:

// This uses the System.Security.Cryptography namespace:
RandomNumberGenerator rand = RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes);
var bigRandomNumber = new BigInteger (bytes);   // Convert to BigInteger

The advantage of storing such a number in a BigInteger over a byte array is that you get
value-type semantics. Calling ToByteArray converts a BigInteger back to a byte array.

Complex
The Complex struct is another specialized numeric type new to Framework 4.0, and is for
representing complex numbers with real and imaginary components of type double. Complex
resides in the System.Numerics.dll assembly (along with BigInteger).
To use Complex, instantiate the struct, specifying the real and imaginary values:

var c1 = new Complex (2, 3.5);
var c2 = new Complex (3, 0);

There are also implicit conversions from the standard numeric types.
The Complex struct exposes properties for the real and imaginary values, as well as the phase
and magnitude:

Console.WriteLine (c1.Real);       // 2
Console.WriteLine (c1.Imaginary);  // 3.5
Console.WriteLine (c1.Phase);      // 1.05165021254837
Console.WriteLine (c1.Magnitude);  // 4.03112887414927

You can also construct a Complex number by specifying magnitude and phase:

Complex c3 = Complex.FromPolarCoordinates (1.3, 5);

The standard arithmetic operators are overloaded to work on Complex numbers:

Console.WriteLine (c1 + c2);    // (5, 3.5)
Console.WriteLine (c1 * c2);    // (6, 10.5)

The Complex struct exposes static methods for more advanced functions, including:
Trigonometric (Sin, Asin, Sinh, Tan, etc.)

Logarithms and exponentiations

Conjugate

Random
The Random class generates a pseudorandom sequence of random bytes, integers, or



doubles.
To use Random, you first instantiate it, optionally providing a seed to initiate the random
number series. Using the same seed guarantees the same series of numbers (if run under the
same CLR version), which is sometimes useful when you want reproducibility:

Random r1 = new Random (1);
Random r2 = new Random (1);
Console.WriteLine (r1.Next (100) + ", " + r1.Next (100));      // 24, 11
Console.WriteLine (r2.Next (100) + ", " + r2.Next (100));      // 24, 11

If you don’t want reproducibility, you can construct Random with no seed — then it uses the
current system time to make one up.

WARNING
Because the system clock has limited granularity, two Random instances created close together
(typically within 10 ms) will yield the same sequence of values. A common trap is to
instantiate a new Random object every time you need a random number, rather than reusing
the same object.
A good pattern is to declare a single static Random instance. In multithreaded scenarios,
however, this can cause trouble because Random objects are not thread-safe. We describe a
workaround in “Thread-Local Storage” in Chapter 22.

Calling Next(n) generates a random integer between 0 and n-1. NextDouble generates a
random double between 0 and 1. NextBytes fills a byte array with random values.
Random is not considered random enough for high-security applications, such as cryptography.
For this, the .NET Framework provides a cryptographically strong random number generator,
in the System.Security.Cryptography namespace. Here’s how it’s used:

var rand = System.Security.Cryptography.RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes);       // Fill the byte array with random numbers.

The downside is that it’s less flexible: filling a byte array is the only means of obtaining
random numbers. To obtain an integer, you must use BitConverter:

byte[] bytes = new byte [4];
rand.GetBytes (bytes);
int i = BitConverter.ToInt32 (bytes, 0);

Enums
In Chapter 3, we described C#’s enum type, and showed how to combine members, test
equality, use logical operators, and perform conversions. The Framework extends C#’s support
for enums through the System.Enum type. This type has two roles:

Providing type unification for all enum types

Defining static utility methods



Type unification means you can implicitly cast any enum member to a System.Enum instance:

enum Nut  { Walnut, Hazelnut, Macadamia }
enum Size { Small, Medium, Large }

static void Main()
{
  Display (Nut.Macadamia);     // Nut.Macadamia
  Display (Size.Large);        // Size.Large
}

static void Display (Enum value)
{
  Console.WriteLine (value.GetType().Name + "." + value.ToString());
}

The static utility methods on System.Enum are primarily related to performing conversions and
obtaining lists of members.

Enum Conversions
There are three ways to represent an enum value:

As an enum member

As its underlying integral value

As a string

In this section, we describe how to convert between each.

Enum to integral conversions
Recall that an explicit cast converts between an enum member and its integral value. An
explicit cast is the correct approach if you know the enum type at compile time:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
int i = (int) BorderSides.Top;            // i == 4
BorderSides side = (BorderSides) i;       // side == BorderSides.Top

You can cast a System.Enum instance to its integral type in the same way. The trick is to first
cast to an object, and then the integral type:

static int GetIntegralValue (Enum anyEnum)
{
  return (int) (object) anyEnum;
}

This relies on you knowing the integral type: the method we just wrote would crash if passed
an enum whose integral type was long. To write a method that works with an enum of any
integral type, you can take one of three approaches. The first is to call Convert.ToDecimal:

static decimal GetAnyIntegralValue (Enum anyEnum)
{
  return Convert.ToDecimal (anyEnum);
}



This works because every integral type (including ulong) can be converted to decimal without
loss of information. The second approach is to call Enum.GetUnderlyingType in order to
obtain the enum’s integral type, and then call Convert.ChangeType:

static object GetBoxedIntegralValue (Enum anyEnum)
{
  Type integralType = Enum.GetUnderlyingType (anyEnum.GetType());
  return Convert.ChangeType (anyEnum, integralType);
}

This preserves the original integral type, as the following example shows:

object result = GetBoxedIntegralValue (BorderSides.Top);
Console.WriteLine (result);                               // 4
Console.WriteLine (result.GetType());                     // System.Int32

NOTE
Our GetBoxedIntegralType method in fact performs no value conversion; rather, it reboxes
the same value in another type. It translates an integral value in enum-type clothing to an
integral value in integral-type clothing. We describe this further in “How Enums Work”.

The third approach is to call Format or ToString specifying the "d" or "D" format string. This
gives you the enum’s integral value as a string, and it is useful when writing custom
serialization formatters:

static string GetIntegralValueAsString (Enum anyEnum)
{
  return anyEnum.ToString ("D");      // returns something like "4"
}

Integral to enum conversions
Enum.ToObject converts an integral value to an enum instance of the given type:

object bs = Enum.ToObject (typeof (BorderSides), 3);
Console.WriteLine (bs);                              // Left, Right

This is the dynamic equivalent of this:

BorderSides bs = (BorderSides) 3;

ToObject is overloaded to accept all integral types, as well as object. (The latter works with
any boxed integral type.)

String conversions
To convert an enum to a string, you can either call the static Enum.Format method or call
ToString on the instance. Each method accepts a format string, which can be "G" for default
formatting behavior, "D" to emit the underlying integral value as a string, "X" for the same in
hexadecimal, or "F" to format combined members of an enum without the Flags attribute. We
listed examples of these in “Standard Format Strings and Parsing Flags”.
Enum.Parse converts a string to an enum. It accepts the enum type and a string that can include



multiple members:

BorderSides leftRight = (BorderSides) Enum.Parse (typeof (BorderSides),
                                                  "Left, Right");

An optional third argument lets you perform case-insensitive parsing. An Argument Exception
is thrown if the member is not found.

Enumerating Enum Values
Enum.GetValues returns an array comprising all members of a particular enum type:

foreach (Enum value in Enum.GetValues (typeof (BorderSides)))
  Console.WriteLine (value);

Composite members such as LeftRight = Left | Right are included, too.
Enum.GetNames performs the same function, but returns an array of strings.

NOTE
Internally, the CLR implements GetValues and GetNames by reflecting over the fields in the
enum’s type. The results are cached for efficiency.

How Enums Work
The semantics of enums are enforced largely by the compiler. In the CLR, there’s no runtime
difference between an enum instance (when unboxed) and its underlying integral value. Further,
an enum definition in the CLR is merely a subtype of System.Enum with static integral-type
fields for each member. This makes the ordinary use of an enum highly efficient, with a runtime
cost matching that of integral constants.
The downside of this strategy is that enums can provide static but not strong type safety. We
saw an example of this in Chapter 3:

public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
BorderSides b = BorderSides.Left;
b += 1234;                          // No error!

When the compiler is unable to perform validation (as in this example), there’s no backup from
the runtime to throw an exception.
What we said about there being no runtime difference between an enum instance and its integral
value might seem at odds with the following:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
Console.WriteLine (BorderSides.Right.ToString());        // Right
Console.WriteLine (BorderSides.Right.GetType().Name);    // BorderSides

Given the nature of an enum instance at runtime, you’d expect this to print 2 and Int32! The
reason for its behavior is down to some more compile-time trickery. C# explicitly boxes an



enum instance before calling its virtual methods — such as ToString or GetType. And when
an enum instance is boxed, it gains a runtime wrapping that references its enum type.

The Guid Struct
The Guid struct represents a globally unique identifier: a 16-byte value that, when generated, is
almost certainly unique in the world. Guids are often used for keys of various sorts — in
applications and databases. There are 2128 or 3.4 × 1038 unique Guids.
The static Guid.NewGuid method generates a unique Guid:

Guid g = Guid.NewGuid ();
Console.WriteLine (g.ToString());  // 0d57629c-7d6e-4847-97cb-9e2fc25083fe

To instantiate an existing value, you use one of the constructors. The two most useful
constructors are:

public Guid (byte[] b);    // Accepts a 16-byte array
public Guid (string g);    // Accepts a formatted string

When represented as a string, a Guid is formatted as a 32-digit hexadecimal number, with
optional hyphens after the 8th, 12th, 16th, and 20th digits. The whole string can also be
optionally wrapped in brackets or braces:

Guid g1 = new Guid ("{0d57629c-7d6e-4847-97cb-9e2fc25083fe}");
Guid g2 = new Guid ("0d57629c7d6e484797cb9e2fc25083fe");
Console.WriteLine (g1 == g2);  // True

Being a struct, a Guid honors value-type semantics; hence, the equality operator works in the
preceding example.
The ToByteArray method converts a Guid to a byte array.
The static Guid.Empty property returns an empty Guid (all zeros). This is often used in place
of null.

Equality Comparison
Until now, we’ve assumed that the == and != operators are all there is to equality comparison.
The issue of equality, however, is more complex and subtler, sometimes requiring the use of
additional methods and interfaces. This section explores the standard C# and .NET protocols
for equality, focusing particularly on two questions:

When are == and != adequate — and inadequate — for equality comparison, and what are
the alternatives?

How and when should you customize a type’s equality logic?

But before exploring the details of equality protocols and how to customize them, we must first
look at the preliminary concept of value versus referential equality.

Value Versus Referential Equality



There are two kinds of equality:

Value equality
Two values are equivalent in some sense.

Referential equality
Two references refer to exactly the same object.

By default:
Value types use value equality.

Reference types use referential equality.

Value types, in fact, can only use value equality (unless boxed). A simple demonstration of
value equality is to compare two numbers:

int x = 5, y = 5;
Console.WriteLine (x == y);   // True (by virtue of value equality)

A more elaborate demonstration is to compare two DateTimeOffset structs. The following
prints True because the two DateTimeOffsets refer to the same point in time and so are
considered equivalent:

var dt1 = new DateTimeOffset (2010, 1, 1, 1, 1, 1, TimeSpan.FromHours(8));
var dt2 = new DateTimeOffset (2010, 1, 1, 2, 1, 1, TimeSpan.FromHours(9));
Console.WriteLine (dt1 == dt2);   // True

NOTE
DateTimeOffset is a struct whose equality semantics have been tweaked. By default, structs
exhibit a special kind of value equality called structural equality, where two values are
considered equal if all of their members are equal. (You can see this by creating a struct and
calling its Equals method; more on this later.)

Reference types exhibit referential equality by default. In the following example, f1 and f2 are
not equal — despite their objects having identical content:

class Foo { public int X; }
...
Foo f1 = new Foo { X = 5 };
Foo f2 = new Foo { X = 5 };
Console.WriteLine (f1 == f2);   // False

In contrast, f3 and f1 are equal because they reference the same object:

Foo f3 = f1;
Console.WriteLine (f1 == f3);   // True

We’ll explain later in this section how reference types can be customized to exhibit value
equality. An example of this is the Uri class in the System namespace:

Uri uri1 = new Uri ("http://www.linqpad.net");
Uri uri2 = new Uri ("http://www.linqpad.net");



Console.WriteLine (uri1 == uri2);              // True

Standard Equality Protocols
There are three standard protocols that types can implement for equality comparison:

The == and != operators

The virtual Equals method in object

The IEquatable<T> interface

In addition, there are the pluggable protocols and the IStructuralEquatable interface,
which we describe in Chapter 7.

== and !=
We’ve already seen in many examples how the standard == and != operators perform
equality/inequality comparisons. The subtleties with == and != arise because they are
operators, and so are statically resolved (in fact, they are implemented as static functions).
So, when you use == or !=, C# makes a compile-time decision as to which type will perform
the comparison, and no virtual behavior comes into play. This is normally desirable. In the
following example, the compiler hard-wires == to the int type because x and y are both int:

int x = 5;
int y = 5;
Console.WriteLine (x == y);      // True

But in the next example, the compiler wires the == operator to the object type:

object x = 5;
object y = 5;
Console.WriteLine (x == y);      // False

Because object is a class (and so a reference type), object’s == operator uses referential
equality to compare x and y. The result is false, because x and y each refer to different boxed
objects on the heap.

The virtual Object.Equals method
To correctly equate x and y in the preceding example, we can use the virtual Equals method.
Equals is defined in System.Object, and so is available to all types:

object x = 5;
object y = 5;
Console.WriteLine (x.Equals (y));      // True

Equals is resolved at runtime — according to the object’s actual type. In this case, it calls
Int32’s Equals method, which applies value equality to the operands, returning true. With
reference types, Equals performs referential equality comparison by default; with structs,
Equals performs structural comparison by calling Equals on each of its fields.

WHY THE COMPLEXITY?
You might wonder why the designers of C# didn’t avoid the problem by making == virtual, and so



functionally identical to Equals. There are three reasons for this:
If the first operand is null, Equals fails with a NullReferenceException; a static operator does
not.

Because the == operator is statically resolved, it executes extremely quickly. This means that
you can write computationally intensive code without penalty — and without needing to learn
another language such as C++.

Sometimes it can be useful to have == and Equals apply different definitions of equality. We
describe this scenario later in this section.

Essentially, the complexity of the design reflects the complexity of the situation: the concept of
equality covers a multitude of scenarios.

Hence, Equals is suitable for equating two objects in a type-agnostic fashion. The following
method equates two objects of any type:

public static bool AreEqual (object obj1, object obj2)
  => obj1.Equals (obj2);

There is one case, however, in which this fails. If the first argument is null, you get a
NullReferenceException. Here’s the fix:

public static bool AreEqual (object obj1, object obj2)
{
  if (obj1 == null) return obj2 == null;
  return obj1.Equals (obj2);
}

Or more succinctly:

public static bool AreEqual (object obj1, object obj2)
  => obj1 == null ? obj2 == null : obj1.Equals (obj2);

The static object.Equals method
The object class provides a static helper method that does the work of AreEqual in the
preceding example. Its name is Equals — just like the virtual method — but there’s no conflict
because it accepts two arguments:

public static bool Equals (object objA, object objB)

This provides a null-safe equality comparison algorithm for when the types are unknown at
compile time. For example:

object x = 3, y = 3;
Console.WriteLine (object.Equals (x, y));   // True
x = null;
Console.WriteLine (object.Equals (x, y));   // False
y = null;
Console.WriteLine (object.Equals (x, y));   // True

A useful application is when writing generic types. The following code will not compile if
object.Equals is replaced with the == or != operator:

class Test <T>



{
  T _value;
  public void SetValue (T newValue)
  {
    if (!object.Equals (newValue, _value))
    {
      _value = newValue;
      OnValueChanged();
    }
  }
  protected virtual void OnValueChanged() { ... }
}

Operators are prohibited here because the compiler cannot bind to the static method of an
unknown type.

NOTE
A more elaborate way to implement this comparison is with the EqualityComparer<T> class.
This has the advantage of avoiding boxing:

if (!EqualityComparer<T>.Default.Equals (newValue, _value))

We discuss EqualityComparer<T> in more detail in Chapter 7 (see “Plugging in Equality and
Order”).

The static object.ReferenceEquals method
Occasionally, you need to force referential equality comparison. The static
object.ReferenceEquals method does just this:

class Widget { ... }

class Test
{
  static void Main()
  {
    Widget w1 = new Widget();
    Widget w2 = new Widget();
    Console.WriteLine (object.ReferenceEquals (w1, w2));     // False
  }
}

You might want to do this because it’s possible for Widget to override the virtual Equals
method, such that w1.Equals(w2) would return true. Further, it’s possible for Widget to
overload the == operator so that w1==w2 would also return true. In such cases, calling
object.ReferenceEquals guarantees normal referential equality semantics.

NOTE
Another way to force referential equality comparison is to cast the values to object and then
apply the == operator.

The IEquatable<T> interface



A consequence of calling object.Equals is that it forces boxing on value types. This is
undesirable in highly performance-sensitive scenarios because boxing is relatively expensive
compared to the actual comparison. A solution was introduced in C# 2.0, with the
IEquatable<T> interface:

public interface IEquatable<T>
{
  bool Equals (T other);
}

The idea is that IEquatable<T>, when implemented, gives the same result as calling object’s
virtual Equals method — but more quickly. Most basic .NET types implement
IEquatable<T>. You can use IEquatable<T> as a constraint in a generic type:

class Test<T> where T : IEquatable<T>
{
  public bool IsEqual (T a, T b)
  {
    return a.Equals (b);     // No boxing with generic T
  }
}

If we remove the generic constraint, the class would still compile, but a.Equals(b) would
instead bind to the slower object.Equals (slower assuming T was a value type).

When Equals and == are not equal
We said earlier that it’s sometimes useful for == and Equals to apply different definitions of
equality. For example:

double x = double.NaN;
Console.WriteLine (x == x);            // False
Console.WriteLine (x.Equals (x));      // True

The double type’s == operator enforces that one NaN can never equal anything else — even
another NaN. This is most natural from a mathematical perspective, and it reflects the
underlying CPU behavior. The Equals method, however, is obliged to apply reflexive equality;
in other words:

x.Equals (x) must always return true.

Collections and dictionaries rely on Equals behaving this way; otherwise, they could not find
an item they previously stored.
Having Equals and == apply different definitions of equality is actually quite rare with value
types. A more common scenario is with reference types, and happens when the author
customizes Equals so that it performs value equality while leaving == to perform (default)
referential equality. The StringBuilder class does exactly this:

var sb1 = new StringBuilder ("foo");
var sb2 = new StringBuilder ("foo");
Console.WriteLine (sb1 == sb2);          // False (referential equality)
Console.WriteLine (sb1.Equals (sb2));    // True  (value equality)

Let’s now look at how to customize equality.



Equality and Custom Types
Recall default equality comparison behavior:

Value types use value equality.

Reference types use referential equality.

Further:
A struct’s Equals method applies structural value equality by default (i.e., it compares
each field in the struct).

Sometimes it makes sense to override this behavior when writing a type. There are two cases
for doing so:

To change the meaning of equality

To speed up equality comparisons for structs

Changing the meaning of equality
Changing the meaning of equality makes sense when the default behavior of == and Equals is
unnatural for your type and is not what a consumer would expect. An example is
DateTimeOffset, a struct with two private fields: a UTC DateTime and a numeric integer
offset. If you were writing this type, you’d probably want to ensure that equality comparisons
considered only the UTC DateTime field and not the offset field. Another example is numeric
types that support NaN values such as float and double. If you were implementing such types
yourself, you’d want to ensure that NaN-comparison logic was supported in equality
comparisons.
With classes, it’s sometimes more natural to offer value equality as the default instead of
referential equality. This is often the case with small classes that hold a simple piece of data
— such as System.Uri (or System.String).

Speeding up equality comparisons with structs
The default structural equality comparison algorithm for structs is relatively slow. Taking
over this process by overriding Equals can improve performance by a factor of five.
Overloading the == operator and implementing IEquatable<T> allows unboxed equality
comparisons, and this can speed things up by a factor of five again.

NOTE
Overriding equality semantics for reference types doesn’t benefit performance. The default
algorithm for referential equality comparison is already very fast because it simply compares
two 32- or 64-bit references.

There’s actually another, rather peculiar case for customizing equality, and that’s to improve a
struct’s hashing algorithm for better performance in a hashtable. This comes of the fact that
equality comparison and hashing are joined at the hip. We’ll examine hashing in a moment.

How to override equality semantics



Here is a summary of the steps:
1. Override GetHashCode() and Equals().

2. (Optionally) overload != and ==.

3. (Optionally) implement IEquatable<T>.

Overriding GetHashCode
It might seem odd that System.Object — with its small footprint of members — defines a
method with a specialized and narrow purpose. GetHashCode is a virtual method in Object
that fits this description — it exists primarily for the benefit of just the following two types:

System.Collections.Hashtable
System.Collections.Generic.Dictionary<TKey,TValue>

These are hashtables — collections where each element has a key used for storage and
retrieval. A hashtable applies a very specific strategy for efficiently allocating elements based
on their key. This requires that each key have an Int32 number, or hash code. The hash code
need not be unique for each key, but should be as varied as possible for good hashtable
performance. Hashtables are considered important enough that GetHashCode is defined in
System.Object — so that every type can emit a hash code.

NOTE
We describe hashtables in detail in “Dictionaries” in Chapter 7.

Both reference and value types have default implementations of GetHashCode, meaning you
don’t need to override this method — unless you override Equals. (And if you override
GetHashCode, you will almost certainly want to also override Equals.)
Here are the other rules for overriding object.GetHashCode:

It must return the same value on two objects for which Equals returns true (hence,
GetHashCode and Equals are overridden together).

It must not throw exceptions.

It must return the same value if called repeatedly on the same object (unless the object has
changed).

For maximum performance in hashtables, GetHashCode should be written so as to minimize the
likelihood of two different values returning the same hashcode. This gives rise to the third
reason for overriding Equals and GetHashCode on structs, which is to provide a more
efficient hashing algorithm than the default. The default implementation for structs is at the
discretion of the runtime and may be based on every field in the struct.
In contrast, the default GetHashCode implementation for classes is based on an internal object
token, which is unique for each instance in the CLR’s current implementation.



WARNING
If an object’s hashcode changes after it’s been added as a key to a dictionary, the object will
no longer be accessible in the dictionary. You can preempt this by basing hashcode
calculations on immutable fields.

A complete example illustrating how to override GetHashCode is listed shortly.

Overriding Equals
The axioms for object.Equals are as follows:

An object cannot equal null (unless it’s a nullable type).

Equality is reflexive (an object equals itself).

Equality is commutative (if a.Equals(b), then b.Equals(a)).

Equality is transitive (if a.Equals(b) and b.Equals(c), then a.Equals(c)).

Equality operations are repeatable and reliable (they don’t throw exceptions).

Overloading == and !=
In addition to overriding Equals, you can optionally overload the equality and inequality
operators. This is nearly always done with structs, because the consequence of not doing so is
that the == and != operators will simply not work on your type.
With classes, there are two ways to proceed:

Leave == and != alone — so that they apply referential equality.

Overload == and != in line with Equals.

The first approach is most common with custom types — especially mutable types. It ensures
that your type follows the expectation that == and != should exhibit referential equality with
reference types and this avoids confusing consumers. We saw an example earlier:

var sb1 = new StringBuilder ("foo");
var sb2 = new StringBuilder ("foo");
Console.WriteLine (sb1 == sb2);          // False (referential equality)
Console.WriteLine (sb1.Equals (sb2));    // True  (value equality)

The second approach makes sense with types for which a consumer would never want
referential equality. These are typically immutable — such as the string and System.Uri
classes — and are sometimes good candidates for structs.

NOTE
Although it’s possible to overload != such that it means something other than !(==), this is
almost never done in practice, except in cases such as comparing float.NaN.



Implementing IEquatable<T>
For completeness, it’s also good to implement IEquatable<T> when overriding Equals. Its
results should always match those of the overridden object’s Equals method. Implementing
IEquatable<T> comes at no programming cost if you structure your Equals method
implementation, as in the following example.

An example: The Area struct
Imagine we need a struct to represent an area whose width and height are interchangeable. In
other words, 5 × 10 is equal to 10 × 5. (Such a type would be suitable in an algorithm that
arranges rectangular shapes.)
Here’s the complete code:

public struct Area : IEquatable <Area>
{
  public readonly int Measure1;
  public readonly int Measure2;

  public Area (int m1, int m2)
  {
    Measure1 = Math.Min (m1, m2);
    Measure2 = Math.Max (m1, m2);
  }

  public override bool Equals (object other)
  {
    if (!(other is Area)) return false;
    return Equals ((Area) other);        // Calls method below
  }

  public bool Equals (Area other)        // Implements IEquatable<Area>
    => Measure1 == other.Measure1 && Measure2 == other.Measure2;

  public override int GetHashCode()
    => Measure2 * 31 + Measure1;    // 31 = some prime number

  public static bool operator == (Area a1, Area a2) => a1.Equals (a2);

  public static bool operator != (Area a1, Area a2) => !a1.Equals (a2);
}

NOTE
Here’s another way to implement the Equals method, leveraging nullable types:

Area? otherArea = other as Area?;
return otherArea.HasValue && Equals (otherArea.Value);

In implementing GetHashCode, we’ve helped to improve the likelihood of uniqueness by
multiplying the larger measure by some prime number (ignoring any overflow) before adding
the two together. When there are more than two fields, the following pattern, suggested by Josh
Bloch, gives good results while being performant:

int hash = 17;                             // 17 = some prime number
hash = hash * 31 + field1.GetHashCode();   // 31 = another prime number
hash = hash * 31 + field2.GetHashCode();
hash = hash * 31 + field3.GetHashCode();



...
return hash;

(See http://albahari.com/hashprimes for a link to a discussion on primes and hashcodes.)
Here’s a demo of the Area struct:

Area a1 = new Area (5, 10);
Area a2 = new Area (10, 5);
Console.WriteLine (a1.Equals (a2));    // True
Console.WriteLine (a1 == a2);          // True

Pluggable equality comparers
If you want a type to take on different equality semantics just for a particular scenario, you can
use a pluggable IEqualityComparer. This is particularly useful in conjunction with the
standard collection classes, and we describe it in the following chapter, in “Plugging in
Equality and Order”.

Order Comparison
As well as defining standard protocols for equality, C# and .NET define standard protocols for
determining the order of one object relative to another. The basic protocols are:

The IComparable interfaces (IComparable and IComparable<T>)

The > and < operators

The IComparable interfaces are used by general-purpose sorting algorithms. In the following
example, the static Array.Sort method works because System.String implements the
IComparable interfaces:

string[] colors = { "Green", "Red", "Blue" };
Array.Sort (colors);
foreach (string c in colors) Console.Write (c + " ");   // Blue Green Red

The < and > operators are more specialized, and they are intended mostly for numeric types.
Because they are statically resolved, they can translate to highly efficient bytecode, suitable for
computationally intensive algorithms.
The .NET Framework also provides pluggable ordering protocols, via the IComparer
interfaces. We describe these in the final section of Chapter 7.

IComparable
The IComparable interfaces are defined as follows:

public interface IComparable       { int CompareTo (object other); }
public interface IComparable<in T> { int CompareTo (T other);      }

The two interfaces represent the same functionality. With value types, the generic type-safe
interface is faster than the nongeneric interface. In both cases, the CompareTo method works as
follows:

If a comes after b, a.CompareTo(b) returns a positive number.

http://albahari.com/hashprimes


If a is the same as b, a.CompareTo(b) returns 0.

If a comes before b, a.CompareTo(b) returns a negative number.

For example:

Console.WriteLine ("Beck".CompareTo ("Anne"));       // 1
Console.WriteLine ("Beck".CompareTo ("Beck"));       // 0
Console.WriteLine ("Beck".CompareTo ("Chris"));      // -1

Most of the base types implement both IComparable interfaces. These interfaces are also
sometimes implemented when writing custom types. An example is given shortly.

IComparable versus Equals
Consider a type that both overrides Equals and implements the IComparable interfaces.
You’d expect that when Equals returns true, CompareTo should return 0. And you’d be right.
But here’s the catch:

When Equals returns false CompareTo can return what it likes (as long as it’s internally
consistent)!

In other words, equality can be “fussier” than comparison, but not vice versa (violate this and
sorting algorithms will break). So, CompareTo can say “All objects are equal” while Equals
says “But some are more equal than others!”
A great example of this is System.String. String’s Equals method and == operator use
ordinal comparison, which compares the Unicode point values of each character. Its
CompareTo method, however, uses a less fussy culture-dependent comparison. On most
computers, for instance, the strings “ṻ” and “ǖ” are different according to Equals, but the same
according to CompareTo.
In Chapter 7, we discuss the pluggable ordering protocol, IComparer, which allows you to
specify an alternative ordering algorithm when sorting or instantiating a sorted collection. A
custom IComparer can further extend the gap between CompareTo and Equals — a case-
insensitive string comparer, for instance, will return 0 when comparing "A" and "a". The
reverse rule still applies, however: CompareTo can never be fussier than Equals.

NOTE
When implementing the IComparable interfaces in a custom type, you can avoid running afoul
of this rule by writing the first line of CompareTo as follows:

if (Equals (other)) return 0;

After that, it can return what it likes, as long as it’s consistent!

< and >
Some types define < and > operators. For instance:

bool after2010 = DateTime.Now > new DateTime (2010, 1, 1);



You can expect the < and > operators, when implemented, to be functionally consistent with the
IComparable interfaces. This is standard practice across the .NET Framework.
It’s also standard practice to implement the IComparable interfaces whenever < and > are
overloaded, although the reverse is not true. In fact, most .NET types that implement
IComparable do not overload < and >. This differs from the situation with equality, where it’s
normal to overload == when overriding Equals.
Typically, > and < are overloaded only when:

A type has a strong intrinsic concept of “greater than” and “less than” (versus
IComparable’s broader concepts of “comes before” and “comes after”).

There is only one way or context in which to perform the comparison.

The result is invariant across cultures.

System.String doesn’t satisfy the last point: the results of string comparisons can vary
according to language. Hence, string doesn’t support the > and < operators:

bool error = "Beck" > "Anne";       // Compile-time error

Implementing the IComparable Interfaces
In the following struct, representing a musical note, we implement the IComparable interfaces,
as well as overloading the < and > operators. For completeness, we also override
Equals/GetHashCode and overload == and !=.

public struct Note : IComparable<Note>, IEquatable<Note>, IComparable
{
  int _semitonesFromA;
  public int SemitonesFromA { get { return _semitonesFromA; } }

  public Note (int semitonesFromA)
  {
    _semitonesFromA = semitonesFromA;
  }

  public int CompareTo (Note other)            // Generic IComparable<T>
  {
    if (Equals (other)) return 0;    // Fail-safe check
    return _semitonesFromA.CompareTo (other._semitonesFromA);
  }

  int IComparable.CompareTo (object other)     // Nongeneric IComparable
  {
    if (!(other is Note))
      throw new InvalidOperationException ("CompareTo: Not a note");
    return CompareTo ((Note) other);
  }

  public static bool operator < (Note n1, Note n2)
     => n1.CompareTo (n2) < 0;

  public static bool operator > (Note n1, Note n2)
    => n1.CompareTo (n2) > 0;

  public bool Equals (Note other)    // for IEquatable<Note>
    => _semitonesFromA == other._semitonesFromA;

  public override bool Equals (object other)
  {
    if (!(other is Note)) return false;



    return Equals ((Note) other);
  }

  public override int GetHashCode() => _semitonesFromA.GetHashCode();

  public static bool operator == (Note n1, Note n2) => n1.Equals (n2);

  public static bool operator != (Note n1, Note n2) => !(n1 == n2);
}

Utility Classes

Console
The static Console class handles standard input/output for console-based applications. In a
command-line (Console) application, the input comes from the keyboard via Read, ReadKey,
and ReadLine, and the output goes to the text window via Write and WriteLine. You can
control the window’s position and dimensions with the properties WindowLeft, WindowTop,
WindowHeight, and WindowWidth. You can also change the BackgroundColor and
ForegroundColor properties and manipulate the cursor with the CursorLeft, CursorTop,
and CursorSize properties:

Console.WindowWidth = Console.LargestWindowWidth;
Console.ForegroundColor = ConsoleColor.Green;
Console.Write ("test... 50%");
Console.CursorLeft -= 3;
Console.Write ("90%");     // test... 90%

The Write and WriteLine methods are overloaded to accept a composite format string (see
String.Format in “String and Text Handling”). However, neither method accepts a format
provider, so you’re stuck with CultureInfo.CurrentCulture. (The workaround, of course,
is to explicitly call string.Format.)
The Console.Out property returns a TextWriter. Passing Console.Out to a method that
expects a TextWriter is a useful way to get that method to write to the Console for diagnostic
purposes.
You can also redirect the Console’s input and output streams via the SetIn and SetOut
methods:

// First save existing output writer:
System.IO.TextWriter oldOut = Console.Out;

// Redirect the console's output to a file:
using (System.IO.TextWriter w = System.IO.File.CreateText
                                ("e:\\output.txt"))
{
  Console.SetOut (w);
  Console.WriteLine ("Hello world");
}

// Restore standard console output
Console.SetOut (oldOut);

// Open the output.txt file in Notepad:
System.Diagnostics.Process.Start ("e:\\output.txt");

In Chapter 15, we describe how streams and text writers work.



NOTE
When running WPF or Windows Forms applications under Visual Studio, the Console’s
output is automatically redirected to Visual Studio’s output window (in debug mode). This
can make Console.Write useful for diagnostic purposes; although in most cases the Debug and
Trace classes in the System.Diagnostics namespace are more appropriate (see Chapter 13).

Environment
The static System.Environment class provides a range of useful properties:

Files and folders
CurrentDirectory, SystemDirectory, CommandLine

Computer and operating system
MachineName, ProcessorCount, OSVersion, NewLine

User logon
UserName, UserInteractive, UserDomainName

Diagnostics
TickCount, StackTrace, WorkingSet, Version

You can obtain additional folders by calling GetFolderPath; we describe this in “File and
Directory Operations” in Chapter 15.
You can access OS environment variables (what you see when you type “set” at the command
prompt) with the following three methods: GetEnvironmentVariable,
GetEnvironmentVariables, and SetEnvironmentVariable.
The ExitCode property lets you set the return code, for when your program is called from a
command or batch file, and the FailFast method terminates a program immediately, without
performing cleanup.
The Environment class available to Windows Store apps offers just a limited number of
members (ProcessorCount, NewLine, and FailFast).

Process
The Process class in System.Diagnostics allows you to launch a new process.
The static Process.Start method has a number of overloads; the simplest accepts a simple
filename with optional arguments:

Process.Start ("notepad.exe");
Process.Start ("notepad.exe", "e:\\file.txt");

You can also specify just a filename, and the registered program for its extension will be
launched:

Process.Start ("e:\\file.txt");

The most flexible overload accepts a ProcessStartInfo instance. With this, you can capture



and redirect the launched process’s input, output, and error output (if you set
UseShellExecute to false). The following captures the output of calling ipconfig:

ProcessStartInfo psi = new ProcessStartInfo
{
  FileName = "cmd.exe",
  Arguments = "/c ipconfig /all",
  RedirectStandardOutput = true,
  UseShellExecute = false
};
Process p = Process.Start (psi);
string result = p.StandardOutput.ReadToEnd();
Console.WriteLine (result);

You can do the same to invoke the csc compiler, if you set Filename to the following:

psi.FileName = System.IO.Path.Combine (
  System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory(),
  "csc.exe");

If you don’t redirect output, Process.Start executes the program in parallel to the caller. If
you want to wait for the new process to complete, you can call WaitForExit on the Process
object, with an optional timeout.
The Process class also allows you to query and interact with other processes running on the
computer (see Chapter 13).

WARNING
For security reasons, the Process class is not available to Windows Store apps, and you
cannot start arbitrary processes. Instead, you must use the Windows.System.Launcher class to
“launch” a URI or file to which you have access, e.g.:

Launcher.LaunchUriAsync (new Uri ("http://albahari.com"));

var file = await KnownFolders.DocumentsLibrary
                             .GetFileAsync ("foo.txt");
Launcher.LaunchFileAsync (file);

This opens the URI or file, using whatever program is associated with the URI scheme or file
extension. Your program must be in the foreground for this to work.

AppContext
The System.AppContext class is new to Framework 4.6. It provides a global string-keyed
dictionary of Boolean values and is intended to offer library writers a standard mechanism for
allowing consumers to switch new features on or off. This untyped approach makes sense with
experimental features that you want to keep undocumented to the majority of users.
The consumer of a library requests that a feature be enabled as follows:

AppContext.SetSwitch ("MyLibrary.SomeBreakingChange", true);

Code inside that library can then check for that switch as follows:

bool isDefined, switchValue;



isDefined = AppContext.TryGetSwitch ("MyLibrary.SomeBreakingChange",
                                      out switchValue);

TryGetSwitch returns false if the switch is undefined; this lets you distinguish an undefined
switch from one whose value is set to false, should this be necessary.

NOTE
Ironically, the design of TryGetSwitch illustrates how not to write APIs. The out parameter is
unnecessary, and the method should instead return a nullable bool whose value is true, false,
or null for undefined. This would then enable the following use:

bool switchValue = AppContext.GetSwitch ("...") ?? false;



Chapter 7. Collections

The .NET Framework provides a standard set of types for storing and managing collections of
objects. These include resizable lists, linked lists, sorted and unsorted dictionaries, as well as
arrays. Of these, only arrays form part of the C# language; the remaining collections are just
classes you instantiate like any other.
The types in the Framework for collections can be divided into the following categories:

Interfaces that define standard collection protocols

Ready-to-use collection classes (lists, dictionaries, etc.)

Base classes for writing application-specific collections

This chapter covers each of these categories, with an additional section on the types used in
determining element equality and order.
The collection namespaces are as follows:

Namespace Contains

System.Collections Nongeneric collection classes and interfaces

System.Collections.Specialized Strongly typed nongeneric collection classes

System.Collections.Generic Generic collection classes and interfaces

System.Collections.ObjectModel Proxies and bases for custom collections

System.Collections.Concurrent Thread-safe collections (see Chapter 23)

Enumeration
In computing, there are many different kinds of collections ranging from simple data structures,
such as arrays or linked lists, to more complex ones, such as red/black trees and hashtables.
Although the internal implementation and external characteristics of these data structures vary
widely, the ability to traverse the contents of the collection is an almost universal need. The
Framework supports this need via a pair of interfaces (IEnumerable, IEnumerator, and their
generic counterparts) that allow different data structures to expose a common traversal API.
These are part of a larger set of collection interfaces illustrated in Figure 7-1.



Figure 7-1. Collection interfaces

IEnumerable and IEnumerator
The IEnumerator interface defines the basic low-level protocol by which elements in a
collection are traversed — or enumerated — in a forward-only manner. Its declaration is as
follows:

public interface IEnumerator
{
  bool MoveNext();
  object Current { get; }
  void Reset();
}

MoveNext advances the current element or “cursor” to the next position, returning false if
there are no more elements in the collection. Current returns the element at the current
position (usually cast from object to a more specific type). MoveNext must be called before
retrieving the first element — this is to allow for an empty collection. The Reset method, if
implemented, moves back to the start, allowing the collection to be enumerated again. Reset
exists mainly for COM interop; calling it directly is generally avoided because it’s not
universally supported (and is unnecessary in that it’s usually just as easy to instantiate a new
enumerator).
Collections do not usually implement enumerators; instead, they provide enumerators, via the
interface IEnumerable:

public interface IEnumerable
{
  IEnumerator GetEnumerator();
}

By defining a single method retuning an enumerator, IEnumerable provides flexibility in that
the iteration logic can be farmed off to another class. Moreover, it means that several



consumers can enumerate the collection at once without interfering with each other.
IEnumerable can be thought of as “IEnumeratorProvider,” and it is the most basic interface
that collection classes implement.
The following example illustrates low-level use of IEnumerable and IEnumerator:

string s = "Hello";

// Because string implements IEnumerable, we can call GetEnumerator():
IEnumerator rator = s.GetEnumerator();

while (rator.MoveNext())
{
  char c = (char) rator.Current;
  Console.Write (c + ".");
}

// Output:  H.e.l.l.o.

However, it’s rare to call methods on enumerators directly in this manner, because C# provides
a syntactic shortcut: the foreach statement. Here’s the same example rewritten using foreach:

string s = "Hello";      // The String class implements IEnumerable

foreach (char c in s)
  Console.Write (c + ".");

IEnumerable<T> and IEnumerator<T>
IEnumerator and IEnumerable are nearly always implemented in conjunction with their
extended generic versions:

public interface IEnumerator<T> : IEnumerator, IDisposable
{
  T Current { get; }
}

public interface IEnumerable<T> : IEnumerable
{
  IEnumerator<T> GetEnumerator();
}

By defining a typed version of Current and GetEnumerator, these interfaces strengthen static
type safety, avoid the overhead of boxing with value-type elements, and are more convenient to
the consumer. Arrays automatically implement IEnumerable<T> (where T is the member type
of the array).
Thanks to the improved static type safety, calling the following method with an array of
characters will generate a compile-time error:

void Test (IEnumerable<int> numbers) { ... }

It’s a standard practice for collection classes to publicly expose IEnumerable<T>, while
“hiding” the nongeneric IEnumerable through explicit interface implementation. This is so that
if you directly call GetEnumerator(), you get back the type-safe generic IEnumerator<T>.
There are times, though, when this rule is broken for reasons of backward compatibility
(generics did not exist prior to C# 2.0). A good example is arrays — these must return the
nongeneric (the nice way of putting it is “classic”) IEnumerator to avoid breaking earlier



code. In order to get a generic IEnumerator<T>, you must cast to expose the explicit interface:

int[] data = { 1, 2, 3 };
var rator = ((IEnumerable <int>)data).GetEnumerator();

Fortunately, you rarely need to write this sort of code, thanks to the foreach statement.

IEnumerable<T> and IDisposable
IEnumerator<T> inherits from IDisposable. This allows enumerators to hold references to
resources such as database connections — and ensure that those resources are released when
enumeration is complete (or abandoned partway through). The foreach statement recognizes
this detail and translates this:

foreach (var element in somethingEnumerable) { ... }

into the logical equivalent of this:

using (var rator = somethingEnumerable.GetEnumerator())
  while (rator.MoveNext())
  {
    var element = rator.Current;
    ...
  }

The using block ensures disposal — more on IDisposable in Chapter 12.

WHEN TO USE THE NONGENERIC INTERFACES
Given the extra type safety of the generic collection interfaces such as IEnumerable<T>, the question
arises: do you ever need to use the nongeneric IEnumerable (or ICollection or IList)?
In the case of IEnumerable, you must implement this interface in conjunction with IEnumerable<T>
— because the latter derives from the former. However, it’s very rare that you actually implement
these interfaces from scratch: in nearly all cases, you can take the higher-level approach of using
iterator methods, Collection<T>, and LINQ.
So, what about as a consumer? In nearly all cases, you can manage entirely with the generic
interfaces. The nongeneric interfaces are still occasionally useful, though, in their ability to provide
type unification for collections across all element types. The following method, for instance, counts
elements in any collection recursively:

public static int Count (IEnumerable e)
{
  int count = 0;
  foreach (object element in e)
  {
    var subCollection = element as IEnumerable;
    if (subCollection != null)
      count += Count (subCollection);
    else
      count++;
  }
  return count;
}

Because C# offers covariance with generic interfaces, it might seem valid to have this method
instead accept IEnumerable<object>. This, however, would fail with value-type elements and with
legacy collections that don’t implement IEnumerable<T> — an example is ControlCollection in
Windows Forms.



(On a slight tangent, you might have noticed a potential bug in our example: cyclic references will
cause infinite recursion and crash the method. We could fix this most easily with the use of a
HashSet [see “HashSet<T> and SortedSet<T>”].)

Implementing the Enumeration Interfaces
You might want to implement IEnumerable or IEnumerable<T> for one or more of the
following reasons:

To support the foreach statement

To interoperate with anything expecting a standard collection

To meet the requirements of a more sophisticated collection interface

To support collection initializers

To implement IEnumerable/IEnumerable<T>, you must provide an enumerator. You can do
this in one of three ways:

If the class is “wrapping” another collection, by returning the wrapped collection’s
enumerator

Via an iterator using yield return

By instantiating your own IEnumerator/IEnumerator<T> implementation

NOTE
You can also subclass an existing collection: Collection<T> is designed just for this purpose
(see “Customizable Collections and Proxies”). Yet another approach is to use the LINQ
query operators that we’ll cover in the next chapter.

Returning another collection’s enumerator is just a matter of calling GetEnumerator on the
inner collection. However, this is viable only in the simplest scenarios, where the items in the
inner collection are exactly what are required. A more flexible approach is to write an iterator,
using C#’s yield return statement. An iterator is a C# language feature that assists in
writing collections, in the same way the foreach statement assists in consuming collections.
An iterator automatically handles the implementation of IEnumerable and IEnumerator — or
their generic versions. Here’s a simple example:

public class MyCollection : IEnumerable
{
  int[] data = { 1, 2, 3 };

  public IEnumerator GetEnumerator()
  {
    foreach (int i in data)
      yield return i;
  }
}

Notice the “black magic”: GetEnumerator doesn’t appear to return an enumerator at all! Upon



parsing the yield return statement, the compiler writes a hidden nested enumerator class
behind the scenes, and then refactors GetEnumerator to instantiate and return that class.
Iterators are powerful and simple (and are used extensively in the implementation of LINQ-to-
Object’s standard query operators).
Keeping with this approach, we can also implement the generic interface IEnumerable<T>:

public class MyGenCollection : IEnumerable<int>
{
  int[] data = { 1, 2, 3 };

  public IEnumerator<int> GetEnumerator()
  {
    foreach (int i in data)
      yield return i;
  }

  IEnumerator IEnumerable.GetEnumerator()     // Explicit implementation
  {                                           // keeps it hidden.
    return GetEnumerator();
  }
}

Because IEnumerable<T> inherits from IEnumerable, we must implement both the generic
and the nongeneric versions of GetEnumerator. In accordance with standard practice, we’ve
implemented the nongeneric version explicitly. It can simply call the generic GetEnumerator
because IEnumerator<T> inherits from IEnumerator.
The class we’ve just written would be suitable as a basis from which to write a more
sophisticated collection. However, if we need nothing above a simple IEnumerable<T>
implementation, the yield return statement allows for an easier variation. Rather than
writing a class, you can move the iteration logic into a method returning a generic
IEnumerable<T> and let the compiler take care of the rest. Here’s an example:

public class Test
{
  public static IEnumerable <int> GetSomeIntegers()
  {
    yield return 1;
    yield return 2;
    yield return 3;
  }
}

Here’s our method in use:

foreach (int i in Test.GetSomeIntegers())
  Console.WriteLine (i);

// Output
1
2
3

The final approach in writing GetEnumerator is to write a class that implements
IEnumerator directly. This is exactly what the compiler does behind the scenes, in resolving
iterators. (Fortunately, it’s rare that you’ll need to go this far yourself.) The following example
defines a collection that’s hardcoded to contain the integers 1, 2, and 3:

public class MyIntList : IEnumerable



{
  int[] data = { 1, 2, 3 };

  public IEnumerator GetEnumerator()
  {
    return new Enumerator (this);
  }

  class Enumerator : IEnumerator       // Define an inner class
  {                                    // for the enumerator.
    MyIntList collection;
    int currentIndex = -1;

    public Enumerator (MyIntList collection)
    {
      this.collection = collection;
    }

    public object Current
    {
      get
      {
        if (currentIndex == -1)
          throw new InvalidOperationException ("Enumeration not started!");
        if (currentIndex == collection.data.Length)
          throw new InvalidOperationException ("Past end of list!");
        return collection.data [currentIndex];
      }
    }

    public bool MoveNext()
    {
      if (currentIndex >= collection.data.Length - 1) return false;
      return ++currentIndex < collection.data.Length;
    }

    public void Reset() { currentIndex = -1; }
  }
}

NOTE
Implementing Reset is optional — you can instead throw a NotSupportedException.

Note that the first call to MoveNext should move to the first (and not the second) item in the list.
To get on par with an iterator in functionality, we must also implement IEnumerator<T>.
Here’s an example with bounds checking omitted for brevity:

class MyIntList : IEnumerable<int>
{
  int[] data = { 1, 2, 3 };

  // The generic enumerator is compatible with both IEnumerable and
  // IEnumerable<T>. We implement the nongeneric GetEnumerator method
  // explicitly to avoid a naming conflict.

  public IEnumerator<int> GetEnumerator() { return new Enumerator(this); }
  IEnumerator IEnumerable.GetEnumerator() { return new Enumerator(this); }

  class Enumerator : IEnumerator<int>
  {
    int currentIndex = -1;
    MyIntList collection;

    public Enumerator (MyIntList collection)



    {
      this.collection = collection;
    }

    public int Current => collection.data [currentIndex];
    object IEnumerator.Current => Current;

    public bool MoveNext() => ++currentIndex < collection.data.Length;

    public void Reset() => currentIndex = -1;

    // Given we don't need a Dispose method, it's good practice to
    // implement it explicitly, so it's hidden from the public interface.
    void IDisposable.Dispose() {}
  }
}

The example with generics is faster because IEnumerator<int>.Current doesn’t require
casting from int to object, and so avoids the overhead of boxing.

The ICollection and IList Interfaces
Although the enumeration interfaces provide a protocol for forward-only iteration over a
collection, they don’t provide a mechanism to determine the size of the collection, access a
member by index, search, or modify the collection. For such functionality, the .NET Framework
defines the ICollection, IList, and IDictionary interfaces. Each comes in both generic
and nongeneric versions; however, the nongeneric versions exist mostly for legacy support.
The inheritance hierarchy for these interfaces was shown in Figure 7-1. The easiest way to
summarize them is as follows:

IEnumerable<T> (and IEnumerable)
Provides minimum functionality (enumeration only)

ICollection<T> (and ICollection)
Provides medium functionality (e.g., the Count property)

IList <T>/IDictionary <K,V> and their nongeneric versions
Provide maximum functionality (including “random” access by index/key)

NOTE
It’s rare that you’ll need to implement any of these interfaces. In nearly all cases when you
need to write a collection class, you can instead subclass Collection<T> (see “Customizable
Collections and Proxies”). LINQ provides yet another option that covers many scenarios.

The generic and nongeneric versions differ in ways over and above what you might expect,
particularly in the case of ICollection. The reasons for this are mostly historical: because
generics came later, the generic interfaces were developed with the benefit of hindsight,
leading to a different (and better) choice of members. For this reason, ICollection<T> does
not extend ICollection, IList<T> does not extend IList, and IDictionary<TKey,
TValue> does not extend IDictionary. Of course, a collection class itself is free to
implement both versions of an interface if beneficial (which it often is).



NOTE
Another, subtler reason for IList<T> not extending IList is that casting to IList<T> would
then return an interface with both Add(T) and Add(object) members. This would effectively
defeat static type safety, because you could call Add with an object of any type.

This section covers ICollection<T>, IList<T>, and their nongeneric versions;
“Dictionaries” covers the dictionary interfaces.

NOTE
There is no consistent rationale in the way the words collection and list are applied
throughout the .NET Framework. For instance, since IList<T> is a more functional version
of ICollection<T>, you might expect the class List<T> to be correspondingly more functional
than the class Collection<T>. This is not the case. It’s best to consider the terms collection
and list as broadly synonymous, except when a specific type is involved.

ICollection<T> and ICollection
ICollection<T> is the standard interface for countable collections of objects. It provides the
ability to determine the size of a collection (Count), determine whether an item exists in the
collection (Contains), copy the collection into an array (ToArray), and determine whether the
collection is read-only (IsReadOnly). For writable collections, you can also Add, Remove, and
Clear items from the collection. And since it extends IEnumerable<T>, it can also be
traversed via the foreach statement.

public interface ICollection<T> : IEnumerable<T>, IEnumerable
{
  int Count { get; }

  bool Contains (T item);
  void CopyTo (T[] array, int arrayIndex);
  bool IsReadOnly { get; }

  void Add(T item);
  bool Remove (T item);
  void Clear();
}

The nongeneric ICollection is similar in providing a countable collection, but doesn’t
provide functionality for altering the list or checking for element membership:

public interface ICollection : IEnumerable
{
   int Count { get; }
   bool IsSynchronized { get; }
   object SyncRoot { get; }
   void CopyTo (Array array, int index);
}

The nongeneric interface also defines properties to assist with synchronization (Chapter 14) —
these were dumped in the generic version because thread safety is no longer considered
intrinsic to the collection.



Both interfaces are fairly straightforward to implement. If implementing a read-only
ICollection<T>, the Add, Remove, and Clear methods should throw a
NotSupportedException.
These interfaces are usually implemented in conjunction with either the IList or the
IDictionary interface.

IList<T> and IList
IList<T> is the standard interface for collections indexable by position. In addition to the
functionality inherited from ICollection<T> and IEnumerable<T>, it provides the ability to
read or write an element by position (via an indexer) and insert/remove by position:

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable
{
  T this [int index] { get; set; }
  int IndexOf (T item);
  void Insert (int index, T item);
  void RemoveAt (int index);
}

The IndexOf methods perform a linear search on the list, returning -1 if the specified item is
not found.
The nongeneric version of IList has more members because it inherits less from
ICollection:

public interface IList : ICollection, IEnumerable
{
  object this [int index] { get; set }
  bool IsFixedSize { get; }
  bool IsReadOnly  { get; }
  int  Add      (object value);
  void Clear();
  bool Contains (object value);
  int  IndexOf  (object value);
  void Insert   (int index, object value);
  void Remove   (object value);
  void RemoveAt (int index);
}

The Add method on the nongeneric IList interface returns an integer — this is the index of the
newly added item. In contrast, the Add method on ICollection<T> has a void return type.
The general-purpose List<T> class is the quintessential implementation of both IList<T> and
IList. C# arrays also implement both the generic and nongeneric ILists (although the
methods that add or remove elements are hidden via explicit interface implementation and
throw a NotSupportedException if called).

WARNING
An ArgumentException is thrown if you try to access a multidimensional array via IList’s
indexer. This is a trap when writing methods such as the following:

public object FirstOrNull (IList list)
{
  if (list == null || list.Count == 0) return null;
  return list[0];
}



This might appear bulletproof, but it will throw an exception if called with a multidimensional
array. You can test for a multidimensional array at runtime with this expression (more on this
in Chapter 19):

list.GetType().IsArray && list.GetType().GetArrayRank()>1

IReadOnlyList<T>
In order to interoperate with read-only Windows Runtime collections, Framework 4.5
introduced a new collection interface called IReadOnlyList<T>. This interface is useful in
and of itself, and can be considered a cut-down version of IList<T>, exposing just the
members required for read-only operations on lists:

public interface IReadOnlyList<out T> : IEnumerable<T>, IEnumerable
{
  int Count { get; }
  T this[int index] { get; }
}

Because its type parameter is used only in output positions, it’s marked as covariant. This
allows a list of cats, for instance, to be treated as a read-only list of animals. In contrast, T is
not marked as covariant with IList<T>, because T is used in both input and output positions.

NOTE
IReadOnlyList<T> represents a read-only view of a list. It doesn’t necessarily imply that the
underlying implementation is read-only.

It would be logical for IList<T> to derive from IReadOnlyList<T>. However, Microsoft
was unable to make this change because doing so would require moving members from
IList<T> to IReadOnlyList<T>, which would introduce a breaking change into CLR 4.5
(consumers would need to re-compile their programs to avoid runtime errors). Instead,
implementers of IList<T> need to manually add IReadOnlyList<T> to their list of
implemented interfaces.
IReadOnlyList<T> maps to the Windows Runtime type IVectorView<T>.

The Array Class
The Array class is the implicit base class for all single and multidimensional arrays, and it is
one of the most fundamental types implementing the standard collection interfaces. The Array
class provides type unification, so a common set of methods is available to all arrays,
regardless of their declaration or underlying element type.
Since arrays are so fundamental, C# provides explicit syntax for their declaration and
initialization, described in Chapters 2 and 3. When an array is declared using C#’s syntax, the
CLR implicitly subtypes the Array class — synthesizing a pseudotype appropriate to the
array’s dimensions and element types. This pseudotype implements the typed generic collection
interfaces, such as IList<string>.



The CLR also treats array types specially upon construction, assigning them a contiguous space
in memory. This makes indexing into arrays highly efficient, but prevents them from being
resized later on.
Array implements the collection interfaces up to IList<T> in both their generic and
nongeneric forms. IList<T> itself is implemented explicitly, though, to keep Array’s public
interface clean of methods such as Add or Remove, which throw an exception on fixed-length
collections such as arrays. The Array class does actually offer a static Resize method,
although this works by creating a new array and then copying over each element. As well as
being inefficient, references to the array elsewhere in the program will still point to the
original version. A better solution for resizable collections is to use the List<T> class
(described in the following section).
An array can contain value-type or reference-type elements. Value-type elements are stored in
place in the array, so an array of three long integers (each 8 bytes) will occupy 24 bytes of
contiguous memory. A reference-type element, however, occupies only as much space in the
array as a reference (4 bytes in a 32-bit environment or 8 bytes in a 64-bit environment).
Figure 7-2 illustrates the effect, in memory, of the following program:

StringBuilder[] builders = new StringBuilder [5];
builders [0] = new StringBuilder ("builder1");
builders [1] = new StringBuilder ("builder2");
builders [2] = new StringBuilder ("builder3");

long[] numbers = new long [3];
numbers [0] = 12345;
numbers [1] = 54321;



Figure 7-2. Arrays in memory

Because Array is a class, arrays are always (themselves) reference types — regardless of the
array’s element type. This means that the statement arrayB = arrayA results in two variables
that reference the same array. Similarly, two distinct arrays will always fail an equality test —
unless you use a custom equality comparer. Framework 4.0 introduced one for the purpose of
comparing elements in arrays which you can access via the StructuralComparisons type:

object[] a1 = { "string", 123, true };
object[] a2 = { "string", 123, true };

Console.WriteLine (a1 == a2);                          // False
Console.WriteLine (a1.Equals (a2));                    // False

IStructuralEquatable se1 = a1;
Console.WriteLine (se1.Equals (a2,
 StructuralComparisons.StructuralEqualityComparer));   // True

Arrays can be duplicated with the Clone method: arrayB = arrayA.Clone(). However, this
results in a shallow clone, meaning that only the memory represented by the array itself is
copied. If the array contains value-type objects, the values themselves are copied; if the array
contains reference-type objects, just the references are copied (resulting in two arrays whose
members reference the same objects). Figure 7-3 demonstrates the effect of adding the



following code to our example:

StringBuilder[] builders2 = builders;
StringBuilder[] shallowClone = (StringBuilder[]) builders.Clone();

Figure 7-3. Shallow-cloning an array

To create a deep copy — where reference-type subobjects are duplicated — you must loop
through the array and clone each element manually. The same rules apply to other .NET
collection types.
Although Array is designed primarily for use with 32-bit indexers, it also has limited support
for 64-bit indexers (allowing an array to theoretically address up to 264 elements) via several
methods that accept both Int32 and Int64 parameters. These overloads are useless in
practice, because the CLR does not permit any object — including arrays — to exceed 2GB in
size (whether running on a 32- or 64-bit environment).

WARNING
Many of the methods on the Array class that you expect to be instance methods are in fact



static methods. This is an odd design decision, and means you should check for both static
and instance methods when looking for a method on Array.

Construction and Indexing
The easiest way to create and index arrays is through C#’s language constructs:

int[] myArray = { 1, 2, 3 };
int first = myArray [0];
int last = myArray [myArray.Length - 1];

Alternatively, you can instantiate an array dynamically by calling Array.CreateInstance.
This allows you to specify element type and rank (number of dimensions) at runtime — as well
as allowing nonzero-based arrays through specifying a lower bound. Nonzero-based arrays are
not CLS (Common Language Specification)-compliant.
The GetValue and SetValue methods let you access elements in a dynamically created array
(they also work on ordinary arrays):

 // Create a string array 2 elements in length:
 Array a = Array.CreateInstance (typeof(string), 2);
 a.SetValue ("hi", 0);                             //  → a[0] = "hi";
 a.SetValue ("there", 1);                          //  → a[1] = "there";
 string s = (string) a.GetValue (0);               //  → s = a[0];

 // We can also cast to a C# array as follows:
 string[] cSharpArray = (string[]) a;
 string s2 = cSharpArray [0];

Zero-indexed arrays created dynamically can be cast to a C# array of a matching or compatible
type (compatible by standard array-variance rules). For example, if Apple subclasses Fruit,
Apple[] can be cast to Fruit[]. This leads to the issue of why object[] was not used as the
unifying array type rather the Array class. The answer is that object[] is incompatible with
both multidimensional and value-type arrays (and nonzero-based arrays). An int[] array
cannot be cast to object[]. Hence, we require the Array class for full type unification.
GetValue and SetValue also work on compiler-created arrays, and they are useful when
writing methods that can deal with an array of any type and rank. For multidimensional arrays,
they accept an array of indexers:

public object GetValue (params int[] indices)
public void   SetValue (object value, params int[] indices)

The following method prints the first element of any array, regardless of rank:

 void WriteFirstValue (Array a)
 {
   Console.Write (a.Rank + "-dimensional; ");

   // The indexers array will automatically initialize to all zeros, so
   // passing it into GetValue or SetValue will get/set the zero-based
   // (i.e., first) element in the array.

   int[] indexers = new int[a.Rank];
   Console.WriteLine ("First value is " +  a.GetValue (indexers));
 }

 void Demo()



 {
   int[]  oneD = { 1, 2, 3 };
   int[,] twoD = { {5,6}, {8,9} };

   WriteFirstValue (oneD);   // 1-dimensional; first value is 1
   WriteFirstValue (twoD);   // 2-dimensional; first value is 5
 }

NOTE
For working with arrays of unknown type but known rank, generics provide an easier and
more efficient solution:

void WriteFirstValue<T> (T[] array)
{
  Console.WriteLine (array[0]);
}

SetValue throws an exception if the element is of an incompatible type for the array.
When an array is instantiated, whether via language syntax or Array.CreateInstance, its
elements are automatically initialized. For arrays with reference-type elements, this means
writing nulls; for arrays with value-type elements, this means calling the value-type’s default
constructor (effectively “zeroing” the members). The Array class also provides this
functionality on demand via the Clear method:

public static void Clear (Array array, int index, int length);

This method doesn’t affect the size of the array. This is in contrast to the usual use of Clear
(such as in ICollection<T>.Clear) where the collection is reduced to zero elements.

Enumeration
Arrays are easily enumerated with a foreach statement:

int[] myArray = { 1, 2, 3};
foreach (int val in myArray)
  Console.WriteLine (val);

You can also enumerate using the static Array.ForEach method, defined as follows:

public static void ForEach<T> (T[] array, Action<T> action);

This uses an Action delegate, with this signature:

public delegate void Action<T> (T obj);

Here’s the first example rewritten with Array.ForEach:

Array.ForEach (new[] { 1, 2, 3 }, Console.WriteLine);

Length and Rank



Array provides the following methods and properties for querying length and rank:

public int  GetLength      (int dimension);
public long GetLongLength  (int dimension);

public int  Length       { get; }
public long LongLength   { get; }

public int GetLowerBound (int dimension);
public int GetUpperBound (int dimension);

public int Rank { get; }    // Returns number of dimensions in array

GetLength and GetLongLength return the length for a given dimension (0 for a single-
dimensional array), and Length and LongLength return the total number of elements in the
array — all dimensions included.
GetLowerBound and GetUpperBound are useful with nonzero-indexed arrays. GetUpperBound
returns the same result as adding GetLowerBound to GetLength for any given dimension.

Searching
The Array class offers a range of methods for finding elements within a one-dimensional
array:

BinarySearch methods
For rapidly searching a sorted array for a particular item

IndexOf / LastIndex methods
For searching unsorted arrays for a particular item

Find / FindLast / FindIndex / FindLastIndex / FindAll / Exists / TrueForAll
For searching unsorted arrays for item(s) that satisfy a given Predicate<T>

None of the array searching methods throws an exception if the specified value is not found.
Instead, if an item is not found, methods returning an integer return -1 (assuming a zero-indexed
array), and methods returning a generic type return the type’s default value (e.g., 0 for an int,
or null for a string ).
The binary search methods are fast, but they work only on sorted arrays and require that the
elements be compared for order, rather than simply equality. To this effect, the binary search
methods can accept an IComparer or IComparer<T> object to arbitrate on ordering decisions
(see the section “Plugging in Equality and Order” later in this chapter). This must be consistent
with any comparer used in originally sorting the array. If no comparer is provided, the type’s
default ordering algorithm will be applied, based on its implementation of IComparable /
IComparable<T>.
The IndexOf and LastIndexOf methods perform a simple enumeration over the array,
returning the position of the first (or last) element that matches the given value.
The predicate-based searching methods allow a method delegate or lambda expression to
arbitrate on whether a given element is a “match.” A predicate is simply a delegate accepting
an object and returning true or false:

public delegate bool Predicate<T> (T object);



In the following example, we search an array of strings for a name containing the letter “a”:

static void Main()
{
  string[] names = { "Rodney", "Jack", "Jill" };
  string match = Array.Find (names, ContainsA);
  Console.WriteLine (match);     // Jack
}
static bool ContainsA (string name) { return name.Contains ("a"); }

Here’s the same code shortened with an anonymous method:

string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, delegate (string name)
  { return name.Contains ("a"); } );

A lambda expression shortens it further:

string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, n => n.Contains ("a"));     // Jack

FindAll returns an array of all items satisfying the predicate. In fact, it’s equivalent to
Enumerable.Where in the System.Linq namespace, except that FindAll returns an array of
matching items rather than an IEnumerable<T> of the same.
Exists returns true if any array member satisfies the given predicate, and is equivalent to Any
in System.Linq.Enumerable.
TrueForAll returns true if all items satisfy the predicate, and is equivalent to All in
System.Linq.Enumerable.

Sorting
Array has the following built-in sorting methods:

// For sorting a single array:

public static void Sort<T> (T[] array);
public static void Sort    (Array array);

// For sorting a pair of arrays:

public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items);
public static void Sort              (Array keys, Array items);

Each of these methods is additionally overloaded to also accept:

int index                 // Starting index at which to begin sorting
int length                // Number of elements to sort
IComparer<T> comparer     // Object making ordering decisions
Comparison<T> comparison  // Delegate making ordering decisions

The following illustrates the simplest use of Sort:

int[] numbers = { 3, 2, 1 };
Array.Sort (numbers);                     // Array is now { 1, 2, 3 }

The methods accepting a pair of arrays work by rearranging the items of each array in tandem,



basing the ordering decisions on the first array. In the next example, both the numbers and their
corresponding words are sorted into numerical order:

int[] numbers = { 3, 2, 1 };
string[] words = { "three", "two", "one" };
Array.Sort (numbers, words);

// numbers array is now { 1, 2, 3 }
// words   array is now { "one", "two", "three" }

Array.Sort requires that the elements in the array implement IComparable (see the section
“Order Comparison” in Chapter 6). This means that most built-in C# types (such as integers, as
in the preceding example) can be sorted. If the elements are not intrinsically comparable, or
you want to override the default ordering, you must provide Sort with a custom comparison
provider that reports on the relative position of two elements. There are ways to do this:

Via a helper object that implements IComparer /IComparer<T> (see the section “Plugging
in Equality and Order” later in this chapter)

Via a Comparison delegate:

public delegate int Comparison<T> (T x, T y);

The Comparison delegate follows the same semantics as IComparer<T>.CompareTo: if x
comes before y, a negative integer is returned; if x comes after y, a positive integer is returned;
if x and y have the same sorting position, 0 is returned.
In the following example, we sort an array of integers such that the odd numbers come first:

int[] numbers = { 1, 2, 3, 4, 5 };
Array.Sort (numbers, (x, y) => x % 2 == y % 2 ? 0 : x % 2 == 1 ? -1 : 1);

// numbers array is now { 1, 3, 5, 2, 4 }

NOTE
As an alternative to calling Sort, you can use LINQ’s OrderBy and ThenBy operators. Unlike
Array.Sort, the LINQ operators don’t alter the original array, instead emitting the sorted
result in a fresh IEnumerable<T> sequence.

Reversing Elements
The following Array methods reverse the order of all — or a portion of — elements in an
array:

public static void Reverse (Array array);
public static void Reverse (Array array, int index, int length);

Copying
Array provides four methods to perform shallow copying: Clone, CopyTo, Copy, and
ConstrainedCopy. The former two are instance methods; the latter two are static methods.
The Clone method returns a whole new (shallow-copied) array. The CopyTo and Copy



methods copy a contiguous subset of the array. Copying a multidimensional rectangular array
requires you to map the multidimensional index to a linear index. For example, the middle
square (position[1,1]) in a 3 × 3 array is represented with the index 4, from the calculation:
1*3 + 1. The source and destination ranges can overlap without causing a problem.
ConstrainedCopy performs an atomic operation: if all of the requested elements cannot be
successfully copied (due to a type error, for instance), the operation is rolled back.
Array also provides a AsReadOnly method which returns a wrapper that prevents elements
from being reassigned.

Converting and Resizing
Array.ConvertAll creates and returns a new array of element type TOutput, calling the
supplied Converter delegate to copy over the elements. Converter is defined as follows:

public delegate TOutput Converter<TInput,TOutput> (TInput input)

The following converts an array of floats to an array of integers:

float[] reals = { 1.3f, 1.5f, 1.8f };
int[] wholes = Array.ConvertAll (reals, r => Convert.ToInt32 (r));

// wholes array is { 1, 2, 2 }

The Resize method works by creating a new array and copying over the elements, returning the
new array via the reference parameter. However, any references to the original array in other
objects will remain unchanged.

NOTE
The System.Linq namespace offers an additional buffet of extension methods suitable for
array conversion. These methods return an IEnumerable<T>, which you can convert back to
an array via Enumerable’s ToArray method.

Lists, Queues, Stacks, and Sets
The Framework provides a basic set of concrete collection classes that implement the
interfaces described in this chapter. This section concentrates on the list-like collections
(versus the dictionary-like collections covered in “Dictionaries”). As with the interfaces we
discussed previously, you usually have a choice of generic or nongeneric versions of each type.
In terms of flexibility and performance, the generic classes win, making their nongeneric
counterparts redundant except for backward compatibility. This differs from the situation with
collection interfaces, where the nongeneric versions are still occasionally useful.
Of the classes described in this section, the generic List class is the most commonly used.

List<T> and ArrayList
The generic List and nongeneric ArrayList classes provide a dynamically sized array of
objects and are among the most commonly used of the collection classes. ArrayList



implements IList, whereas List<T> implements both IList and IList<T> (and the new
read-only version, IReadOnlyList<T>). Unlike with arrays, all interfaces are implemented
publicly, and methods such as Add and Remove are exposed and work as you would expect.
Internally, List<T> and ArrayList work by maintaining an internal array of objects, replaced
with a larger array upon reaching capacity. Appending elements is efficient (since there is
usually a free slot at the end), but inserting elements can be slow (since all elements after the
insertion point have to be shifted to make a free slot). As with arrays, searching is efficient if
the BinarySearch method is used on a list that has been sorted, but is otherwise inefficient
because each item must be individually checked.

NOTE
List<T> is up to several times faster than ArrayList if T is a value type, because List<T>
avoids the overhead of boxing and unboxing elements.

List<T> and ArrayList provide constructors that accept an existing collection of elements —
these copy each element from the existing collection into the new List<T> or ArrayList:

public class List<T> : IList<T>, IReadOnlyList<T>
{
  public List ();
  public List (IEnumerable<T> collection);
  public List (int capacity);

  // Add+Insert
  public void Add         (T item);
  public void AddRange    (IEnumerable<T> collection);
  public void Insert      (int index, T item);
  public void InsertRange (int index, IEnumerable<T> collection);

  // Remove
  public bool Remove      (T item);
  public void RemoveAt    (int index);
  public void RemoveRange (int index, int count);
  public int  RemoveAll   (Predicate<T> match);

  // Indexing
  public T this [int index] { get; set; }
  public List<T> GetRange (int index, int count);
  public Enumerator<T> GetEnumerator();

  // Exporting, copying and converting:
  public T[] ToArray();
  public void CopyTo (T[] array);
  public void CopyTo (T[] array, int arrayIndex);
  public void CopyTo (int index, T[] array, int arrayIndex, int count);
  public ReadOnlyCollection<T> AsReadOnly();
  public List<TOutput> ConvertAll<TOutput> (Converter <T,TOutput>
                                            converter);
  // Other:
  public void Reverse();            // Reverses order of elements in list.
  public int Capacity { get;set; }  // Forces expansion of internal array.
  public void TrimExcess();         // Trims internal array back to size.
  public void Clear();              // Removes all elements, so Count=0.
}

public delegate TOutput Converter <TInput, TOutput> (TInput input);

In addition to these members, List<T> provides instance versions of all of Array’s searching
and sorting methods.



The following code demonstrates List’s properties and methods. See “The Array Class” for
examples on searching and sorting.

List<string> words = new List<string>();    // New string-typed list

words.Add ("melon");
words.Add ("avocado");
words.AddRange (new[] { "banana", "plum" } );
words.Insert (0, "lemon");                           // Insert at start
words.InsertRange (0, new[] { "peach", "nashi" });   // Insert at start

words.Remove ("melon");
words.RemoveAt (3);                         // Remove the 4th element
words.RemoveRange (0, 2);                   // Remove first 2 elements

// Remove all strings starting in 'n':
words.RemoveAll (s => s.StartsWith ("n"));

Console.WriteLine (words [0]);                          // first word
Console.WriteLine (words [words.Count - 1]);            // last word
foreach (string s in words) Console.WriteLine (s);      // all words
List<string> subset = words.GetRange (1, 2);            // 2nd->3rd words

string[] wordsArray = words.ToArray();    // Creates a new typed array

// Copy first two elements to the end of an existing array:
string[] existing = new string [1000];
words.CopyTo (0, existing, 998, 2);

List<string> upperCastWords = words.ConvertAll (s => s.ToUpper());
List<int> lengths = words.ConvertAll (s => s.Length);

The nongeneric ArrayList class is used mainly for backward compatibility with Framework
1.x code and requires clumsy casts — as the following example demonstrates:

ArrayList al = new ArrayList();
al.Add ("hello");
string first = (string) al [0];
string[] strArr = (string[]) al.ToArray (typeof (string));

Such casts cannot be verified by the compiler; the following compiles successfully but then
fails at runtime:

int first = (int) al [0];    // Runtime exception

NOTE
An ArrayList is functionally similar to List<object>. Both are useful when you need a list of
mixed-type elements that share no common base type (other than object). A possible
advantage of choosing an ArrayList, in this case, would be if you need to deal with the list
using reflection (Chapter 19). Reflection is easier with a nongeneric ArrayList than a
List<object>.

If you import the System.Linq namespace, you can convert an ArrayList to a generic List
by calling Cast and then ToList:

ArrayList al = new ArrayList();
al.AddRange (new[] { 1, 5, 9 } );
List<int> list = al.Cast<int>().ToList();



Cast and ToList are extension methods in the System.Linq.Enumerable class.

LinkedList<T>
LinkedList<T> is a generic doubly linked list (see Figure 7-4). A doubly linked list is a chain
of nodes in which each references the node before, the node after, and the actual element. Its
main benefit is that an element can always be inserted efficiently anywhere in the list, since it
just involves creating a new node and updating a few references. However, finding where to
insert the node in the first place can be slow, as there’s no intrinsic mechanism to index directly
into a linked list; each node must be traversed, and binary-chop searches are not possible.

Figure 7-4. LinkedList<T>

LinkedList<T> implements IEnumerable<T> and ICollection<T> (and their nongeneric
versions), but not IList<T> since access by index is not supported. List nodes are
implemented via the following class:

public sealed class LinkedListNode<T>
{
  public LinkedList<T> List { get; }
  public LinkedListNode<T> Next { get; }
  public LinkedListNode<T> Previous { get; }
  public T Value { get; set; }
}

When adding a node, you can specify its position either relative to another node or at the
start/end of the list. LinkedList<T> provides the following methods for this:

public void AddFirst(LinkedListNode<T> node);
public LinkedListNode<T> AddFirst (T value);

public void AddLast (LinkedListNode<T> node);
public LinkedListNode<T> AddLast (T value);

public void AddAfter (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddAfter (LinkedListNode<T> node, T value);



public void AddBefore (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddBefore (LinkedListNode<T> node, T value);

Similar methods are provided to remove elements:

public void Clear();

public void RemoveFirst();
public void RemoveLast();

public bool Remove (T value);
public void Remove (LinkedListNode<T> node);

LinkedList<T> has internal fields to keep track of the number of elements in the list, as well
as the head and tail of the list. These are exposed in the following public properties:

public int Count { get; }                      // Fast
public LinkedListNode<T> First { get; }        // Fast
public LinkedListNode<T> Last { get; }         // Fast

LinkedList<T> also supports the following searching methods (each requiring that the list be
internally enumerated):

public bool Contains (T value);
public LinkedListNode<T> Find (T value);
public LinkedListNode<T> FindLast (T value);

Finally, LinkedList<T> supports copying to an array for indexed processing and obtaining an
enumerator to support the foreach statement:

public void CopyTo (T[] array, int index);
public Enumerator<T> GetEnumerator();

Here’s a demonstration on the use of LinkedList<string>:

var tune = new LinkedList<string>();
tune.AddFirst ("do");                           // do
tune.AddLast ("so");                            // do - so

tune.AddAfter (tune.First, "re");               // do - re- so
tune.AddAfter (tune.First.Next, "mi");          // do - re - mi- so
tune.AddBefore (tune.Last, "fa");               // do - re - mi - fa- so

tune.RemoveFirst();                             // re - mi - fa - so
tune.RemoveLast();                              // re - mi - fa

LinkedListNode<string> miNode = tune.Find ("mi");
tune.Remove (miNode);                           // re - fa
tune.AddFirst (miNode);                         // mi- re - fa

foreach (string s in tune) Console.WriteLine (s);

Queue<T> and Queue
Queue<T> and Queue are first-in, first-out (FIFO) data structures, providing methods to
Enqueue (add an item to the tail of the queue) and Dequeue (retrieve and remove the item at the
head of the queue). A Peek method is also provided to return the element at the head of the
queue without removing it, and a Count property (useful in checking that elements are present



before dequeuing).
Although queues are enumerable, they do not implement IList<T>/IList, since members
cannot be accessed directly by index. A ToArray method is provided, however, for copying the
elements to an array where they can be randomly accessed:

public class Queue<T> : IEnumerable<T>, ICollection, IEnumerable
{
  public Queue();
  public Queue (IEnumerable<T> collection);   // Copies existing elements
  public Queue (int capacity);                // To lessen auto-resizing
  public void Clear();
  public bool Contains (T item);
  public void CopyTo (T[] array, int arrayIndex);
  public int Count { get; }
  public T Dequeue();
  public void Enqueue (T item);
  public Enumerator<T> GetEnumerator();       // To support foreach
  public T Peek();
  public T[] ToArray();
  public void TrimExcess();
}

The following is an example of using Queue<int>:

var q = new Queue<int>();
q.Enqueue (10);
q.Enqueue (20);
int[] data = q.ToArray();         // Exports to an array
Console.WriteLine (q.Count);      // "2"
Console.WriteLine (q.Peek());     // "10"
Console.WriteLine (q.Dequeue());  // "10"
Console.WriteLine (q.Dequeue());  // "20"
Console.WriteLine (q.Dequeue());  // throws an exception (queue empty)

Queues are implemented internally using an array that’s resized as required — much like the
generic List class. The queue maintains indexes that point directly to the head and tail
elements; therefore, enqueuing and dequeuing are extremely quick operations (except when an
internal resize is required).

Stack<T> and Stack
Stack<T> and Stack are last-in, first-out (LIFO) data structures, providing methods to Push
(add an item to the top of the stack) and Pop (retrieve and remove an element from the top of
the stack). A nondestructive Peek method is also provided, as is a Count property and a
ToArray method for exporting the data for random access:

public class Stack<T> : IEnumerable<T>, ICollection, IEnumerable
{
  public Stack();
  public Stack (IEnumerable<T> collection);   // Copies existing elements
  public Stack (int capacity);                // Lessens auto-resizing
  public void Clear();
  public bool Contains (T item);
  public void CopyTo (T[] array, int arrayIndex);
  public int Count { get; }
  public Enumerator<T> GetEnumerator();       // To support foreach
  public T Peek();
  public T Pop();
  public void Push (T item);
  public T[] ToArray();
  public void TrimExcess();



}

The following example demonstrates Stack<int>:

var s = new Stack<int>();
s.Push (1);                      //            Stack = 1
s.Push (2);                      //            Stack = 1,2
s.Push (3);                      //            Stack = 1,2,3
Console.WriteLine (s.Count);     // Prints 3
Console.WriteLine (s.Peek());    // Prints 3,  Stack = 1,2,3
Console.WriteLine (s.Pop());     // Prints 3,  Stack = 1,2
Console.WriteLine (s.Pop());     // Prints 2,  Stack = 1
Console.WriteLine (s.Pop());     // Prints 1,  Stack = <empty>
Console.WriteLine (s.Pop());     // throws exception

Stacks are implemented internally with an array that’s resized as required, as with Queue<T>
and List<T>.

BitArray
A BitArray is a dynamically sized collection of compacted bool values. It is more memory-
efficient than both a simple array of bool and a generic List of bool, because it uses only one
bit for each value, whereas the bool type otherwise occupies one byte for each value.
BitArray’s indexer reads and writes individual bits:

var bits = new BitArray(2);
bits[1] = true;

There are four bitwise operator methods (And, Or, Xor, and Not). All but the last accept
another BitArray:

bits.Xor (bits);               // Bitwise exclusive-OR bits with itself
Console.WriteLine (bits[1]);   // False

HashSet<T> and SortedSet<T>
HashSet<T> and SortedSet<T> are generic collections new to Framework 3.5 and 4.0,
respectively. Both have the following distinguishing features:

Their Contains methods execute quickly using a hash-based lookup.

They do not store duplicate elements and silently ignore requests to add duplicates.

You cannot access an element by position.

SortedSet<T> keeps elements in order whereas HashSet<T> does not.

NOTE
The commonality of these types is captured by the interface ISet<T>.
For historical reasons, HashSet<T> lives in System.Core.dll (whereas SortedSet<T> and
ISet<T> live in System.dll).



HashSet<T> is implemented with a hashtable that stores just keys; SortedSet<T> is
implemented with a red/black tree.
Both collections implement ICollection<T> and offer methods that you would expect, such as
Contains, Add, and Remove. In addition, there’s a predicate-based removal method called
RemoveWhere.
The following constructs a HashSet<char> from an existing collection, tests for membership,
and then enumerates the collection (notice the absence of duplicates):

var letters = new HashSet<char> ("the quick brown fox");

Console.WriteLine (letters.Contains ('t'));      // true
Console.WriteLine (letters.Contains ('j'));      // false

foreach (char c in letters) Console.Write (c);   // the quickbrownfx

(The reason we can pass a string into HashSet<char>’s constructor is because string
implements IEnumerable<char>.)
The really interesting methods are the set operations. The following set operations are
destructive, in that they modify the set:

public void UnionWith           (IEnumerable<T> other);   // Adds
public void IntersectWith       (IEnumerable<T> other);   // Removes
public void ExceptWith          (IEnumerable<T> other);   // Removes
public void SymmetricExceptWith (IEnumerable<T> other);   // Removes

whereas the following methods simply query the set and so are nondestructive:

public bool IsSubsetOf         (IEnumerable<T> other);
public bool IsProperSubsetOf   (IEnumerable<T> other);
public bool IsSupersetOf       (IEnumerable<T> other);
public bool IsProperSupersetOf (IEnumerable<T> other);
public bool Overlaps           (IEnumerable<T> other);
public bool SetEquals          (IEnumerable<T> other);

UnionWith adds all the elements in the second set to the original set (excluding duplicates).
IntersectWith removes the elements that are not in both sets. We can extract all the vowels
from our set of characters as follows:

var letters = new HashSet<char> ("the quick brown fox");
letters.IntersectWith ("aeiou");
foreach (char c in letters) Console.Write (c);     // euio

ExceptWith removes the specified elements from the source set. Here, we strip all vowels
from the set:

var letters = new HashSet<char> ("the quick brown fox");
letters.ExceptWith ("aeiou");
foreach (char c in letters) Console.Write (c);     // th qckbrwnfx

SymmetricExceptWith removes all but the elements that are unique to one set or the other:

var letters = new HashSet<char> ("the quick brown fox");
letters.SymmetricExceptWith ("the lazy brown fox");
foreach (char c in letters) Console.Write (c);     // quicklazy



Note that because HashSet<T> and SortedSet<T> implement IEnumerable<T>, you can use
another type of set (or collection) as the argument to any of the set operation methods.
SortedSet<T> offers all the members of HashSet<T>, plus the following:

public virtual SortedSet<T> GetViewBetween (T lowerValue, T upperValue)
public IEnumerable<T> Reverse()
public T Min { get; }
public T Max { get; }

SortedSet<T> also accepts an optional IComparer<T> in its constructor (rather than an
equality comparer).
Here’s an example of loading the same letters into a SortedSet<char>:

var letters = new SortedSet<char> ("the quick brown fox");
foreach (char c in letters) Console.Write (c);   //  bcefhiknoqrtuwx

Following on from this, we can obtain the letters between f and j as follows:

foreach (char c in letters.GetViewBetween ('f', 'j'))
  Console.Write (c);                                    //  fhi

Dictionaries
A dictionary is a collection in which each element is a key/value pair. Dictionaries are most
commonly used for lookups and sorted lists.
The Framework defines a standard protocol for dictionaries, via the interfaces IDictionary
and IDictionary <TKey, TValue>, as well as a set of general-purpose dictionary classes.
The classes each differ in the following regard:

Whether or not items are stored in sorted sequence

Whether or not items can be accessed by position (index) as well as by key

Whether generic or nongeneric

Whether it’s fast or slow to retrieve items by key from a large dictionary

Table 7-1 summarizes each of the dictionary classes and how they differ in these respects. The
performance times are in milliseconds, to perform 50,000 operations on a dictionary with
integer keys and values, on a 1.5 GHz PC. (The differences in performance between generic
and nongeneric counterparts using the same underlying collection structure are due to boxing,
and show up only with value-type elements.)

Table 7-1. Dictionary classes

Type Internal
structure

Retrieve
by index?

Memory overhead
(avg. bytes per item)

Speed:
random
insertion

Speed:
sequential
insertion

Speed:
retrieval by
key

Unsorted       

Dictionary <K,V> Hashtable No 22 30 30 20

Hashtable Hashtable No 38 50 50 30



ListDictionary Linked list No 36 50,000 50,000 50,000

OrderedDictionary Hashtable
+ array

Yes 59 70 70 40

Sorted       

SortedDictionary
<K,V>

Red/black
tree

No 20 130 100 120

SortedList <K,V> 2xArray Yes 2 3,300 30 40

SortedList 2xArray Yes 27 4,500 100 180

In Big-O notation, retrieval time by key is:
O(1) for Hashtable, Dictionary, and OrderedDictionary

O(log n) for SortedDictionary and SortedList

O(n) for ListDictionary (and nondictionary types such as List<T>)

where n is the number of elements in the collection.

IDictionary<TKey,TValue>
IDictionary<TKey,TValue> defines the standard protocol for all key/value-based
collections. It extends ICollection<T> by adding methods and properties to access elements
based on a key of arbitrary type:

public interface IDictionary <TKey, TValue> :
  ICollection <KeyValuePair <TKey, TValue>>, IEnumerable
{
   bool ContainsKey (TKey key);
   bool TryGetValue (TKey key, out TValue value);
   void Add         (TKey key, TValue value);
   bool Remove      (TKey key);

   TValue this [TKey key]      { get; set; }  // Main indexer - by key
   ICollection <TKey> Keys     { get; }       // Returns just keys
   ICollection <TValue> Values { get; }       // Returns just values
}

NOTE
From Framework 4.5, there’s also an interface called IReadOnlyDictionary<TKey,TValue>,
which defines the read-only subset of dictionary members. This maps to the Windows
Runtime type IMapView<K,V>, and was introduced primarily for that reason.

To add an item to a dictionary, you either call Add or use the index’s set accessor — the latter
adds an item to the dictionary if the key is not already present (or updates the item if it is
present). Duplicate keys are forbidden in all dictionary implementations, so calling Add twice
with the same key throws an exception.
To retrieve an item from a dictionary, use either the indexer or the TryGetValue method. If the
key doesn’t exist, the indexer throws an exception whereas TryGetValue returns false. You
can test for membership explicitly by calling ContainsKey; however, this incurs the cost of
two lookups if you then subsequently retrieve the item.



Enumerating directly over an IDictionary<TKey,TValue> returns a sequence of
KeyValuePair structs:

public struct KeyValuePair <TKey, TValue>
{
  public TKey Key     { get; }
  public TValue Value { get; }
}

You can enumerate over just the keys or values via the dictionary’s Keys/Values properties.
We demonstrate the use of this interface with the generic Dictionary class in the following
section.

IDictionary
The nongeneric IDictionary interface is the same in principle as IDictionary 
<TKey,TValue>, apart from two important functional differences. It’s important to be aware of
these differences, because IDictionary appears in legacy code (including the .NET
Framework itself in places):

Retrieving a nonexistent key via the indexer returns null (rather than throwing an exception).

Contains tests for membership rather than ContainsKey.

Enumerating over a nongeneric IDictionary returns a sequence of Dictionary Entry structs:

public struct DictionaryEntry
{
  public object Key   { get; set; }
  public object Value { get; set; }
}

Dictionary<TKey,TValue> and Hashtable
The generic Dictionary class is one of the most commonly used collections (along with the
List<T> collection). It uses a hashtable data structure to store keys and values, and it is fast
and efficient.

NOTE
The nongeneric version of Dictionary<TKey,TValue> is called Hashtable; there is no
nongeneric class called Dictionary. When we refer simply to Dictionary, we mean the
generic Dictionary<TKey,TValue> class.

Dictionary implements both the generic and nongeneric IDictionary interfaces, the generic
IDictionary being exposed publicly. Dictionary is, in fact, a “textbook” implementation of
the generic IDictionary.
Here’s how to use it:

var d = new Dictionary<string, int>();

d.Add("One", 1);
d["Two"] = 2;     // adds to dictionary because "two" not already present



d["Two"] = 22;    // updates dictionary because "two" is now present
d["Three"] = 3;

Console.WriteLine (d["Two"]);                // Prints "22"
Console.WriteLine (d.ContainsKey ("One"));   // true (fast operation)
Console.WriteLine (d.ContainsValue (3));     // true (slow operation)
int val = 0;
if (!d.TryGetValue ("onE", out val))
  Console.WriteLine ("No val");              // "No val" (case sensitive)

// Three different ways to enumerate the dictionary:

foreach (KeyValuePair<string, int> kv in d)          //  One ; 1
  Console.WriteLine (kv.Key + "; " + kv.Value);      //  Two ; 22
                                                     //  Three ; 3

foreach (string s in d.Keys) Console.Write (s);      // OneTwoThree
Console.WriteLine();
foreach (int i in d.Values) Console.Write (i);       // 1223

Its underlying hashtable works by converting each element’s key into an integer hashcode — a
pseudo-unique value — and then applying an algorithm to convert the hashcode into a hash key.
This hash key is used internally to determine which “bucket” an entry belongs to. If the bucket
contains more than one value, a linear search is performed on the bucket. A good hash function
does not strive to return strictly unique hashcodes (which would usually be impossible); it
strives to return hashcodes that are evenly distributed across the 32-bit integer space. This
avoids the scenario of ending up with a few very large (and inefficient) buckets.
A dictionary can work with keys of any type, providing it’s able to determine equality between
keys and obtain hashcodes. By default, equality is determined via the key’s object.Equals
method, and the pseudo-unique hashcode is obtained via the key’s GetHashCode method. This
behavior can be changed, either by overriding these methods or by providing an
IEqualityComparer object when constructing the dictionary. A common application of this is
to specify a case-insensitive equality comparer when using string keys:

var d = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);

We discuss this further in “Plugging in Equality and Order”.
As with many other types of collections, the performance of a dictionary can be improved
slightly by specifying the collection’s expected size in the constructor, avoiding or lessening the
need for internal resizing operations.
The nongeneric version is named Hashtable and is functionally similar apart from differences
stemming from it exposing the nongeneric IDictionary interface discussed previously.
The downside to Dictionary and Hashtable is that the items are not sorted. Furthermore, the
original order in which the items were added is not retained. As with all dictionaries,
duplicate keys are not allowed.

NOTE
When the generic collections were introduced in Framework 2.0, the CLR team chose to
name them according to what they represent (Dictionary, List) rather than how they are
internally implemented (Hashtable, ArrayList). While this is good because it gives them the
freedom to later change the implementation, it also means that the performance contract
(often the most important criteria in choosing one kind of collection over another) is no longer
captured in the name.



OrderedDictionary
An OrderedDictionary is a nongeneric dictionary that maintains elements in the same order
that they were added. With an OrderedDictionary, you can access elements both by index
and by key.

NOTE
An OrderedDictionary is not a sorted dictionary.

An OrderedDictionary is a combination of a Hashtable and an ArrayList. This means it
has all the functionality of a Hashtable, plus functions such as RemoveAt, as well as an integer
indexer. It also exposes Keys and Values properties that return elements in their original order.
This class was introduced in .NET 2.0, yet peculiarly, there’s no generic version.

ListDictionary and HybridDictionary
ListDictionary uses a singly linked list to store the underlying data. It doesn’t provide
sorting, although it does preserve the original entry order of the items. ListDictionary is
extremely slow with large lists. Its only real “claim to fame” is its efficiency with very small
lists (fewer than 10 items).
HybridDictionary is a ListDictionary that automatically converts to a Hashtable upon
reaching a certain size, to address ListDictionary’s problems with performance. The idea is
to get a low memory footprint when the dictionary is small, and good performance when the
dictionary is large. However, given the overhead in converting from one to the other — and the
fact that a Dictionary is not excessively heavy or slow in either scenario — you wouldn’t
suffer unreasonably by using a Dictionary to begin with.
Both classes come only in nongeneric form.

Sorted Dictionaries
The Framework provides two dictionary classes internally structured such that their content is
always sorted by key:

SortedDictionary<TKey,TValue>

SortedList<TKey,TValue>1

(In this section, we will abbreviate <TKey,TValue> to <,>.)
SortedDictionary<,> uses a red/black tree: a data structure designed to perform consistently
well in any insertion or retrieval scenario.
SortedList<,> is implemented internally with an ordered array pair, providing fast retrieval
(via a binary-chop search) but poor insertion performance (because existing values have to be
shifted to make room for a new entry).
SortedDictionary<,> is much faster than SortedList<,> at inserting elements in a random



sequence (particularly with large lists). SortedList<,>, however, has an extra ability: to
access items by index as well as by key. With a sorted list, you can go directly to the nth
element in the sorting sequence (via the indexer on the Keys/Values properties). To do the
same with a SortedDictionary<,>, you must manually enumerate over n items.
(Alternatively, you could write a class that combines a sorted dictionary with a list class.)
None of the three collections allows duplicate keys (as is the case with all dictionaries).
The following example uses reflection to load all the methods defined in System .Object into
a sorted list keyed by name, and then enumerates their keys and values:

// MethodInfo is in the System.Reflection namespace

var sorted = new SortedList <string, MethodInfo>();

foreach (MethodInfo m in typeof (object).GetMethods())
  sorted [m.Name] = m;

foreach (string name in sorted.Keys)
  Console.WriteLine (name);

foreach (MethodInfo m in sorted.Values)
  Console.WriteLine (m.Name + " returns a " + m.ReturnType);

Here’s the result of the first enumeration:

Equals
GetHashCode
GetType
ReferenceEquals
ToString

Here’s the result of the second enumeration:

Equals returns a System.Boolean
GetHashCode returns a System.Int32
GetType returns a System.Type
ReferenceEquals returns a System.Boolean
ToString returns a System.String

Notice that we populated the dictionary through its indexer. If we instead used the Add method,
it would throw an exception because the object class upon which we’re reflecting overloads
the Equals method, and you can’t add the same key twice to a dictionary. By using the indexer,
the later entry overwrites the earlier entry, preventing this error.

NOTE
You can store multiple members of the same key by making each value element a list:

SortedList <string, List<MethodInfo>>

Extending our example, the following retrieves the MethodInfo whose key is "GetHashCode",
just as with an ordinary dictionary:

Console.WriteLine (sorted ["GetHashCode"]);      // Int32 GetHashCode()



So far, everything we’ve done would also work with a SortedDictionary<,>. The following
two lines, however, which retrieve the last key and value, work only with a sorted list:

Console.WriteLine (sorted.Keys  [sorted.Count - 1]);            // ToString
Console.WriteLine (sorted.Values[sorted.Count - 1].IsVirtual);  // True

Customizable Collections and Proxies
The collection classes discussed in previous sections are convenient in that they can be
directly instantiated, but they don’t allow you to control what happens when an item is added to
or removed from the collection. With strongly typed collections in an application, you
sometimes need this control — for instance:

To fire an event when an item is added or removed

To update properties because of the added or removed item

To detect an “illegal” add/remove operation and throw an exception (for example, if the
operation violates a business rule)

The .NET Framework provides collection classes for this exact purpose, in the
System.Collections.ObjectModel namespace. These are essentially proxies or wrappers
that implement IList<T> or IDictionary<,> by forwarding the methods through to an
underlying collection. Each Add, Remove, or Clear operation is routed via a virtual method
that acts as a “gateway” when overridden.
Customizable collection classes are commonly used for publicly exposed collections; for
instance, a collection of controls exposed publicly on a System.Windows.Form class.

Collection<T> and CollectionBase
The Collection<T> class is a customizable wrapper for List<T>.
As well as implementing IList<T> and IList, it defines four additional virtual methods and a
protected property as follows:

public class Collection<T> :
  IList<T>, ICollection<T>, IEnumerable<T>, IList, ICollection, IEnumerable
{
   // ...

   protected virtual void ClearItems();
   protected virtual void InsertItem (int index, T item);
   protected virtual void RemoveItem (int index);
   protected virtual void SetItem (int index, T item);

   protected IList<T> Items { get; }
}

The virtual methods provide the gateway by which you can “hook in” to change or enhance the
list’s normal behavior. The protected Items property allows the implementer to directly access
the “inner list” — this is used to make changes internally without the virtual methods firing.
The virtual methods need not be overridden; they can be left alone until there’s a requirement to
alter the list’s default behavior. The following example demonstrates the typical “skeleton” use
of Collection<T>:



public class Animal
{
  public string Name;
  public int Popularity;

  public Animal (string name, int popularity)
  {
    Name = name; Popularity = popularity;
  }
}

public class AnimalCollection : Collection <Animal>
{
  // AnimalCollection is already a fully functioning list of animals.
  // No extra code is required.
}

public class Zoo   // The class that will expose AnimalCollection.
{                  // This would typically have additional members.

  public readonly AnimalCollection Animals = new AnimalCollection();
}

class Program
{
  static void Main()
  {
    Zoo zoo = new Zoo();
    zoo.Animals.Add (new Animal ("Kangaroo", 10));
    zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
    foreach (Animal a in zoo.Animals) Console.WriteLine (a.Name);
  }
}

As it stands, AnimalCollection is no more functional than a simple List<Animal> ; its role
is to provide a base for future extension. To illustrate, we’ll now add a Zoo property to
Animal, so it can reference the Zoo in which it lives and override each of the virtual methods
in Collection<Animal> to maintain that property automatically:

public class Animal
{
  public string Name;
  public int Popularity;
  public Zoo Zoo { get; internal set; }
  public Animal(string name, int popularity)
  {
    Name = name; Popularity = popularity;
  }
}

public class AnimalCollection : Collection <Animal>
{
  Zoo zoo;
  public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

  protected override void InsertItem (int index, Animal item)
  {
    base.InsertItem (index, item);
    item.Zoo = zoo;
  }
  protected override void SetItem (int index, Animal item)
  {
    base.SetItem (index, item);
    item.Zoo = zoo;
  }
  protected override void RemoveItem (int index)
  {
    this [index].Zoo = null;
    base.RemoveItem (index);



  }
  protected override void ClearItems()
  {
    foreach (Animal a in this) a.Zoo = null;
    base.ClearItems();
  }
}

public class Zoo
{
  public readonly AnimalCollection Animals;
  public Zoo() { Animals = new AnimalCollection (this); }
}

Collection<T> also has a constructor accepting an existing IList<T>. Unlike with other
collection classes, the supplied list is proxied rather than copied, meaning that subsequent
changes will be reflected in the wrapping Collection<T> (although without
Collection<T>’s virtual methods firing). Conversely, changes made via the Collection<T>
will change the underlying list.

CollectionBase
CollectionBase is the nongeneric version of Collection<T> introduced in Framework 1.0.
This provides most of the same features as Collection<T>, but is clumsier to use. Instead of
the template methods InsertItem, RemoveItem SetItem, and ClearItem, CollectionBase
has “hook” methods that double the number of methods required: OnInsert,
OnInsertComplete, OnSet, OnSetComplete, OnRemove, OnRemoveComplete, OnClear, and
OnClearComplete. Because CollectionBase is nongeneric, you must also implement typed
methods when subclassing it — at a minimum, a typed indexer and Add method.

KeyedCollection<TKey,TItem> and DictionaryBase
KeyedCollection<TKey,TItem> subclasses Collection<TItem>. It both adds and subtracts
functionality. What it adds is the ability to access items by key, much like with a dictionary.
What it subtracts is the ability to proxy your own inner list.
A keyed collection has some resemblance to an OrderedDictionary in that it combines a
linear list with a hashtable. However, unlike OrderedDictionary, it doesn’t implement
IDictionary and doesn’t support the concept of a key/value pair. Keys are obtained instead
from the items themselves: via the abstract GetKeyForItem method. This means enumerating a
keyed collection is just like enumerating an ordinary list.
KeyedCollection<TKey,TItem> is best thought of as Collection<TItem> plus fast lookup
by key.
Because it subclasses Collection<>, a keyed collection inherits all of Collection<>’s
functionality, except for the ability to specify an existing list in construction. The additional
members it defines are as follows:

public abstract class KeyedCollection <TKey, TItem> : Collection <TItem>

  // ...

  protected abstract TKey GetKeyForItem(TItem item);
  protected void ChangeItemKey(TItem item, TKey newKey);

  // Fast lookup by key - this is in addition to lookup by index.
  public TItem this[TKey key] { get; }



  protected IDictionary<TKey, TItem> Dictionary { get; }
}

GetKeyForItem is what the implementer overrides to obtain an item’s key from the underlying
object. The ChangeItemKey method must be called if the item’s key property changes, in order
to update the internal dictionary. The Dictionary property returns the internal dictionary used
to implement the lookup, which is created when the first item is added. This behavior can be
changed by specifying a creation threshold in the constructor, delaying the internal dictionary
from being created until the threshold is reached (in the interim, a linear search is performed if
an item is requested by key). A good reason not to specify a creation threshold is that having a
valid dictionary can be useful in obtaining an ICollection<> of keys, via the Dictionary’s
Keys property. This collection can then be passed on to a public property.
The most common use for KeyedCollection<,> is in providing a collection of items
accessible both by index and by name. To demonstrate this, we’ll revisit the zoo, this time
implementing AnimalCollection as a KeyedCollection<string, Animal>:

public class Animal
{
  string name;
  public string Name
  {
    get { return name; }
    set {
      if (Zoo != null) Zoo.Animals.NotifyNameChange (this, value);
      name = value;
    }
  }
  public int Popularity;
  public Zoo Zoo { get; internal set; }

  public Animal (string name, int popularity)
  {
    Name = name; Popularity = popularity;
  }
}

public class AnimalCollection : KeyedCollection <string, Animal>
{
  Zoo zoo;
  public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

  internal void NotifyNameChange (Animal a, string newName)
  {
    this.ChangeItemKey (a, newName);
  }

  protected override string GetKeyForItem (Animal item)
  {
    return item.Name;
  }

  // The following methods would be implemented as in the previous example
  protected override void InsertItem (int index, Animal item)...
  protected override void SetItem (int index, Animal item)...
  protected override void RemoveItem (int index)...
  protected override void ClearItems()...
}

public class Zoo
{
  public readonly AnimalCollection Animals;
  public Zoo() { Animals = new AnimalCollection (this); }
}

class Program



{
  static void Main()
  {
    Zoo zoo = new Zoo();
    zoo.Animals.Add (new Animal ("Kangaroo", 10));
    zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
    Console.WriteLine (zoo.Animals [0].Popularity);               // 10
    Console.WriteLine (zoo.Animals ["Mr Sea Lion"].Popularity);   // 20
    zoo.Animals ["Kangaroo"].Name = "Mr Roo";
    Console.WriteLine (zoo.Animals ["Mr Roo"].Popularity);        // 10
  }
}

DictionaryBase
The nongeneric version of KeyedCollection is called DictionaryBase. This legacy class is
very different in its approach: it implements IDictionary and uses clumsy hook methods like
CollectionBase : OnInsert, OnInsertComplete, OnSet, OnSetComplete, OnRemove,
OnRemoveComplete, OnClear, and OnClearComplete (and additionally, OnGet). The primary
advantage of implementing IDictionary over taking the KeyedCollection approach is that
you don’t need to subclass it in order to obtain keys. But since the very purpose of
DictionaryBase is to be subclassed, it’s no advantage at all. The improved model in
KeyedCollection is almost certainly due to the fact that it was written some years later, with
the benefit of hindsight. DictionaryBase is best considered useful for backward
compatibility.

ReadOnlyCollection<T>
ReadOnlyCollection<T> is a wrapper, or proxy, that provides a read-only view of a
collection. This is useful in allowing a class to publicly expose read-only access to a
collection that the class can still update internally.
A read-only collection accepts the input collection in its constructor, to which it maintains a
permanent reference. It doesn’t take a static copy of the input collection, so subsequent changes
to the input collection are visible through the read-only wrapper.
To illustrate, suppose your class wants to provide read-only public access to a list of strings
called Names:

public class Test
{
  public List<string> Names { get; private set; }
}

This does only half the job. Although other types cannot reassign the Names property, they can
still call Add, Remove, or Clear on the list. The ReadOnlyCollection<T> class resolves this:

public class Test
{
  List<string> names;
  public ReadOnlyCollection<string> Names { get; private set; }

  public Test()
  {
    names = new List<string>();
    Names = new ReadOnlyCollection<string> (names);
  }

  public void AddInternally() { names.Add ("test"); }
}



Now, only members within the Test class can alter the list of names:

Test t = new Test();

Console.WriteLine (t.Names.Count);       // 0
t.AddInternally();
Console.WriteLine (t.Names.Count);       // 1

t.Names.Add ("test");                    // Compiler error
((IList<string>) t.Names).Add ("test");  // NotSupportedException

Plugging in Equality and Order
In the sections “Equality Comparison” and “Order Comparison” in Chapter 6, we described
the standard .NET protocols that make a type equatable, hashable, and comparable. A type that
implements these protocols can function correctly in a dictionary or sorted list “out of the box.”
More specifically:

A type for which Equals and GetHashCode return meaningful results can be used as a key
in a Dictionary or Hashtable.

A type that implements IComparable /IComparable<T> can be used as a key in any of the
sorted dictionaries or lists.

A type’s default equating or comparison implementation typically reflects what is most
“natural” for that type. Sometimes, however, the default behavior is not what you want. You
might need a dictionary whose string-type key is treated case-insensitively. Or you might
want a sorted list of customers, sorted by each customer’s postcode. For this reason, the .NET
Framework also defines a matching set of “plug-in” protocols. The plug-in protocols achieve
two things:

They allow you to switch in alternative equating or comparison behavior.

They allow you to use a dictionary or sorted collection with a key type that’s not
intrinsically equatable or comparable.

The plug-in protocols consist of the following interfaces:

IEqualityComparer and IEqualityComparer<T>
Performs plug-in equality comparison and hashing

Recognized by Hashtable and Dictionary

IComparer and IComparer<T>
Performs plug-in order comparison

Recognized by the sorted dictionaries and collections; also, Array.Sort

Each interface comes in both generic and nongeneric forms. The IEqualityComparer
interfaces also have a default implementation in a class called EqualityComparer.
In addition, in Framework 4.0 we got two new interfaces called IStructuralEquatable and
IStructuralComparable, which allow for the option of structural comparisons on classes



and arrays.

IEqualityComparer and EqualityComparer
An equality comparer switches in nondefault equality and hashing behavior, primarily for the
Dictionary and Hashtable classes.
Recall the requirements of a hashtable-based dictionary. It needs answers to two questions for
any given key:

Is it the same as another?

What is its integer hashcode?

An equality comparer answers these questions by implementing the IEqualityComparer
interfaces:

public interface IEqualityComparer<T>
{
   bool Equals (T x, T y);
   int GetHashCode (T obj);
}

public interface IEqualityComparer     // Nongeneric version
{
   bool Equals (object x, object y);
   int GetHashCode (object obj);
}

To write a custom comparer, you implement one or both of these interfaces (implementing both
gives maximum interoperability). As this is somewhat tedious, an alternative is to subclass the
abstract EqualityComparer class, defined as follows:

public abstract class EqualityComparer<T> : IEqualityComparer,
                                            IEqualityComparer<T>
{
  public abstract bool Equals (T x, T y);
  public abstract int GetHashCode (T obj);

  bool IEqualityComparer.Equals (object x, object y);
  int IEqualityComparer.GetHashCode (object obj);

  public static EqualityComparer<T> Default { get; }
}

EqualityComparer implements both interfaces; your job is simply to override the two abstract
methods.
The semantics for Equals and GetHashCode follow the same rules for object.Equals and
object.GetHashCode, described in Chapter 6. In the following example, we define a
Customer class with two fields, and then write an equality comparer that matches both the first
and last names:

public class Customer
{
  public string LastName;
  public string FirstName;

  public Customer (string last, string first)
  {



    LastName = last;
    FirstName = first;
  }
}
public class LastFirstEqComparer : EqualityComparer <Customer>
{
  public override bool Equals (Customer x, Customer y)
    => x.LastName == y.LastName && x.FirstName == y.FirstName;

  public override int GetHashCode (Customer obj)
    => (obj.LastName + ";" + obj.FirstName).GetHashCode();
}

To illustrate how this works, we’ll create two customers:

Customer c1 = new Customer ("Bloggs", "Joe");
Customer c2 = new Customer ("Bloggs", "Joe");

Because we’ve not overridden object.Equals, normal reference type equality semantics
apply:

Console.WriteLine (c1 == c2);               // False
Console.WriteLine (c1.Equals (c2));         // False

The same default equality semantics apply when using these customers in a Dictionary
without specifying an equality comparer:

var d = new Dictionary<Customer, string>();
d [c1] = "Joe";
Console.WriteLine (d.ContainsKey (c2));         // False

Now with the custom equality comparer:

var eqComparer = new LastFirstEqComparer();
var d = new Dictionary<Customer, string> (eqComparer);
d [c1] = "Joe";
Console.WriteLine (d.ContainsKey (c2));         // True

In this example, we would have to be careful not to change the customer’s FirstName or
LastName while it was in use in the dictionary. Otherwise, its hashcode would change and the
Dictionary would break.

EqualityComparer<T>.Default
Calling EqualityComparer<T>.Default returns a general-purpose equality comparer that can
be used as an alternative to the static object.Equals method. The advantage is that first
checks if T implements IEquatable<T> and if so, calls that implementation instead, avoiding
the boxing overhead. This is particularly useful in generic methods:

static bool Foo<T> (T x, T y)
{
  bool same = EqualityComparer<T>.Default.Equals (x, y);
  ...

IComparer and Comparer
Comparers are used to switch in custom ordering logic for sorted dictionaries and collections.



Note that a comparer is useless to the unsorted dictionaries such as Dictionary and
Hashtable — these require an IEqualityComparer to get hashcodes. Similarly, an equality
comparer is useless for sorted dictionaries and collections.
Here are the IComparer interface definitions:

public interface IComparer
{
  int Compare(object x, object y);
}
public interface IComparer <in T>
{
  int Compare(T x, T y);
}

As with equality comparers, there’s an abstract class you can subtype instead of implementing
the interfaces:

public abstract class Comparer<T> : IComparer, IComparer<T>
{
   public static Comparer<T> Default { get; }

   public abstract int Compare (T x, T y);       // Implemented by you
   int IComparer.Compare (object x, object y);   // Implemented for you
}

The following example illustrates a class that describes a wish, and a comparer that sorts
wishes by priority:

class Wish
{
  public string Name;
  public int Priority;

  public Wish (string name, int priority)
  {
    Name = name;
    Priority = priority;
  }
}

class PriorityComparer : Comparer <Wish>
{
  public override int Compare (Wish x, Wish y)
  {
    if (object.Equals (x, y)) return 0;          // Fail-safe check
    return x.Priority.CompareTo (y.Priority);
  }
}

The object.Equals check ensures that we can never contradict the Equals method. Calling
the static object.Equals method in this case is better than calling x.Equals because it still
works if x is null!
Here’s how our PriorityComparer is used to sort a List:

var wishList = new List<Wish>();
wishList.Add (new Wish ("Peace", 2));
wishList.Add (new Wish ("Wealth", 3));
wishList.Add (new Wish ("Love", 2));
wishList.Add (new Wish ("3 more wishes", 1));

wishList.Sort (new PriorityComparer());



foreach (Wish w in wishList) Console.Write (w.Name + " | ");

// OUTPUT: 3 more wishes | Love | Peace | Wealth |

In the next example, SurnameComparer allows you to sort surname strings in an order suitable
for a phonebook listing:

class SurnameComparer : Comparer <string>
{
  string Normalize (string s)
  {
    s = s.Trim().ToUpper();
    if (s.StartsWith ("MC")) s = "MAC" + s.Substring (2);
    return s;
  }

  public override int Compare (string x, string y)
    => Normalize (x).CompareTo (Normalize (y));
}

Here’s SurnameComparer in use in a sorted dictionary:

var dic = new SortedDictionary<string,string> (new SurnameComparer());
dic.Add ("MacPhail", "second!");
dic.Add ("MacWilliam", "third!");
dic.Add ("McDonald", "first!");

foreach (string s in dic.Values)
  Console.Write (s + " ");              // first! second! third!

StringComparer
StringComparer is a predefined plug-in class for equating and comparing strings, allowing
you to specify language and case sensitivity. StringComparer implements both
IEqualityComparer and IComparer (and their generic versions), so it can be used with any
type of dictionary or sorted collection:

// CultureInfo is defined in System.Globalization

public abstract class StringComparer : IComparer, IComparer <string>,
                                       IEqualityComparer,
                                       IEqualityComparer <string>
{
  public abstract int Compare (string x, string y);
  public abstract bool Equals (string x, string y);
  public abstract int GetHashCode (string obj);

  public static StringComparer Create (CultureInfo culture,
                                       bool ignoreCase);
  public static StringComparer CurrentCulture { get; }
  public static StringComparer CurrentCultureIgnoreCase { get; }
  public static StringComparer InvariantCulture { get; }
  public static StringComparer InvariantCultureIgnoreCase { get; }
  public static StringComparer Ordinal { get; }
  public static StringComparer OrdinalIgnoreCase { get; }
}

Because StringComparer is abstract, you obtain instances via its static methods and
properties. StringComparer.Ordinal mirrors the default behavior for string equality
comparison and StringComparer.CurrentCulture for order comparison.
In the following example, an ordinal case-insensitive dictionary is created, such that



dict["Joe"] and dict["JOE"] mean the same thing:

var dict = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);

In the next example, an array of names is sorted, using Australian English:

string[] names = { "Tom", "HARRY", "sheila" };
CultureInfo ci = new CultureInfo ("en-AU");
Array.Sort<string> (names, StringComparer.Create (ci, false));

The final example is a culture-aware version of the SurnameComparer we wrote in the
previous section (to compare names suitable for a phonebook listing):

class SurnameComparer : Comparer <string>
{
  StringComparer strCmp;

  public SurnameComparer (CultureInfo ci)
  {
    // Create a case-sensitive, culture-sensitive string comparer
    strCmp = StringComparer.Create (ci, false);
  }

  string Normalize (string s)
  {
    s = s.Trim();
    if (s.ToUpper().StartsWith ("MC")) s = "MAC" + s.Substring (2);
    return s;
  }

  public override int Compare (string x, string y)
  {
    // Directly call Compare on our culture-aware StringComparer
    return strCmp.Compare (Normalize (x), Normalize (y));
  }
}

IStructuralEquatable and IStructuralComparable
As we said in the previous chapter, structs implement structural comparison by default: two
structs are equal if all of their fields are equal. Sometimes, however, structural equality and
order comparison are useful as plug-in options on other types as well, such as arrays.
Framework 4.0 introduced two new interfaces to help with this:

public interface IStructuralEquatable
{
  bool Equals (object other, IEqualityComparer comparer);
  int GetHashCode (IEqualityComparer comparer);
}

public interface IStructuralComparable
{
  int CompareTo (object other, IComparer comparer);
}

The IEqualityComparer/IComparer that you pass in are applied to each individual element
in the composite object. We can demonstrate this by using arrays. In the following example, we
compare two arrays for equality, first using the default Equals method, then using
IStructuralEquatable’s version:

int[] a1 = { 1, 2, 3 };



int[] a2 = { 1, 2, 3 };
IStructuralEquatable se1 = a1;
Console.Write (a1.Equals (a2));                                  // False
Console.Write (se1.Equals (a2, EqualityComparer<int>.Default));  // True

Here’s another example:

string[] a1 = "the quick brown fox".Split();
string[] a2 = "THE QUICK BROWN FOX".Split();
IStructuralEquatable se1 = a1;
bool isTrue = se1.Equals (a2, StringComparer.InvariantCultureIgnoreCase);

There’s also a functionally identical nongeneric version of this called SortedList.1



Chapter 8. LINQ Queries

LINQ, or Language Integrated Query, is a set of language and framework features for writing
structured type-safe queries over local object collections and remote data sources. LINQ was
introduced in C# 3.0 and Framework 3.5.
LINQ enables you to query any collection implementing IEnumerable<T>, whether an array,
list, or XML DOM, as well as remote data sources, such as tables in a SQL Server database.
LINQ offers the benefits of both compile-time type checking and dynamic query composition.
This chapter describes the LINQ architecture and the fundamentals of writing queries. All core
types are defined in the System.Linq and System.Linq.Expressions namespaces.

NOTE
The examples in this and the following two chapters are preloaded into an interactive
querying tool called LINQPad. You can download LINQPad from www.linqpad.net.

Getting Started
The basic units of data in LINQ are sequences and elements. A sequence is any object that
implements IEnumerable<T> and an element is each item in the sequence. In the following
example, names is a sequence, and "Tom", "Dick", and "Harry" are elements:

string[] names = { "Tom", "Dick", "Harry" };

We call this a local sequence because it represents a local collection of objects in memory.
A query operator is a method that transforms a sequence. A typical query operator accepts an
input sequence and emits a transformed output sequence. In the Enumerable class in
System.Linq, there are around 40 query operators — all implemented as static extension
methods. These are called standard query operators.

NOTE
Queries that operate over local sequences are called local queries or LINQ-to-objects queries.
LINQ also supports sequences that can be dynamically fed from a remote data source such
as a SQL Server database. These sequences additionally implement the IQueryable<T>
interface and are supported through a matching set of standard query operators in the
Queryable class. We discuss this further in the section “Interpreted Queries” later in this
chapter.

A query is an expression that, when enumerated, transforms sequences with query operators.
The simplest query comprises one input sequence and one operator. For instance, we can apply
the Where operator on a simple array to extract those whose length is at least four characters as
follows:

http://www.linqpad.net


string[] names = { "Tom", "Dick", "Harry" };
IEnumerable<string> filteredNames = System.Linq.Enumerable.Where
                                    (names, n => n.Length >= 4);
foreach (string n in filteredNames)
  Console.WriteLine (n);

Dick
Harry

Because the standard query operators are implemented as extension methods, we can call
Where directly on names — as though it were an instance method:

IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);

For this to compile, you must import the System.Linq namespace. Here’s a complete example:

using System;
usign System.Collections.Generic;
using System.Linq;

class LinqDemo
{
  static void Main()
  {
    string[] names = { "Tom", "Dick", "Harry" };

    IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);
    foreach (string name in filteredNames) Console.WriteLine (name);
  }
}

Dick
Harry

NOTE
We could further shorten our code by implicitly typing filteredNames:

var filteredNames = names.Where (n => n.Length >= 4);

This can hinder readability, however, particularly outside of an IDE, where there are no tool
tips to help.
In this chapter, we avoid implicitly typing query results except when it’s mandatory (as we’ll
see later, in the section “Projection Strategies”), or when a query’s type is irrelevant to an
example.

Most query operators accept a lambda expression as an argument. The lambda expression
helps guide and shape the query. In our example, the lambda expression is as follows:

n => n.Length >= 4

The input argument corresponds to an input element. In this case, the input argument n
represents each name in the array and is of type string. The Where operator requires that the
lambda expression return a bool value, which if true, indicates that the element should be
included in the output sequence. Here’s its signature:



public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

The following query extracts all names that contain the letter “a”:

IEnumerable<string> filteredNames = names.Where (n => n.Contains ("a"));

foreach (string name in filteredNames)
  Console.WriteLine (name);             // Harry

So far, we’ve built queries using extension methods and lambda expressions. As we’ll see
shortly, this strategy is highly composable in that it allows the chaining of query operators. In
the book, we refer to this as fluent syntax.1 C# also provides another syntax for writing
queries, called query expression syntax. Here’s our preceding query written as a query
expression:

IEnumerable<string> filteredNames = from n in names
                                    where n.Contains ("a")
                                    select n;

Fluent syntax and query syntax are complementary. In the following two sections, we explore
each in more detail.

Fluent Syntax
Fluent syntax is the most flexible and fundamental. In this section, we describe how to chain
query operators to form more complex queries — and show why extension methods are
important to this process. We also describe how to formulate lambda expressions for a query
operator and introduce several new query operators.

Chaining Query Operators
In the preceding section, we showed two simple queries, each comprising a single query
operator. To build more complex queries, you append additional query operators to the
expression, creating a chain. To illustrate, the following query extracts all strings containing the
letter “a”, sorts them by length, and then converts the results to uppercase:

using System;
using System.Collections.Generic;
using System.Linq;

class LinqDemo
{
  static void Main()
  {
    string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

    IEnumerable<string> query = names
      .Where   (n => n.Contains ("a"))
      .OrderBy (n => n.Length)
      .Select  (n => n.ToUpper());

    foreach (string name in query) Console.WriteLine (name);
  }
}

JAY
MARY



HARRY

NOTE
The variable, n, in our example, is privately scoped to each of the lambda expressions. We
can reuse the identifier n for the same reason we can reuse the identifier c in the following
method:

void Test()
{
  foreach (char c in "string1") Console.Write (c);
  foreach (char c in "string2") Console.Write (c);
  foreach (char c in "string3") Console.Write (c);
}

Where, OrderBy, and Select are standard query operators that resolve to extension methods in
the Enumerable class (if you import the System.Linq namespace).
We already introduced the Where operator, which emits a filtered version of the input
sequence. The OrderBy operator emits a sorted version of its input sequence; the Select
method emits a sequence where each input element is transformed or projected with a given
lambda expression (n.ToUpper(), in this case). Data flows from left to right through the chain
of operators, so the data is first filtered, then sorted, then projected.

WARNING
A query operator never alters the input sequence; instead, it returns a new sequence. This is
consistent with the functional programming paradigm, from which LINQ was inspired.

Here are the signatures of each of these extension methods (with the OrderBy signature
simplified slightly):

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IEnumerable<TSource> OrderBy<TSource,TKey>
  (this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)

When query operators are chained as in this example, the output sequence of one operator is the
input sequence of the next. The complete query resembles a production line of conveyor belts,
as illustrated in Figure 8-1.



Figure 8-1. Chaining query operators

We can construct the identical query progressively, as follows:

// You must import the System.Linq namespace for this to compile:

IEnumerable<string> filtered   = names   .Where   (n => n.Contains ("a"));
IEnumerable<string> sorted     = filtered.OrderBy (n => n.Length);
IEnumerable<string> finalQuery = sorted  .Select  (n => n.ToUpper());

finalQuery is compositionally identical to the query we had constructed previously. Further,
each intermediate step also comprises a valid query that we can execute:

foreach (string name in filtered)
  Console.Write (name + "|");        // Harry|Mary|Jay|

Console.WriteLine();
foreach (string name in sorted)
  Console.Write (name + "|");        // Jay|Mary|Harry|

Console.WriteLine();
foreach (string name in finalQuery)
  Console.Write (name + "|");        // JAY|MARY|HARRY|

Why extension methods are important
Instead of using extension method syntax, you can use conventional static method syntax to call
the query operators. For example:

IEnumerable<string> filtered = Enumerable.Where (names,
                                                 n => n.Contains ("a"));
IEnumerable<string> sorted = Enumerable.OrderBy (filtered, n => n.Length);
IEnumerable<string> finalQuery = Enumerable.Select (sorted,
                                                    n => n.ToUpper());

This is, in fact, how the compiler translates extension method calls. Shunning extension
methods comes at a cost, however, if you want to write a query in a single statement as we did
earlier. Let’s revisit the single-statement query — first in extension method syntax:

IEnumerable<string> query = names.Where   (n => n.Contains ("a"))
                                 .OrderBy (n => n.Length)
                                 .Select  (n => n.ToUpper());

Its natural linear shape reflects the left-to-right flow of data, as well as keeping lambda
expressions alongside their query operators (infix notation). Without extension methods, the



query loses its fluency:

IEnumerable<string> query =
  Enumerable.Select (
    Enumerable.OrderBy (
      Enumerable.Where (
        names, n => n.Contains ("a")
      ), n => n.Length
    ), n => n.ToUpper()
  );

Composing Lambda Expressions
In previous examples, we fed the following lambda expression to the Where operator:

n => n.Contains ("a")      // Input type=string, return type=bool.

NOTE
A lambda expression that takes a value and returns a bool is called a predicate.

The purpose of the lambda expression depends on the particular query operator. With the
Where operator, it indicates whether an element should be included in the output sequence. In
the case of the OrderBy operator, the lambda expression maps each element in the input
sequence to its sorting key. With the Select operator, the lambda expression determines how
each element in the input sequence is transformed before being fed to the output sequence.

NOTE
A lambda expression in a query operator always works on individual elements in the input
sequence — not the sequence as a whole.

The query operator evaluates your lambda expression upon demand — typically once per
element in the input sequence. Lambda expressions allow you to feed your own logic into the
query operators. This makes the query operators versatile — as well as being simple under the
hood. Here’s a complete implementation of Enumerable.Where, exception handling aside:

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)
{
  foreach (TSource element in source)
    if (predicate (element))
      yield return element;
}

Lambda expressions and Func signatures
The standard query operators utilize generic Func delegates. Func is a family of general-
purpose generic delegates in the System namespace, defined with the following intent:

The type arguments in Func appear in the same order they do in lambda expressions.

Hence, Func<TSource,bool> matches a TSource=>bool lambda expression: one that accepts



a TSource argument and returns a bool value.
Similarly, Func<TSource,TResult> matches a TSource=>TResult lambda expression.
The Func delegates are listed in the section “Lambda Expressions”.

Lambda expressions and element typing
The standard query operators use the following type parameter names:

Generic type letter Meaning

TSource Element type for the input sequence

TResult Element type for the output sequence — if different from TSource

TKey Element type for the key used in sorting, grouping, or joining

TSource is determined by the input sequence. TResult and TKey are typically inferred from
your lambda expression.
For example, consider the signature of the Select query operator:

public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)

Func<TSource,TResult> matches a TSource=>TResult lambda expression: one that maps an
input element to an output element. TSource and TResult can be different types, so the
lambda expression can change the type of each element. Further, the lambda expression
determines the output sequence type. The following query uses Select to transform string
type elements to integer type elements:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<int> query = names.Select (n => n.Length);

foreach (int length in query)
  Console.Write (length + "|");    // 3|4|5|4|3|

The compiler can infer the type of TResult from the return value of the lambda expression. In
this case, n.Length returns an int value, so TResult is inferred to be int.
The Where query operator is simpler and requires no type inference for the output, since input
and output elements are of the same type. This makes sense because the operator merely filters
elements; it does not transform them:

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

Finally, consider the signature of the OrderBy operator:

// Slightly simplified:
public static IEnumerable<TSource> OrderBy<TSource,TKey>
  (this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

Func<TSource,TKey> maps an input element to a sorting key. TKey is inferred from your
lambda expression and is separate from the input and output element types. For instance, we
could choose to sort a list of names by length (int key) or alphabetically (string key):



string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> sortedByLength, sortedAlphabetically;
sortedByLength       = names.OrderBy (n => n.Length);   // int key
sortedAlphabetically = names.OrderBy (n => n);          // string key

NOTE
You can call the query operators in Enumerable with traditional delegates that refer to methods
instead of lambda expressions. This approach is effective in simplifying certain kinds of local
queries — particularly with LINQ to XML — and is demonstrated in Chapter 10. It doesn’t
work with IQueryable<T>-based sequences, however (e.g., when querying a database),
because the operators in Queryable require lambda expressions in order to emit expression
trees. We discuss this later in the section “Interpreted Queries”.

Natural Ordering
The original ordering of elements within an input sequence is significant in LINQ. Some query
operators rely on this ordering, such as Take, Skip, and Reverse.
The Take operator outputs the first x elements, discarding the rest:

int[] numbers  = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take (3);     // { 10, 9, 8 }

The Skip operator ignores the first x elements and outputs the rest:

IEnumerable<int> lastTwo    = numbers.Skip (3);     // { 7, 6 }

Reverse does exactly as it says:

IEnumerable<int> reversed   = numbers.Reverse();    // { 6, 7, 8, 9, 10 }

With local queries (LINQ-to-objects), operators such as Where and Select preserve the
original ordering of the input sequence (as do all other query operators, except for those that
specifically change the ordering).

Other Operators
Not all query operators return a sequence. The element operators extract one element from the
input sequence; examples are First, Last, and ElementAt:

int[] numbers    = { 10, 9, 8, 7, 6 };
int firstNumber  = numbers.First();                        // 10
int lastNumber   = numbers.Last();                         // 6
int secondNumber = numbers.ElementAt(1);                   // 9
int secondLowest = numbers.OrderBy(n=>n).Skip(1).First();  // 7

The aggregation operators return a scalar value; usually of numeric type:

int count = numbers.Count();          // 5;
int min = numbers.Min();              // 6;

The quantifiers return a bool value:



bool hasTheNumberNine = numbers.Contains (9);          // true
bool hasMoreThanZeroElements = numbers.Any();          // true
bool hasAnOddElement = numbers.Any (n => n % 2 != 0);  // true

Because these operators return a single element, you don’t usually call further query operators
on their result unless that element itself is a collection.
Some query operators accept two input sequences. Examples are Concat, which appends one
sequence to another, and Union, which does the same but with duplicates removed:

int[] seq1 = { 1, 2, 3 };
int[] seq2 = { 3, 4, 5 };
IEnumerable<int> concat = seq1.Concat (seq2);    //  { 1, 2, 3, 3, 4, 5 }
IEnumerable<int> union  = seq1.Union (seq2);     //  { 1, 2, 3, 4, 5 }

The joining operators also fall into this category. Chapter 9 covers all the query operators in
detail.

Query Expressions
C# provides a syntactic shortcut for writing LINQ queries, called query expressions. Contrary
to popular belief, a query expression is not a means of embedding SQL into C#. In fact, the
design of query expressions was inspired primarily by list comprehensions from functional
programming languages such as LISP and Haskell, although SQL had a cosmetic influence.

NOTE
In this book we refer to query expression syntax simply as “query syntax.”

In the preceding section, we wrote a fluent-syntax query to extract strings containing the letter
“a”, sorted by length and converted to uppercase. Here’s the same thing in query syntax:

using System;
using System.Collections.Generic;
using System.Linq;

class LinqDemo
{
  static void Main()
  {
    string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

    IEnumerable<string> query =
      from    n in names
      where   n.Contains ("a")     // Filter elements
      orderby n.Length             // Sort elements
      select  n.ToUpper();         // Translate each element (project)

    foreach (string name in query) Console.WriteLine (name);
  }
}

JAY
MARY
HARRY

Query expressions always start with a from clause and end with either a select or group



clause. The from clause declares a range variable (in this case, n), which you can think of as
traversing the input sequence — rather like foreach. Figure 8-2 illustrates the complete syntax
as a railroad diagram.

NOTE
To read this diagram, start at the left and then proceed along the track as if you were a train.
For instance, after the mandatory from clause, you can optionally include an orderby, where,
let, or join clause. After that, you can either continue with a select or group clause, or go
back and include another from, orderby, where, let, or join clause.



Figure 8-2. Query syntax

The compiler processes a query expression by translating it into fluent syntax. It does this in a
fairly mechanical fashion — much like it translates foreach statements into calls to
GetEnumerator and MoveNext. This means that anything you can write in query syntax you can
also write in fluent syntax. The compiler (initially) translates our example query into the
following:

IEnumerable<string> query = names.Where   (n => n.Contains ("a"))
                                 .OrderBy (n => n.Length)
                                 .Select  (n => n.ToUpper());

The Where, OrderBy, and Select operators then resolve using the same rules that would apply
if the query were written in fluent syntax. In this case, they bind to extension methods in the
Enumerable class, because the System.Linq namespace is imported and names implements



IEnumerable<string>. The compiler doesn’t specifically favor the Enumerable class,
however, when translating query expressions. You can think of the compiler as mechanically
injecting the words “Where,” “OrderBy,” and “Select” into the statement, and then compiling it
as though you’d typed the method names yourself. This offers flexibility in how they resolve.
The operators in the database queries that we’ll write in later sections, for instance, will bind
instead to extension methods in Queryable.

NOTE
If we remove the using System.Linq directive from our program, the query would not
compile, since the Where, OrderBy, and Select methods would have nowhere to bind. Query
expressions cannot compile unless you import System.Linq, or another namespace with an
implementation of these query methods.

Range Variables
The identifier immediately following the from keyword syntax is called the range variable. A
range variable refers to the current element in the sequence that the operation is to be
performed on.
In our examples, the range variable n appears in every clause in the query. And yet, the
variable actually enumerates over a different sequence with each clause:

from    n in names           // n is our range variable
where   n.Contains ("a")     // n = directly from the array
orderby n.Length             // n = subsequent to being filtered
select  n.ToUpper()          // n = subsequent to being sorted

This becomes clear when we examine the compiler’s mechanical translation to fluent syntax:

names.Where   (n => n.Contains ("a"))      // Locally scoped n
     .OrderBy (n => n.Length)              // Locally scoped n
     .Select  (n => n.ToUpper())           // Locally scoped n

As you can see, each instance of n is scoped privately to its own lambda expression.
Query expressions also let you introduce new range variables, via the following clauses:

let

into

An additional from clause

join

We cover these later in this chapter in “Composition Strategies”, and also in Chapter 9, in
“Projecting” and “Joining”.

Query Syntax Versus SQL Syntax
Query expressions look superficially like SQL, yet the two are very different. A LINQ query
boils down to a C# expression, and so follows standard C# rules. For example, with LINQ,



you cannot use a variable before you declare it. In SQL, you can reference a table alias in the
SELECT clause before defining it in a FROM clause.
A subquery in LINQ is just another C# expression and so requires no special syntax.
Subqueries in SQL are subject to special rules.
With LINQ, data logically flows from left to right through the query. With SQL, the order is less
well-structured with regard data flow.
A LINQ query comprises a conveyor belt or pipeline of operators that accept and emit
sequences whose element order can matter. A SQL query comprises a network of clauses that
work mostly with unordered sets.

Query Syntax Versus Fluent Syntax
Query and fluent syntax each have advantages.
Query syntax is simpler for queries that involve any of the following:

A let clause for introducing a new variable alongside the range variable

SelectMany, Join, or GroupJoin, followed by an outer range variable reference

(We describe the let clause in the later section, “Composition Strategies”; we describe
SelectMany, Join, and GroupJoin in Chapter 9.)
The middle ground is queries that involve the simple use of Where, OrderBy, and Select.
Either syntax works well; the choice here is largely personal.
For queries that comprise a single operator, fluent syntax is shorter and less cluttered.
Finally, there are many operators that have no keyword in query syntax. These require that you
use fluent syntax — at least in part. This means any operator outside of the following:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

Mixed-Syntax Queries
If a query operator has no query-syntax support, you can mix query syntax and fluent syntax.
The only restriction is that each query-syntax component must be complete (i.e., start with a
from clause and end with a select or group clause).
Assuming this array declaration:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

the following example counts the number of names containing the letter “a”:

int matches = (from n in names where n.Contains ("a") select n).Count();
// 3

The next query obtains the first name in alphabetical order:

string first = (from n in names orderby n select n).First();   // Dick



The mixed-syntax approach is sometimes beneficial in more complex queries. With these
simple examples, however, we could stick to fluent syntax throughout without penalty:

int matches = names.Where (n => n.Contains ("a")).Count();   // 3
string first = names.OrderBy (n => n).First();               // Dick

NOTE
There are times when mixed-syntax queries offer by far the highest “bang for the buck” in
terms of function and simplicity. It’s important not to unilaterally favor either query or fluent
syntax; otherwise, you’ll be unable to write mixed-syntax queries without feeling a sense of
failure!

Where applicable, the remainder of this chapter will show key concepts in both fluent and
query syntax.

Deferred Execution
An important feature of most query operators is that they execute not when constructed, but
when enumerated (in other words, when MoveNext is called on its enumerator). Consider the
following query:

var numbers = new List<int> { 1 };

IEnumerable<int> query = numbers.Select (n => n * 10);    // Build query

numbers.Add (2);                    // Sneak in an extra element

foreach (int n in query)
  Console.Write (n + "|");          // 10|20|

The extra number that we sneaked into the list after constructing the query is included in the
result, since it’s not until the foreach statement runs that any filtering or sorting takes place.
This is called deferred or lazy execution and is the same as what happens with delegates:

Action a = () => Console.WriteLine ("Foo");
// We've not written anything to the Console yet. Now let's run it:
a();  // Deferred execution!

All standard query operators provide deferred execution, with the following exceptions:
Operators that return a single element or scalar value, such as First or Count

The following conversion operators:

ToArray, ToList, ToDictionary, ToLookup

These operators cause immediate query execution because their result types have no
mechanism for providing deferred execution. The Count method, for instance, returns a simple
integer, which doesn’t then get enumerated. The following query is executed immediately:

int matches = numbers.Where (n => n < 2).Count();    // 1



Deferred execution is important because it decouples query construction from query
execution. This allows you to construct a query in several steps, as well as making database
queries possible.

NOTE
Subqueries provide another level of indirection. Everything in a subquery is subject to
deferred execution — including aggregation and conversion methods. We describe this in the
section “Subqueries” later in this chapter.

Reevaluation
Deferred execution has another consequence — a deferred execution query is reevaluated
when you re-enumerate:

var numbers = new List<int>() { 1, 2 };

IEnumerable<int> query = numbers.Select (n => n * 10);
foreach (int n in query) Console.Write (n + "|");   // 10|20|

numbers.Clear();
foreach (int n in query) Console.Write (n + "|");   // <nothing>

There are a couple of reasons why reevaluation is sometimes disadvantageous:
Sometimes you want to “freeze” or cache the results at a certain point in time.

Some queries are computationally intensive (or rely on querying a remote database), so you
don’t want to unnecessarily repeat them.

You can defeat reevaluation by calling a conversion operator, such as ToArray or ToList.
ToArray copies the output of a query to an array; ToList copies to a generic List<T>:

var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
  .Select (n => n * 10)

  .ToList();                // Executes immediately into a List<int>

numbers.Clear();
Console.WriteLine (timesTen.Count);      // Still 2

Captured Variables
If your query’s lambda expressions capture outer variables, the query will honor the value of
those variables at the time the query runs:

int[] numbers = { 1, 2 };

int factor = 10;
IEnumerable<int> query = numbers.Select (n => n * factor);
factor = 20;
foreach (int n in query) Console.Write (n + "|");   // 20|40|

This can be a trap when building up a query within a for loop. For example, suppose we



wanted to remove all vowels from a string. The following, although inefficient, gives the
correct result:

IEnumerable<char> query = "Not what you might expect";

query = query.Where (c => c != 'a');
query = query.Where (c => c != 'e');
query = query.Where (c => c != 'i');
query = query.Where (c => c != 'o');
query = query.Where (c => c != 'u');

foreach (char c in query) Console.Write (c);  // Nt wht y mght xpct

Now watch what happens when we refactor this with a for loop:

IEnumerable<char> query = "Not what you might expect";
string vowels = "aeiou";

for (int i = 0; i < vowels.Length; i++)
  query = query.Where (c => c != vowels[i]);

foreach (char c in query) Console.Write (c);

An IndexOutOfRangeException is thrown upon enumerating the query, because as we saw in
Chapter 4 (see “Capturing Outer Variables”), the compiler scopes the iteration variable in the
for loop as if it was declared outside the loop. Hence each closure captures the same variable
(i) whose value is 5 when the query is actually enumerated. To solve this, you must assign the
loop variable to another variable declared inside the statement block:

for (int i = 0; i < vowels.Length; i++)
{
  char vowel = vowels[i];
  query = query.Where (c => c != vowel);
}

This forces a fresh local variable to be captured on each loop iteration.

NOTE
From C# 5.0, another way to solve the problem is to replace the for loop with a foreach
loop:

foreach (char vowel in vowels)
  query = query.Where (c => c != vowel);

This works in C# 5.0 but fails in earlier versions of C# for the reasons we described in
Chapter 4.

How Deferred Execution Works
Query operators provide deferred execution by returning decorator sequences.
Unlike a traditional collection class such as an array or linked list, a decorator sequence (in
general) has no backing structure of its own to store elements. Instead, it wraps another
sequence that you supply at runtime, to which it maintains a permanent dependency. Whenever
you request data from a decorator, it in turn must request data from the wrapped input sequence.



NOTE
The query operator’s transformation constitutes the “decoration.” If the output sequence
performed no transformation, it would be a proxy rather than a decorator.

Calling Where merely constructs the decorator wrapper sequence, holding a reference to the
input sequence, the lambda expression, and any other arguments supplied. The input sequence
is enumerated only when the decorator is enumerated.
Figure 8-3 illustrates the composition of the following query:

IEnumerable<int> lessThanTen = new int[] { 5, 12, 3 }.Where (n => n < 10);

Figure 8-3. Decorator sequence

When you enumerate lessThanTen, you’re, in effect, querying the array through the Where
decorator.
The good news — if you ever want to write your own query operator — is that implementing a
decorator sequence is easy with a C# iterator. Here’s how you can write your own Select
method (argument validation aside):

public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
  foreach (TSource element in source)
    yield return selector (element);
}

This method is an iterator by virtue of the yield return statement. Functionally, it’s a shortcut
for the following:



public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
  return new SelectSequence (source, selector);
}

where SelectSequence is a (compiler-written) class whose enumerator encapsulates the logic
in the iterator method.
Hence, when you call an operator such as Select or Where, you’re doing nothing more than
instantiating an enumerable class that decorates the input sequence.

Chaining Decorators
Chaining query operators creates a layering of decorators. Consider the following query:

IEnumerable<int> query = new int[] { 5, 12, 3 }.Where   (n => n < 10)
                                               .OrderBy (n => n)
                                               .Select  (n => n * 10);

Each query operator instantiates a new decorator that wraps the previous sequence (rather like
a Russian nesting doll). The object model of this query is illustrated in Figure 8-4. Note that
this object model is fully constructed prior to any enumeration.

Figure 8-4. Layered decorator sequences

When you enumerate query, you’re querying the original array, transformed through a layering
or chain of decorators.

NOTE
Adding ToList onto the end of this query would cause the preceding operators to execute



right away, collapsing the whole object model into a single list.

Figure 8-5 shows the same object composition in UML syntax. Select’s decorator references
the OrderBy decorator, which references Where’s decorator, which references the array. A
feature of deferred execution is that you build the identical object model if you compose the
query progressively:

Figure 8-5. UML decorator composition

IEnumerable<int>
  source    = new int[] { 5, 12, 3 },
  filtered  = source   .Where   (n => n < 10),
  sorted    = filtered .OrderBy (n => n),
  query     = sorted   .Select  (n => n * 10);

How Queries Are Executed
Here are the results of enumerating the preceding query:

foreach (int n in query) Console.WriteLine (n);

30
50

Behind the scenes, the foreach calls GetEnumerator on Select’s decorator (the last or
outermost operator), which kicks everything off. The result is a chain of enumerators that
structurally mirrors the chain of decorator sequences. Figure 8-6 illustrates the flow of
execution as enumeration proceeds.



Figure 8-6. Execution of a local query

In the first section of this chapter, we depicted a query as a production line of conveyor belts.
Extending this analogy, we can say a LINQ query is a lazy production line, where the conveyor
belts roll elements only upon demand. Constructing a query constructs a production line —
with everything in place — but with nothing rolling. Then when the consumer requests an
element (enumerates over the query), the rightmost conveyor belt activates; this in turn triggers
the others to roll — as and when input sequence elements are needed. LINQ follows a demand-
driven pull model, rather than a supply-driven push model. This is important — as we’ll see
later — in allowing LINQ to scale to querying SQL databases.

Subqueries
A subquery is a query contained within another query’s lambda expression. The following
example uses a subquery to sort musicians by their last name:

string[] musos =
  { "David Gilmour", "Roger Waters", "Rick Wright", "Nick Mason" };

IEnumerable<string> query = musos.OrderBy (m => m.Split().Last());

m.Split converts each string into a collection of words, upon which we then call the Last
query operator. m.Split().Last is the subquery; query references the outer query.
Subqueries are permitted because you can put any valid C# expression on the right-hand side of
a lambda. A subquery is simply another C# expression. This means that the rules for subqueries
are a consequence of the rules for lambda expressions (and the behavior of query operators in



general).

NOTE
The term subquery, in the general sense, has a broader meaning. For the purpose of
describing LINQ, we use the term only for a query referenced from within the lambda
expression of another query. In a query expression, a subquery amounts to a query
referenced from an expression in any clause except the from clause.

A subquery is privately scoped to the enclosing expression and is able to reference parameters
in the outer lambda expression (or range variables in a query expression).
m.Split().Last is a very simple subquery. The next query retrieves all strings in an array
whose length matches that of the shortest string:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> outerQuery = names
  .Where (n => n.Length == names.OrderBy (n2 => n2.Length)
                                .Select  (n2 => n2.Length).First());

Tom, Jay

Here’s the same thing as a query expression:

IEnumerable<string> outerQuery =
  from   n in names
  where  n.Length ==
           (from n2 in names orderby n2.Length select n2.Length).First()
  select n;

Because the outer range variable (n) is in scope for a subquery, we cannot reuse n as the
subquery’s range variable.
A subquery is executed whenever the enclosing lambda expression is evaluated. This means a
subquery is executed upon demand, at the discretion of the outer query. You could say that
execution proceeds from the outside in. Local queries follow this model literally; interpreted
queries (e.g., database queries) follow this model conceptually.
The subquery executes as and when required, to feed the outer query. In our example, the
subquery (the top conveyor belt in Figure 8-7) executes once for every outer loop iteration.
This is illustrated in Figures 8-7 and 8-8.



Figure 8-7. Subquery composition



Figure 8-8. UML subquery composition

We can express our preceding subquery more succinctly as follows:

IEnumerable<string> query =
  from   n in names
  where  n.Length == names.OrderBy (n2 => n2.Length).First().Length
  select n;

With the Min aggregation function, we can simplify the query further:

IEnumerable<string> query =
  from   n in names
  where  n.Length == names.Min (n2 => n2.Length)



  select n;

In the later section “Interpreted Queries”, we’ll describe how remote sources such as SQL
tables can be queried. Our example makes an ideal database query, since it would be
processed as a unit, requiring only one round trip to the database server. This query, however,
is inefficient for a local collection because the subquery is recalculated on each outer loop
iteration. We can avoid this inefficiency by running the subquery separately (so that it’s no
longer a subquery):

int shortest = names.Min (n => n.Length);

IEnumerable<string> query = from   n in names
                            where  n.Length == shortest
                            select n;

NOTE
Factoring out subqueries in this manner is nearly always desirable when querying local
collections. An exception is when the subquery is correlated, meaning that it references the
outer range variable. We explore correlated subqueries in “Projecting” in Chapter 9.

Subqueries and Deferred Execution
An element or aggregation operator such as First or Count in a subquery doesn’t force the
outer query into immediate execution — deferred execution still holds for the outer query. This
is because subqueries are called indirectly — through a delegate in the case of a local query,
or through an expression tree in the case of an interpreted query.
An interesting case arises when you include a subquery within a Select expression. In the case
of a local query, you’re actually projecting a sequence of queries — each itself subject to
deferred execution. The effect is generally transparent, and it serves to further improve
efficiency. We revisit Select subqueries in some detail in Chapter 9.

Composition Strategies
In this section, we describe three strategies for building more complex queries:

Progressive query construction

Using the into keyword

Wrapping queries

All are chaining strategies and produce identical runtime queries.

Progressive Query Building
At the start of the chapter, we demonstrated how you could build a fluent query progressively:

var filtered   = names    .Where   (n => n.Contains ("a"));
var sorted     = filtered .OrderBy (n => n);
var query      = sorted   .Select  (n => n.ToUpper());



Because each of the participating query operators returns a decorator sequence, the resultant
query is the same chain or layering of decorators that you would get from a single-expression
query. There are a couple of potential benefits, however, to building queries progressively:

It can make queries easier to write.

You can add query operators conditionally. For example:

if (includeFilter) query = query.Where (...)

This is more efficient than:

query = query.Where (n => !includeFilter || <expression>)

because it avoids adding an extra query operator if includeFilter is false.
A progressive approach is often useful in query comprehensions. To illustrate, imagine we
want to remove all vowels from a list of names, and then present in alphabetical order those
whose length is still more than two characters. In fluent syntax, we could write this query as a
single expression — by projecting before we filter:

IEnumerable<string> query = names
  .Select  (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                  .Replace ("o", "").Replace ("u", ""))
  .Where   (n => n.Length > 2)
  .OrderBy (n => n);

RESULT: { "Dck", "Hrry", "Mry" }

NOTE
Rather than calling string’s Replace method five times, we could remove vowels from a
string more efficiently with a regular expression:

n => Regex.Replace (n, "[aeiou]", "")

string’s Replace method has the advantage, though, of also working in database queries.

Translating this directly into a query expression is troublesome because the select clause
must come after the where and orderby clauses. And if we rearrange the query so as to project
last, the result would be different:

IEnumerable<string> query =
  from    n in names
  where   n.Length > 2
  orderby n
  select  n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
           .Replace ("o", "").Replace ("u", "");

RESULT: { "Dck", "Hrry", "Jy", "Mry", "Tm" }

Fortunately, there are a number of ways to get the original result in query syntax. The first is by
querying progressively:

IEnumerable<string> query =



  from   n in names
  select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
          .Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;

RESULT: { "Dck", "Hrry", "Mry" }

The into Keyword

NOTE
The into keyword is interpreted in two very different ways by query expressions, depending
on context. The meaning we’re describing now is for signaling query continuation (the other
is for signaling a GroupJoin).

The into keyword lets you “continue” a query after a projection and is a shortcut for
progressively querying. With into, we can rewrite the preceding query as:

IEnumerable<string> query =
  from   n in names
  select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
          .Replace ("o", "").Replace ("u", "")
  into noVowel
    where noVowel.Length > 2 orderby noVowel select noVowel;

The only place you can use into is after a select or group clause. into “restarts” a query,
allowing you to introduce fresh where, orderby, and select clauses.

NOTE
Although it’s easiest to think of into as restarting a query from the perspective of a query
expression, it’s all one query when translated to its final fluent form. Hence, there’s no
intrinsic performance hit with into. Nor do you lose any points for its use!

The equivalent of into in fluent syntax is simply a longer chain of operators.

Scoping rules
All range variables are out of scope following an into keyword. The following will not
compile:

var query =
  from n1 in names
  select n1.ToUpper()
  into n2                              // Only n2 is visible from here on.
    where n1.Contains ("x")            // Illegal: n1 is not in scope.
    select n2;

To see why, consider how this maps to fluent syntax:

var query = names
  .Select (n1 => n1.ToUpper())
  .Where  (n2 => n1.Contains ("x"));     // Error: n1 no longer in scope



The original name (n1) is lost by the time the Where filter runs. Where’s input sequence
contains only uppercase names, so it cannot filter based on n1.

Wrapping Queries
A query built progressively can be formulated into a single statement by wrapping one query
around another. In general terms:

var tempQuery = tempQueryExpr
var finalQuery = from ... in tempQuery ...

can be reformulated as:

var finalQuery = from ... in (tempQueryExpr)

Wrapping is semantically identical to progressive query building or using the into keyword
(without the intermediate variable). The end result in all cases is a linear chain of query
operators. For example, consider the following query:

IEnumerable<string> query =
  from   n in names
  select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
          .Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;

Reformulated in wrapped form, it’s the following:

IEnumerable<string> query =
  from n1 in
  (
    from   n2 in names
    select n2.Replace ("a", "").Replace ("e", "").Replace ("i", "")
             .Replace ("o", "").Replace ("u", "")
  )
  where n1.Length > 2 orderby n1 select n1;

When converted to fluent syntax, the result is the same linear chain of operators as in previous
examples:

IEnumerable<string> query = names
  .Select  (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                  .Replace ("o", "").Replace ("u", ""))
  .Where   (n => n.Length > 2)
  .OrderBy (n => n);

(The compiler does not emit the final .Select (n => n) because it’s redundant.)
Wrapped queries can be confusing because they resemble the subqueries we wrote earlier.
Both have the concept of an inner and outer query. When converted to fluent syntax, however,
you can see that wrapping is simply a strategy for sequentially chaining operators. The end
result bears no resemblance to a subquery, which embeds an inner query within the lambda
expression of another.
Returning to a previous analogy: when wrapping, the “inner” query amounts to the preceding
conveyor belts. In contrast, a subquery rides above a conveyor belt and is activated upon
demand through the conveyor belt’s lambda worker (as illustrated in Figure 8-7).



Projection Strategies

Object Initializers
So far, all our select clauses have projected scalar element types. With C# object initializers,
you can project into more complex types. For example, suppose, as a first step in a query, we
want to strip vowels from a list of names while still retaining the original versions alongside,
for the benefit of subsequent queries. We can write the following class to assist:

class TempProjectionItem
{
  public string Original;    // Original name
  public string Vowelless;   // Vowel-stripped name
}

and then project into it with object initializers:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<TempProjectionItem> temp =
  from n in names
  select new TempProjectionItem
  {
    Original  = n,
    Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                 .Replace ("o", "").Replace ("u", "")
  };

The result is of type IEnumerable<TempProjectionItem>, which we can subsequently query:

IEnumerable<string> query = from   item in temp
                            where  item.Vowelless.Length > 2
                            select item.Original;
Dick
Harry
Mary

Anonymous Types
Anonymous types allow you to structure your intermediate results without writing special
classes. We can eliminate the TempProjectionItem class in our previous example with
anonymous types:

var intermediate = from n in names

  select new
  {
    Original = n,
    Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                 .Replace ("o", "").Replace ("u", "")
  };

IEnumerable<string> query = from   item in intermediate
                            where  item.Vowelless.Length > 2
                            select item.Original;

This gives the same result as the previous example, but without needing to write a one-off
class. The compiler does the job instead, generating a temporary class with fields that match
the structure of our projection. This means, however, that the intermediate query has the



following type:

IEnumerable <random-compiler-generated-name>

The only way we can declare a variable of this type is with the var keyword. In this case, var
is more than just a clutter reduction device; it’s a necessity.
We can write the whole query more succinctly with the into keyword:

var query = from n in names
  select new
  {
     Original = n,
     Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                  .Replace ("o", "").Replace ("u", "")
  }
  into temp
  where temp.Vowelless.Length > 2
  select temp.Original;

Query expressions provide a shortcut for writing this kind of query: the let keyword.

The let Keyword
The let keyword introduces a new variable alongside the range variable.
With let, we can write a query extracting strings whose length, excluding vowels, exceeds two
characters, as follows:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query =
  from n in names
  let vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                   .Replace ("o", "").Replace ("u", "")
  where vowelless.Length > 2
  orderby vowelless
  select n;       // Thanks to let, n is still in scope.

The compiler resolves a let clause by projecting into a temporary anonymous type that
contains both the range variable and the new expression variable. In other words, the compiler
translates this query into the preceding example.
let accomplishes two things:

It projects new elements alongside existing elements.

It allows an expression to be used repeatedly in a query without being rewritten.

The let approach is particularly advantageous in this example, because it allows the select
clause to project either the original name (n) or its vowel-removed version (vowelless).
You can have any number of let statements, before or after a where statement (see Figure 8-2).
A let statement can reference variables introduced in earlier let statements (subject to the
boundaries imposed by an into clause). let reprojects all existing variables transparently.
A let expression need not evaluate to a scalar type: sometimes it’s useful to have it evaluate to
a subsequence, for instance.



Interpreted Queries
LINQ provides two parallel architectures: local queries for local object collections, and
interpreted queries for remote data sources. So far, we’ve examined the architecture of local
queries, which operate over collections implementing IEnumerable<T>. Local queries resolve
to query operators in the Enumerable class (by default), which in turn resolve to chains of
decorator sequences. The delegates that they accept — whether expressed in query syntax,
fluent syntax, or traditional delegates — are fully local to Intermediate Language (IL) code, just
like any other C# method.
By contrast, interpreted queries are descriptive. They operate over sequences that implement
IQueryable<T>, and they resolve to the query operators in the Queryable class, which emit
expression trees that are interpreted at runtime.

NOTE
The query operators in Enumerable can actually work with IQueryable<T> sequences. The
difficulty is that the resultant queries always execute locally on the client — this is why a
second set of query operators is provided in the Queryable class.

There are two IQueryable<T> implementations in the .NET Framework:
LINQ to SQL

Entity Framework (EF)

These LINQ-to-db technologies are very similar in their LINQ support: the LINQ-to-db
queries in this book will work with both LINQ to SQL and EF unless otherwise specified.
It’s also possible to generate an IQueryable<T> wrapper around an ordinary enumerable
collection by calling the AsQueryable method. We describe AsQueryable in the section
“Building Query Expressions” later in this chapter.
In this section, we’ll use LINQ to SQL to illustrate interpreted query architecture because
LINQ to SQL lets us query without having to first write an Entity Data Model. The queries that
we write, however, work equally well with Entity Framework (and also many third-party
products).

NOTE
IQueryable<T> is an extension of IEnumerable<T> with additional methods for constructing
expression trees. Most of the time you can ignore the details of these methods; they’re called
indirectly by the Framework. The section “Building Query Expressions” covers
IQueryable<T> in more detail.

Suppose we create a simple customer table in SQL Server and populate it with a few names
using the following SQL script:

create table Customer
(
  ID int not null primary key,



  Name varchar(30)
)
insert Customer values (1, 'Tom')
insert Customer values (2, 'Dick')
insert Customer values (3, 'Harry')
insert Customer values (4, 'Mary')
insert Customer values (5, 'Jay')

With this table in place, we can write an interpreted LINQ query in C# to retrieve customers
whose name contains the letter “a” as follows:

using System;
using System.Linq;
using System.Data.Linq;            // in System.Data.Linq.dll
using System.Data.Linq.Mapping;

[Table] public class Customer
{
  [Column(IsPrimaryKey=true)] public int ID;
  [Column]                    public string Name;
}

class Test
{
  static void Main()
  {
    DataContext dataContext = new DataContext ("connection string");
    Table<Customer> customers = dataContext.GetTable <Customer>();

    IQueryable<string> query = from c in customers
      where   c.Name.Contains ("a")
      orderby c.Name.Length
      select  c.Name.ToUpper();

    foreach (string name in query) Console.WriteLine (name);
  }
}

LINQ to SQL translates this query into the following SQL:

SELECT UPPER([t0].[Name]) AS [value]
FROM [Customer] AS [t0]
WHERE [t0].[Name] LIKE @p0
ORDER BY LEN([t0].[Name])

with the following end result:

JAY
MARY
HARRY

How Interpreted Queries Work
Let’s examine how the preceding query is processed.
First, the compiler converts query syntax to fluent syntax. This is done exactly as with local
queries:

IQueryable<string> query = customers.Where   (n => n.Name.Contains ("a"))
                                    .OrderBy (n => n.Name.Length)
                                    .Select  (n => n.Name.ToUpper());

Next, the compiler resolves the query operator methods. Here’s where local and interpreted



queries differ — interpreted queries resolve to query operators in the Queryable class instead
of the Enumerable class.
To see why, we need to look at the customers variable, the source upon which the whole
query builds. customers is of type Table<T>, which implements IQueryable<T> (a subtype
of IEnumerable<T>). This means the compiler has a choice in resolving Where: it could call
the extension method in Enumerable or the following extension method in Queryable:

public static IQueryable<TSource> Where<TSource> (this
  IQueryable<TSource> source, Expression <Func<TSource,bool>> predicate)

The compiler chooses Queryable.Where because its signature is a more specific match.
Queryable.Where accepts a predicate wrapped in an Expression<TDelegate> type. This
instructs the compiler to translate the supplied lambda expression — in other words,
n=>n.Name.Contains("a") — to an expression tree rather than a compiled delegate. An
expression tree is an object model based on the types in System.Linq.Expressions that can
be inspected at runtime (so that LINQ to SQL or EF can later translate it to a SQL statement).
Because Queryable.Where also returns IQueryable<T>, the same process follows with the
OrderBy and Select operators. The end result is illustrated in Figure 8-9. In the shaded box,
there is an expression tree describing the entire query, which can be traversed at runtime.

Figure 8-9. Interpreted query composition

Execution



Interpreted queries follow a deferred execution model — just like local queries. This means
that the SQL statement is not generated until you start enumerating the query. Further,
enumerating the same query twice results in the database being queried twice.
Under the covers, interpreted queries differ from local queries in how they execute. When you
enumerate over an interpreted query, the outermost sequence runs a program that traverses the
entire expression tree, processing it as a unit. In our example, LINQ to SQL translates the
expression tree to a SQL statement, which it then executes, yielding the results as a sequence.

NOTE
To work, LINQ to SQL needs some clues as to the schema of the database. The Table and
Column attributes that we applied to the Customer class serve just this function. The section
“LINQ to SQL and Entity Framework” describes these attributes in more detail. Entity
Framework is similar except that it also requires an Entity Data Model (EDM) — an XML
file describing the mapping between database and entities.

We said previously that a LINQ query is like a production line. When you enumerate an
IQueryable conveyor belt, though, it doesn’t start up the whole production line, like with a
local query. Instead, just the IQueryable belt starts up, with a special enumerator that calls
upon a production manager. The manager reviews the entire production line — which consists
not of compiled code, but of dummies (method call expressions) with instructions pasted to
their foreheads (expression trees). The manager then traverses all the expressions, in this case
transcribing them to a single piece of paper (a SQL statement), which it then executes, feeding
the results back to the consumer. Only one belt turns; the rest of the production line is a network
of empty shells, existing just to describe what has to be done.
This has some practical implications. For instance, with local queries, you can write your own
query methods (fairly easily, with iterators) and then use them to supplement the predefined set.
With remote queries, this is difficult, and even undesirable. If you wrote a MyWhere extension
method accepting IQueryable<T>, it would be like putting your own dummy into the
production line. The production manager wouldn’t know what to do with your dummy. Even if
you intervened at this stage, your solution would be hard-wired to a particular provider, such
as LINQ to SQL, and would not work with other IQueryable implementations. Part of the
benefit of having a standard set of methods in Queryable is that they define a standard
vocabulary for querying any remote collection. As soon as you try to extend the vocabulary,
you’re no longer interoperable.
Another consequence of this model is that an IQueryable provider may be unable to cope with
some queries — even if you stick to the standard methods. LINQ to SQL and EF are both
limited by the capabilities of the database server; some LINQ queries have no SQL translation.
If you’re familiar with SQL, you’ll have a good intuition for what these are, although at times
you have to experiment to see what causes a runtime error; it can be surprising what does
work!

Combining Interpreted and Local Queries
A query can include both interpreted and local operators. A typical pattern is to have the local
operators on the outside and the interpreted components on the inside; in other words, the
interpreted queries feed the local queries. This pattern works well with LINQ-to-database



queries.
For instance, suppose we write a custom extension method to pair up strings in a collection:

public static IEnumerable<string> Pair (this IEnumerable<string> source)
{
  string firstHalf = null;
  foreach (string element in source)
    if (firstHalf == null)
      firstHalf = element;
    else
    {
      yield return firstHalf + ", " + element;
      firstHalf = null;
    }
}

We can use this extension method in a query that mixes LINQ to SQL and local operators:

DataContext dataContext = new DataContext ("connection string");
Table<Customer> customers = dataContext.GetTable <Customer>();

IEnumerable<string> q = customers
  .Select (c => c.Name.ToUpper())
  .OrderBy (n => n)
  .Pair()                         // Local from this point on.
  .Select ((n, i) => "Pair " + i.ToString() + " = " + n);

foreach (string element in q) Console.WriteLine (element);

Pair 0 = HARRY, MARY
Pair 1 = TOM, DICK

Because customers is of a type implementing IQueryable<T>, the Select operator resolves
to Queryable.Select. This returns an output sequence also of type IQueryable<T>, so the
OrderBy operator similarly resolves to Queryable.OrderBy. But the next query operator,
Pair, has no overload accepting IQueryable<T> — only the less specific IEnumerable<T>.
So, it resolves to our local Pair method — wrapping the interpreted query in a local query.
Pair also returns IEnumerable, so the Select that follows resolves to another local operator.
On the LINQ to SQL side, the resulting SQL statement is equivalent to:

SELECT UPPER (Name) FROM Customer ORDER BY UPPER (Name)

The remaining work is done locally. In effect, we end up with a local query (on the outside),
whose source is an interpreted query (the inside).

AsEnumerable
Enumerable.AsEnumerable is the simplest of all query operators. Here’s its complete
definition:

public static IEnumerable<TSource> AsEnumerable<TSource>
              (this IEnumerable<TSource> source)
{
    return source;
}

Its purpose is to cast an IQueryable<T> sequence to IEnumerable<T>, forcing subsequent
query operators to bind to Enumerable operators instead of Queryable operators. This causes



the remainder of the query to execute locally.
To illustrate, suppose we had a MedicalArticles table in SQL Server and wanted to use
LINQ to SQL or EF to retrieve all articles on influenza whose abstract contained less than 100
words. For the latter predicate, we need a regular expression:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

var query = dataContext.MedicalArticles
  .Where (article => article.Topic == "influenza" &&
                     wordCounter.Matches (article.Abstract).Count < 100);

The problem is that SQL Server doesn’t support regular expressions, so the LINQ-to-db
providers will throw an exception, complaining that the query cannot be translated to SQL. We
can solve this by querying in two steps: first retrieving all articles on influenza through a LINQ
to SQL query, and then filtering locally for abstracts of less than 100 words:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

IEnumerable<MedicalArticle> sqlQuery = dataContext.MedicalArticles
  .Where (article => article.Topic == "influenza");

IEnumerable<MedicalArticle> localQuery = sqlQuery
  .Where (article => wordCounter.Matches (article.Abstract).Count < 100);

Because sqlQuery is of type IEnumerable<MedicalArticle>, the second query binds to the
local query operators, forcing that part of the filtering to run on the client.
With AsEnumerable, we can do the same in a single query:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

var query = dataContext.MedicalArticles
  .Where (article => article.Topic == "influenza")

  .AsEnumerable()
  .Where (article => wordCounter.Matches (article.Abstract).Count < 100);

An alternative to calling AsEnumerable is to call ToArray or ToList. The advantage of
AsEnumerable is that it doesn’t force immediate query execution, nor does it create any
storage structure.

NOTE
Moving query processing from the database server to the client can hurt performance,
especially if it means retrieving more rows. A more efficient (though more complex) way to
solve our example would be to use SQL CLR integration to expose a function on the database
that implemented the regular expression.

We demonstrate combined interpreted and local queries further in Chapter 10.

LINQ to SQL and Entity Framework
Throughout this and the following chapter, we use LINQ to SQL (L2S) and Entity Framework



(EF) to demonstrate interpreted queries. We’ll now examine the key features of these
technologies.

NOTE
If you’re already familiar with L2S, take an advance look at Table 8-1 (at end of this section)
for a summary of the API differences with respect to querying.

LINQ TO SQL VERSUS ENTITY FRAMEWORK
Both LINQ to SQL and Entity Framework are LINQ-enabled object-relational mappers. The
essential difference is that EF allows for stronger decoupling between the database schema and the
classes that you query. Instead of querying classes that closely represent the database schema, you
query a higher-level abstraction described by an Entity Data Model. This offers extra flexibility, but
incurs a cost in both performance and simplicity.
L2S was written by the C# team and was released with Framework 3.5; EF was written by the
ADO.NET team and was released later as part of Service Pack 1. L2S has since been taken over
by the ADO.NET team. This has resulted in the product receiving only minor subsequent
improvements, with the team concentrating more on EF.
EF has improved considerably in later versions, although each technology still has unique strengths.
L2S’s strengths are ease of use, simplicity, performance, and the quality of its SQL translations.
EF’s strength is its flexibility in creating sophisticated mappings between the database and entity
classes. EF also allows for databases other than SQL Server via a provider model (L2S also
features a provider model, but this was made internal to encourage third parties to focus on EF
instead).
L2S is excellent for learning how to query databases in LINQ — because it keeps the object-
relational side of things simple while you learn querying principles that also work with EF.

LINQ to SQL Entity Classes
L2S allows you to use any class to represent data, as long as you decorate it with appropriate
attributes. Here’s a simple example:

[Table]
public class Customer
{
  [Column(IsPrimaryKey=true)]
  public int ID;

  [Column]
  public string Name;
}

The [Table] attribute, in the System.Data.Linq.Mapping namespace, tells L2S that an
object of this type represents a row in a database table. By default, it assumes the table name
matches the class name; if this is not the case, you can specify the table name as follows:

[Table (Name="Customers")]

A class decorated with the [Table] attribute is called an entity in L2S. To be useful, its
structure must closely — or exactly — match that of a database table, making it a low-level



construct.
The [Column] attribute flags a field or property that maps to a column in a table. If the column
name differs from the field or property name, you can specify the column name as follows:

[Column (Name="FullName")]
public string Name;

The IsPrimaryKey property in the [Column] attribute indicates that the column partakes in the
table’s primary key and is required for maintaining object identity, as well as allowing updates
to be written back to the database.
Instead of defining public fields, you can define public properties in conjunction with private
fields. This allows you to write validation logic into the property accessors. If you take this
route, you can optionally instruct L2S to bypass your property accessors and write to the field
directly when populating from the database:

string _name;

[Column (Storage="_name")]
public string Name { get { return _name; } set { _name = value; } }

Column(Storage="_name") tells L2S to write directly to the _name field (rather than the Name
property) when populating the entity. L2S’s use of reflection allows the field to be private —
as in this example.

NOTE
You can generate entity classes automatically from a database using either Visual Studio (add
a new “LINQ to SQL Classes” project item) or with the SqlMetal command-line tool.

Entity Framework Entity Classes
As with L2S, EF lets you use any class to represent data (although you have to implement
special interfaces if you want functionality such as navigation properties).
The following entity class, for instance, represents a customer that ultimately maps to a
customer table in the database:

// You'll need to reference System.Data.Entity.dll

[EdmEntityType (NamespaceName = "NutshellModel", Name = "Customer")]
public partial class Customer
{
  [EdmScalarPropertyAttribute (EntityKeyProperty=true, IsNullable=false)]
  public int ID { get; set; }

  [EdmScalarProperty (EntityKeyProperty = false, IsNullable = false)]
  public string Name { get; set; }
}

Unlike with L2S, however, a class such as this is not enough on its own. Remember that with
EF, you’re not querying the database directly — you’re querying a higher-level model called
the Entity Data Model (EDM). There needs to be some way to describe the EDM, and this is
most commonly done via an XML file with an .edmx extension, which contains three parts:



The conceptual model, which describes the EDM in isolation of the database

The store model, which describes the database schema

The mapping, which describes how the conceptual model maps to the store

The easiest way to create an .edmx file is to add an “ADO.NET Entity Data Model” project
item in Visual Studio and then follow the wizard for generating entities from a database. This
creates not only the .edmx file, but the entity classes as well.

NOTE
The entity classes in EF map to the conceptual model. The types that support querying and
updating the conceptual model are collectively called Object Services.

The designer assumes that you initially want a simple 1:1 mapping between tables and entities.
You can enrich this, however, by tweaking the EDM either with the designer or by editing the
underlying .edmx file that it creates for you. Here are some of the things you can do:

Map several tables into one entity.

Map one table into several entities.

Map inherited types to tables using the three standard kinds of strategies popular in the
ORM world.

The three kinds of inheritance strategies are:

Table per hierarchy
A single table maps to a whole class hierarchy. The table contains a discriminator column
to indicate which type each row should map to.

Table per type
A single table maps to one type, meaning that an inherited type maps to several tables. EF
generates a SQL JOIN when you query an entity, to merge all its base types together.

Table per concrete type
A separate table maps to each concrete type. This means that a base type maps to several
tables and EF generates a SQL UNION when you query for entities of a base type.

(In contrast, L2S supports only table per hierarchy.)

NOTE
The EDM is complex: a thorough discussion can fill hundreds of pages! A good book that
describes this in detail is Julia Lerman’s Programming Entity Framework
(http://oreilly.com/catalog/9780596520298/).

EF also lets you query through the EDM without LINQ — using a textual language called Entity

http://oreilly.com/catalog/9780596520298/


SQL (ESQL). This can be useful for dynamically constructed queries.

DataContext and ObjectContext
Once you’ve defined entity classes (and an EDM in the case of EF) you can start querying. The
first step is to instantiate a DataContext (L2S) or ObjectContext (EF), specifying a
connection string:

var l2sContext = new DataContext ("database connection string");
var efContext = new ObjectContext ("entity connection string");

NOTE
Instantiating a DataContext/ObjectContext directly is a low-level approach and is good for
demonstrating how the classes work. More typically, though, you instantiate a typed context
(a subclassed version of these classes), a process we’ll describe shortly.

With L2S, you pass in the database connection string; with EF, you must pass an entity
connection string, which incorporates the database connection string plus information on how
to find the EDM. (If you’ve created an EDM in Visual Studio, you can find the entity connection
string for your EDM in the app.config file.)
You can then obtain a queryable object by calling GetTable (L2S) or CreateObjectSet (EF).
The following example uses the Customer class that we defined earlier:

var context = new DataContext ("database connection string");
Table<Customer> customers = context.GetTable <Customer>();

Console.WriteLine (customers.Count());              // # of rows in table.

Customer cust = customers.Single (c => c.ID == 2);  // Retrieves Customer
                                                    // with ID of 2.

Here’s the same thing with EF:

var context = new ObjectContext ("entity connection string");
context.DefaultContainerName = "NutshellEntities";
ObjectSet<Customer> customers = context.CreateObjectSet<Customer>();

Console.WriteLine (customers.Count());              // # of rows in table.

Customer cust = customers.Single (c => c.ID == 2);  // Retrieves Customer
                                                    // with ID of 2.

NOTE
The Single operator is ideal for retrieving a row by primary key. Unlike First, it throws an
exception if more than one element is returned.

A DataContext/ObjectContext object does two things. First, it acts as a factory for
generating objects that you can query. Second, it keeps track of any changes that you make to
your entities so that you can write them back. We can continue our previous example to update



a customer with L2S as follows:

Customer cust = customers.OrderBy (c => c.Name).First();
cust.Name = "Updated Name";
context.SubmitChanges();

With EF, the only difference is that you call SaveChanges instead:

Customer cust = customers.OrderBy (c => c.Name).First();
cust.Name = "Updated Name";
context.SaveChanges();

Typed contexts
Having to call GetTable<Customer>() or CreateObjectSet<Customer>() all the time is
awkward. A better approach is to subclass DataContext/ObjectContext for a particular
database, adding properties that do this for each entity. This is called a typed context:

class NutshellContext : DataContext    // For LINQ to SQL
{
  public Table<Customer> Customers => GetTable<Customer>();
  // ... and so on, for each table in the database
}

Here’s the same thing for EF:

class NutshellContext : ObjectContext   // For Entity Framework
{
  public ObjectSet<Customer> Customers => CreateObjectSet<Customer>();
  // ... and so on, for each entity in the conceptual model
}

You can then simply do this:

var context = new NutshellContext ("connection string");
Console.WriteLine (context.Customers.Count());

If you use Visual Studio to create a “LINQ to SQL Classes” or “ADO.NET Entity Data Model”
project item, it builds a typed context for you automatically. The designers can also do
additional work such as pluralizing identifiers — in this example, it’s context.Customers
and not context.Customer, even though the SQL table and entity class are both called
Customer.

DISPOSING DATACONTEXT/OBJECTCONTEXT
Although DataContext/ObjectContext implement IDisposable, you can (in general) get away
without disposing instances. Disposing forces the context’s connection to dispose — but this is
usually unnecessary because L2S and EF close connections automatically whenever you finish
retrieving results from a query.
Disposing a context can actually be problematic because of lazy evaluation. Consider the following:

IQueryable<Customer> GetCustomers (string prefix)
{
  using (var dc = new NutshellContext ("connection string"))
    return dc.GetTable<Customer>()
             .Where (c => c.Name.StartsWith (prefix));
}
...



foreach (Customer c in GetCustomers ("a"))
  Console.WriteLine (c.Name);

This will fail because the query is evaluated when we enumerate it — which is after disposing its
DataContext.
There are some caveats, though, on not disposing contexts:

It relies on the connection object releasing all unmanaged resources on the Close method.
While this holds true with SqlConnection, it’s theoretically possible for a third-party connection
to keep resources open if you call Close but not Dispose (though this would arguably violate
the contract defined by IDbConnection.Close).

If you manually call GetEnumerator on a query (instead of using foreach) and then fail to either
dispose the enumerator or consume the sequence, the connection will remain open. Disposing
the DataContext/ObjectContext provides a backup in such scenarios.

Some people feel that it’s tidier to dispose contexts (and all objects that implement
IDisposable).

If you want to explicitly dispose contexts, you must pass a DataContext/ObjectContext instance into
methods such as GetCustomers to avoid the problem described.

Object tracking
A DataContext/ObjectContext instance keeps track of all the entities it instantiates, so it can
feed the same ones back to you whenever you request the same rows in a table. In other words,
a context in its lifetime will never emit two separate entities that refer to the same row in a
table (where a row is identified by primary key).

NOTE
You can disable this behavior in L2S by setting ObjectTrackingEnabled to false on the
DataContext object. In EF, you can disable change tracking on a per-type basis:

context.Customers.MergeOption = MergeOption.NoTracking;

Disabling object tracking also prevents you from submitting updates to the data.

To illustrate object tracking, suppose the customer whose name is alphabetically first also has
the lowest ID. In the following example, a and b will reference the same object:

var context = new NutshellContext ("connection string");

Customer a = context.Customers.OrderBy (c => c.Name).First();
Customer b = context.Customers.OrderBy (c => c.ID).First();

This has a couple of interesting consequences. First, consider what happens when L2S or EF
encounters the second query. It starts by querying the database — and obtaining a single row. It
then reads the primary key of this row and performs a lookup in the context’s entity cache.
Seeing a match, it returns the existing object without updating any values. So, if another user
had just updated that customer’s Name in the database, the new value would be ignored. This is
essential for avoiding unexpected side effects (the Customer object could be in use elsewhere)



and also for managing concurrency. If you had altered properties on the Customer object and
not yet called SubmitChanges/SaveChanges, you wouldn’t want your properties automatically
overwritten.

NOTE
To get fresh information from the database, you must either instantiate a new context or call
its Refresh method, passing in the entity or entities that you want refreshed.

The second consequence is that you cannot explicitly project into an entity type — to select a
subset of the row’s columns — without causing trouble. For example, if you want to retrieve
only a customer’s name, any of the following approaches is valid:

customers.Select (c => c.Name);
customers.Select (c => new { Name = c.Name } );
customers.Select (c => new MyCustomType { Name = c.Name } );

The following, however, is not:

customers.Select (c => new Customer { Name = c.Name } );

This is because the Customer entities will end up partially populated. So, the next time you
perform a query that requests all customer columns, you get the same cached Customer objects
with only the Name property populated.

NOTE
In a multitier application, you cannot use a single static instance of a DataContext or
ObjectContext in the middle tier to handle all requests, because contexts are not thread-safe.
Instead, middle-tier methods must create a fresh context per client request. This is actually
beneficial because it shifts the burden in handling simultaneous updates to the database
server, which is properly equipped for the job. A database server, for instance, will apply
transaction isolation-level semantics.

Associations
The entity generation tools perform another useful job. For each relationship defined in your
database, they generate properties on each side that allow you to query that relationship. For
example, suppose we define customer and purchase tables in a one-to-many relationship:

create table Customer
(
  ID int not null primary key,
  Name varchar(30) not null
)

create table Purchase
(
  ID int not null primary key,
  CustomerID int references Customer (ID),
  Description varchar(30) not null,
  Price decimal not null



)

With automatically generated entity classes, we can write queries such as this:

var context = new NutshellContext ("connection string");

// Retrieve all purchases made by the first customer (alphabetically):

Customer cust1 = context.Customers.OrderBy (c => c.Name).First();
foreach (Purchase p in cust1.Purchases)
  Console.WriteLine (p.Price);

// Retrieve the customer who made the lowest value purchase:

Purchase cheapest = context.Purchases.OrderBy (p => p.Price).First();
Customer cust2 = cheapest.Customer;

Further, if cust1 and cust2 happened to refer to the same customer, c1 and c2 would refer to
the same object: cust1==cust2 would return true.
Let’s examine the signature of the automatically generated Purchases property on the
Customer entity. With L2S:

[Association (Storage="_Purchases", OtherKey="CustomerID")]
public EntitySet <Purchase> Purchases { get {...} set {...} }

With EF:

[EdmRelationshipNavigationProperty ("NutshellModel", "FK...", "Purchase")]
public EntityCollection<Purchase> Purchases { get {...} set {...} }

An EntitySet or EntityCollection is like a predefined query, with a built-in Where clause
that extracts related entities. The [Association] attribute gives L2S the information it needs
to formulate the SQL query; the [EdmRelationshipNavigationProperty] attribute tells EF
where to look in the EDM for information about that relationship.
As with any other type of query, you get deferred execution. With L2S, an EntitySet is
populated when you enumerate over it; with EF, an EntityCollection is populated when you
explicitly call its Load method.
Here’s the Purchases.Customer property, on the other side of the relationship, with L2S:

[Association (Storage="_Customer",ThisKey="CustomerID",IsForeignKey=true)]
public Customer Customer { get {...} set {...} }

Although the property is of type Customer, its underlying field (_Customer) is of type
EntityRef. The EntityRef type implements deferred loading, so the related Customer is not
retrieved from the database until you actually ask for it.
EF works in the same way, except that it doesn’t populate the property simply by you accessing
it: you must call Load on its EntityReference object. This means EF contexts must expose
properties for both the actual parent object and its EntityReference wrapper:

[EdmRelationshipNavigationProperty ("NutshellModel", "FK..., "Customer")]
public Customer Customer { get {...} set {...} }

public EntityReference<Customer> CustomerReference { get; set; }



NOTE
You can make EF behave like L2S and have it populate EntityCollections and
EntityReferences simply by virtue of their properties being accessed as follows:

context.ContextOptions.DeferredLoadingEnabled = true;

Deferred Execution with L2S and EF
L2S and EF queries are subject to deferred execution, just like local queries. This allows you
to build queries progressively. There is one aspect, however, in which L2S/EF have special
deferred execution semantics, and that is when a subquery appears inside a Select expression:

With local queries, you get double deferred execution, because from a functional
perspective, you’re selecting a sequence of queries. So, if you enumerate the outer result
sequence, but never enumerate the inner sequences, the subquery will never execute.

With L2S/EF, the subquery is executed at the same time as the main outer query. This avoids
excessive round-tripping.

For example, the following query executes in a single round trip upon reaching the first
foreach statement:

var context = new NutshellContext ("connection string");

var query = from c in context.Customers
            select
               from p in c.Purchases
               select new { c.Name, p.Price };

foreach (var customerPurchaseResults in query)
  foreach (var namePrice in customerPurchaseResults)
    Console.WriteLine (namePrice.Name + " spent " + namePrice.Price);

Any EntitySets/EntityCollections that you explicitly project are fully populated in a
single round trip:

var query = from c in context.Customers
            select new { c.Name, c.Purchases };

foreach (var row in query)
  foreach (Purchase p in row.Purchases)   // No extra round-tripping
    Console.WriteLine (row.Name + " spent " + p.Price);

But if we enumerate EntitySet/EntityCollection properties without first having projected,
deferred execution rules apply. In the following example, L2S and EF execute another
Purchases query on each loop iteration:

context.ContextOptions.DeferredLoadingEnabled = true;  // For EF only.

foreach (Customer c in context.Customers)
  foreach (Purchase p in c.Purchases)    // Another SQL round-trip
    Console.WriteLine (c.Name + " spent " + p.Price);

This model is advantageous when you want to selectively execute the inner loop, based on a



test that can be performed only on the client:

foreach (Customer c in context.Customers)
  if (myWebService.HasBadCreditHistory (c.ID))
    foreach (Purchase p in c.Purchases)   // Another SQL round trip
      Console.WriteLine (...);

(In Chapter 9, we explore Select subqueries in more detail, in “Projecting”.)
We’ve seen that you can avoid round-tripping by explicitly projecting associations. L2S and EF
offer other mechanisms for this too, which we cover in the following two sections.

DataLoadOptions
The DataLoadOptions class is specific to L2S. It has two distinct uses:

It lets you specify, in advance, a filter for EntitySet associations (AssociateWith).

It lets you request that certain EntitySets be eagerly loaded, to lessen round-tripping
(LoadWith).

Specifying a filter in advance
Let’s refactor our previous example as follows:

foreach (Customer c in context.Customers)
  if (myWebService.HasBadCreditHistory (c.ID))
    ProcessCustomer (c);

We’ll define ProcessCustomer like this:

void ProcessCustomer (Customer c)
{
  Console.WriteLine (c.ID + " " + c.Name);
  foreach (Purchase p in c.Purchases)
    Console.WriteLine ("  - purchased a " + p.Description);
}

Now suppose we want to feed ProcessCustomer only a subset of each customer’s purchases;
say, the high-value ones. Here’s one solution:

foreach (Customer c in context.Customers)
  if (myWebService.HasBadCreditHistory (c.ID))
    ProcessCustomer (c.ID,
                     c.Name,
                     c.Purchases.Where (p => p.Price > 1000));
...
void ProcessCustomer (int custID, string custName,
                      IEnumerable<Purchase> purchases)
{
  Console.WriteLine (custID + " " + custName);
  foreach (Purchase p in purchases)
    Console.WriteLine ("  - purchased a " + p.Description);
}

This is messy. It would get messier still if ProcessCustomer required more Customer fields.
A better solution is to use DataLoadOptions’s AssociateWith method:

DataLoadOptions options = new DataLoadOptions();
options.AssociateWith <Customer>



 (c => c.Purchases.Where (p => p.Price > 1000));
context.LoadOptions = options;

This instructs our DataContext instance always to filter a Customer’s Purchases using the
given predicate. We can now use the original version of ProcessCustomer.
AssociateWith doesn’t change deferred execution semantics. When a particular relationship
is used, it simply instructs to implicitly add a particular filter to the equation.

Eager loading
The second use for a DataLoadOptions is to request that certain EntitySets be eagerly
loaded with their parent. For instance, suppose you want to load all customers and their
purchases in a single SQL round trip. The following does exactly this:

DataLoadOptions options = new DataLoadOptions();
options.LoadWith <Customer> (c => c.Purchases);
context.LoadOptions = options;

foreach (Customer c in context.Customers)     // One round trip:
  foreach (Purchase p in c.Purchases)
    Console.WriteLine (c.Name + " bought a " + p.Description);

This instructs that whenever a Customer is retrieved, its Purchases should also be retrieved
at the same time. You can combine LoadWith with AssociateWith. The following instructs
that whenever a customer is retrieved, its high-value purchases should be retrieved in the same
round trip:

options.LoadWith <Customer> (c => c.Purchases);
options.AssociateWith <Customer>
  (c => c.Purchases.Where (p => p.Price > 1000));

Eager Loading in Entity Framework
You can request in EF that associations be eagerly loaded with the Include method. The
following enumerates over each customer’s purchases — while generating just one SQL query:

foreach (Customer c in context.Customers.Include ("Purchases"))
  foreach (Purchase p in c.Purchases)
    Console.WriteLine (p.Description);

Include can be used with arbitrary breadth and depth. For example, if each Purchase also
had PurchaseDetails and SalesPersons navigation properties, the entire nested structure
could be eagerly loaded as follows:

context.Customers.Include ("Purchases.PurchaseDetails")
                 .Include ("Purchases.SalesPersons")

Updates
L2S and EF also keep track of changes that you make to your entities and allow you to write
them back to the database by calling SubmitChanges on the DataContext object, or
SaveChanges on the ObjectContext object.
L2S’s Table<T> class provides InsertOnSubmit and DeleteOnSubmit methods for inserting
and deleting rows in a table; EF’s ObjectSet<T> class provides AddObject and



DeleteObject methods to do the same thing. Here’s how to insert a row:

var context = new NutshellContext ("connection string");

Customer cust = new Customer { ID=1000, Name="Bloggs" };
context.Customers.InsertOnSubmit (cust);   // AddObject with EF
context.SubmitChanges();                   // SaveChanges with EF

We can later retrieve that row, update it, and then delete it:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1000);
cust.Name = "Bloggs2";
context.SubmitChanges();                  // Updates the customer

context.Customers.DeleteOnSubmit (cust);  // DeleteObject with EF
context.SubmitChanges();                  // Deletes the customer

SubmitChanges/SaveChanges gathers all the changes that were made to its entities since the
context’s creation (or the last save), and then executes a SQL statement to write them to the
database. Any TransactionScope is honored; if none is present it wraps all statements in a
new transaction.
You can also add new or existing rows to an EntitySet/EntityCollection by calling Add.
L2S and EF automatically populate the foreign keys when you do this (after calling
SubmitChanges or SaveChanges):

Purchase p1 = new Purchase { ID=100, Description="Bike",  Price=500 };
Purchase p2 = new Purchase { ID=101, Description="Tools", Price=100 };

Customer cust = context.Customers.Single (c => c.ID == 1);

cust.Purchases.Add (p1);
cust.Purchases.Add (p2);

context.SubmitChanges();  //  (or SaveChanges with EF)

NOTE
If you don’t want the burden of allocating unique keys, you can use either an auto-
incrementing field (IDENTITY in SQL Server) or a Guid for the primary key.

In this example, L2S/EF automatically writes 1 into the CustomerID column of each of the new
purchases (L2S knows to do this because of the association attribute that we defined on the
Purchases property; EF knows to do this because of information in the EDM):

[Association (Storage="_Purchases", OtherKey="CustomerID")]
public EntitySet <Purchase> Purchases { get {...} set {...} }

If the Customer and Purchase entities were generated by the Visual Studio designer or the
SqlMetal command-line tool, the generated classes would include further code to keep the two
sides of each relationship in sync. In other words, assigning the Purchase.Customer property
would automatically add the new customer to the Customer.Purchases entity set — and vice
versa. We can illustrate this by rewriting the preceding example as follows:



var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1);
new Purchase { ID=100, Description="Bike",  Price=500, Customer=cust };
new Purchase { ID=101, Description="Tools", Price=100, Customer=cust };

context.SubmitChanges();   // (SaveChanges with EF)

When you remove a row from an EntitySet/EntityCollection, its foreign key field is
automatically set to null. The following disassociates our two recently added purchases from
their customer:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1);

cust.Purchases.Remove (cust.Purchases.Single (p => p.ID == 100));
cust.Purchases.Remove (cust.Purchases.Single (p => p.ID == 101));

context.SubmitChanges();    // Submit SQL to database (SaveChanges in EF)

Because this tries to set each purchase’s CustomerID field to null, Purchase.CustomerID
must be nullable in the database; otherwise, an exception is thrown. (Further, the CustomerID
field or property in the entity class must be a nullable type.)
To delete child entities entirely, remove them from the Table<T> or ObjectSet<T> instead
(this means you must retrieve them first). With L2S:

var c = context;
c.Purchases.DeleteOnSubmit (c.Purchases.Single (p => p.ID == 100));
c.Purchases.DeleteOnSubmit (c.Purchases.Single (p => p.ID == 101));
c.SubmitChanges();         // Submit SQL to database

With EF:

var c = context;
c.Purchases.DeleteObject (c.Purchases.Single (p => p.ID == 100));
c.Purchases.DeleteObject (c.Purchases.Single (p => p.ID == 101));
c.SaveChanges();         // Submit SQL to database

API Differences Between L2S and EF
As we’ve seen, L2S and EF are similar in the aspect of querying with LINQ and performing
updates. Table 8-1 summarizes the API differences.

Table 8-1. API differences between L2S and EF

Purpose LINQ to SQL Entity Framework

Gatekeeper class for all CRUD operations DataContext ObjectContext

Method to (lazily) retrieve all entities of a given type from the store GetTable CreateObjectSet

Type returned by the above method Table<T> ObjectSet<T>

Method to update the store with any additions, modifications, or deletions to entity
objects

SubmitChanges SaveChanges

Method to add a new entity to the store when the context is updated InsertOnSubmit AddObject

Method to delete an entity from the store when the context is updated DeleteOnSubmit DeleteObject

Type to represent one side of a relationship property, when that side has a
multiplicity of many

EntitySet<T> EntityCollection<T>



Type to represent one side of a relationship property, when that side has a
multiplicity of one

EntityRef<T> EntityReference<T>

Default strategy for loading relationship properties Lazy Explicit

Construct that enables eager loading DataLoadOptions .Include()

Building Query Expressions
So far in this chapter, when we’ve needed to dynamically compose queries, we’ve done so by
conditionally chaining query operators. Although this is adequate in many scenarios, sometimes
you need to work at a more granular level and dynamically compose the lambda expressions
that feed the operators.
In this section, we’ll assume the following Product class:

[Table] public partial class Product
{
  [Column(IsPrimaryKey=true)] public int ID;
  [Column]                    public string Description;
  [Column]                    public bool Discontinued;
  [Column]                    public DateTime LastSale;
}

Delegates Versus Expression Trees
Recall that:

Local queries, which use Enumerable operators, take delegates.

Interpreted queries, which use Queryable operators, take expression trees.

We can see this by comparing the signature of the Where operator in Enumerable and
Queryable:

public static IEnumerable<TSource> Where<TSource> (this
  IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IQueryable<TSource> Where<TSource> (this
  IQueryable<TSource> source, Expression<Func<TSource,bool>> predicate)

When embedded within a query, a lambda expression looks identical whether it binds to
Enumerable’s operators or Queryable’s operators:

IEnumerable<Product> q1 = localProducts.Where (p => !p.Discontinued);
IQueryable<Product>  q2 = sqlProducts.Where   (p => !p.Discontinued);

When you assign a lambda expression to an intermediate variable, however, you must be
explicit on whether to resolve to a delegate (i.e., Func<>) or an expression tree (i.e.,
Expression<Func<>>). In the following example, predicate1 and predicate2 are not
interchangeable:

Func <Product, bool> predicate1 = p => !p.Discontinued;
IEnumerable<Product> q1 = localProducts.Where (predicate1);

Expression <Func <Product, bool>> predicate2 = p => !p.Discontinued;
IQueryable<Product> q2 = sqlProducts.Where (predicate2);



Compiling expression trees
You can convert an expression tree to a delegate by calling Compile. This is of particular
value when writing methods that return reusable expressions. To illustrate, we’ll add a static
method to the Product class that returns a predicate evaluating to true if a product is not
discontinued and has sold in the past 30 days:

public partial class Product
{
  public static Expression<Func<Product, bool>> IsSelling()
  {
    return p => !p.Discontinued && p.LastSale > DateTime.Now.AddDays (-30);
  }
}

(We’ve defined this in a separate partial class to avoid being overwritten by an automatic
DataContext generator such as Visual Studio’s code generator.)
The method just written can be used both in interpreted and in local queries as follows:

void Test()
{
  var dataContext = new NutshellContext ("connection string");
  Product[] localProducts = dataContext.Products.ToArray();

  IQueryable<Product> sqlQuery =
    dataContext.Products.Where (Product.IsSelling());

  IEnumerable<Product> localQuery =
    localProducts.Where (Product.IsSelling.Compile());
}

NOTE
.NET does not provide an API to convert in the reverse direction, from a delegate to an
expression tree. This makes expression trees more versatile.

AsQueryable
The AsQueryable operator lets you write whole queries that can run over either local or
remote sequences:

IQueryable<Product> FilterSortProducts (IQueryable<Product> input)
{
  return from p in input
         where ...
         order by ...
         select p;
}

void Test()
{
  var dataContext = new NutshellContext ("connection string");
  Product[] localProducts = dataContext.Products.ToArray();

  var sqlQuery   = FilterSortProducts (dataContext.Products);
  var localQuery = FilterSortProducts (localProducts.AsQueryable());
  ...
}



AsQueryable wraps IQueryable<T> clothing around a local sequence so that subsequent
query operators resolve to expression trees. When you later enumerate over the result, the
expression trees are implicitly compiled (at a small performance cost), and the local sequence
enumerates as it would ordinarily.

Expression Trees
We said previously that an implicit conversion from a lambda expression to
Expression<TDelegate> causes the C# compiler to emit code that builds an expression tree.
With some programming effort, you can do the same thing manually at runtime — in other
words, dynamically build an expression tree from scratch. The result can be cast to an
Expression<TDelegate> and used in LINQ-to-db queries, or compiled into an ordinary
delegate by calling Compile.

The Expression DOM
An expression tree is a miniature code DOM. Each node in the tree is represented by a type in
the System.Linq.Expressions namespace; these types are illustrated in Figure 8-11.

NOTE
From Framework 4.0, this namespace features additional expression types and methods to
support language constructs that can appear in code blocks. These are for the benefit of the
DLR and not lambda expressions. In other words, code-block-style lambdas still cannot be
converted to expression trees:

Expression<Func<Customer,bool>> invalid =
  c => { return true; }  // Code blocks not permitted

The base class for all nodes is the (nongeneric) Expression class. The generic
Expression<TDelegate> class actually means “typed lambda expression” and might have
been named LambdaExpression<TDelegate> if it wasn’t for the clumsiness of this:

LambdaExpression<Func<Customer,bool>> f = ...

Expression<T>’s base type is the (nongeneric) LambdaExpression class.
LamdbaExpression provides type unification for lambda expression trees: any typed
Expression<T> can be cast to a LambdaExpression.
The thing that distinguishes LambdaExpressions from ordinary Expressions is that lambda
expressions have parameters.



Figure 8-10. Expression types

To create an expression tree, don’t instantiate node types directly; rather, call static methods
provided on the Expression class. Here are all the methods:

Add
AddChecked
And
AndAlso
ArrayIndex
ArrayLength
Bind
Call
Coalesce
Condition
Constant
Convert
ConvertChecked
Divide

ElementInit
Equal
ExclusiveOr
Field
GreaterThan
GreaterThanOrEqual
Invoke
Lambda
LeftShift
LessThan
LessThanOrEqual
ListBind
ListInit
MakeBinary

MakeMemberAccess
MakeUnary
MemberBind
MemberInit
Modulo
Multiply
MultiplyChecked
Negate
NegateChecked
New
NewArrayBounds
NewArrayInit
Not
NotEqual

Or
OrElse
Parameter
Power
Property
PropertyOrField
Quote
RightShift
Subtract
SubtractChecked
TypeAs
TypeIs
UnaryPlus

Figure 8-11 shows the expression tree that the following assignment creates:

Expression<Func<string, bool>> f = s => s.Length < 5;



Figure 8-11. Expression tree

We can demonstrate this as follows:

Console.WriteLine (f.Body.NodeType);                     // LessThan
Console.WriteLine (((BinaryExpression) f.Body).Right);   // 5

Let’s now build this expression from scratch. The principle is that you start from the bottom of
the tree and work your way up. The bottommost thing in our tree is a ParameterExpression,
the lambda expression parameter called “s” of type string:

ParameterExpression p = Expression.Parameter (typeof (string), "s");

The next step is to build the MemberExpression and ConstantExpression. In the former
case, we need to access the Length property of our parameter, “s”:

MemberExpression stringLength = Expression.Property (p, "Length");
ConstantExpression five = Expression.Constant (5);

Next is the LessThan comparison:



BinaryExpression comparison = Expression.LessThan (stringLength, five);

The final step is to construct the lambda expression, which links an expression Body to a
collection of parameters:

Expression<Func<string, bool>> lambda
  = Expression.Lambda<Func<string, bool>> (comparison, p);

A convenient way to test our lambda is by compiling it to a delegate:

Func<string, bool> runnable = lambda.Compile();

Console.WriteLine (runnable ("kangaroo"));           // False
Console.WriteLine (runnable ("dog"));                // True

NOTE
The easiest way to figure out which expression type to use is to examine an existing lambda
expression in the Visual Studio debugger.

We continue this discussion online at http://www.albahari.com/expressions/.

The term is based on Eric Evans & Martin Fowler’s work on fluent interfaces.1

http://www.albahari.com/expressions/


Chapter 9. LINQ Operators

This chapter describes each of the LINQ query operators. As well as serving as a reference,
two of the sections, “Projecting” and “Joining”, cover a number of conceptual areas:

Projecting object hierarchies

Joining with Select, SelectMany, Join, and GroupJoin

Query expressions with multiple range variables

All of the examples in this chapter assume that a names array is defined as follows:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

Examples that query a database assume that a variable called dataContext is instantiated as
follows:

var dataContext = new NutshellContext ("connection string...");

...

public class NutshellContext : DataContext
{
  public NutshellContext (string cxString) : base (cxString) {}

  public Table<Customer> Customers { get { return GetTable<Customer>(); } }
  public Table<Purchase> Purchases { get { return GetTable<Purchase>(); } }
}

[Table] public class Customer
{
  [Column(IsPrimaryKey=true)]  public int ID;
  [Column]                     public string Name;

  [Association (OtherKey="CustomerID")]
  public EntitySet<Purchase> Purchases = new EntitySet<Purchase>();
}

[Table] public class Purchase
{
    [Column(IsPrimaryKey=true)]  public int ID;
    [Column]                     public int? CustomerID;
    [Column]                     public string Description;
    [Column]                     public decimal Price;
    [Column]                     public DateTime Date;

  EntityRef<Customer> custRef;

  [Association (Storage="custRef",ThisKey="CustomerID",IsForeignKey=true)]
  public Customer Customer
  {
    get { return custRef.Entity; } set { custRef.Entity = value; }
  }
}

NOTE
All the examples in this chapter are preloaded into LINQPad, along with a sample database
with a matching schema. You can download LINQPad from http://www.linqpad.net.

http://www.linqpad.net


The entity classes shown are a simplified version of what LINQ to SQL tools typically
produce, and do not include code to update the opposing side in a relationship when their
entities have been reassigned.
Here are the corresponding SQL table definitions:

create table Customer
(
  ID int not null primary key,
  Name varchar(30) not null
)
create table Purchase
(
  ID int not null primary key,
  CustomerID int references Customer (ID),
  Description varchar(30) not null,
  Price decimal not null
)

NOTE
All examples will also work with Entity Framework, except where otherwise indicated. You
can build an Entity Framework ObjectContext from these tables by creating a new Entity
Data Model in Visual Studio, and then dragging the tables on to the designer surface.

Overview
In this section, we provide an overview of the standard query operators.
The standard query operators fall into three categories:

Sequence in, sequence out (sequence-to-sequence)

Sequence in, single element or scalar value out

Nothing in, sequence out (generation methods)

We first present each of the three categories and the query operators they include, and then we
take up each individual query operator in detail.

Sequence→Sequence
Most query operators fall into this category — accepting one or more sequences as input and
emitting a single output sequence. Figure 9-1 illustrates those operators that restructure the
shape of the sequences.



Figure 9-1. Shape-changing operators

Filtering
IEnumerable<TSource> →IEnumerable<TSource>

Returns a subset of the original elements.

Where, Take, TakeWhile, Skip, SkipWhile, Distinct

Projecting
IEnumerable<TSource> →IEnumerable<TResult>

Transforms each element with a lambda function. SelectMany flattens nested sequences;
Select and SelectMany perform inner joins, left outer joins, cross joins, and non-equi joins
with LINQ to SQL and EF.

Select, SelectMany

Joining
IEnumerable<TOuter>, IEnumerable<TInner>→ IEnumerable<TResult>
Meshes elements of one sequence with another. Join and GroupJoin operators are designed to
be efficient with local queries and support inner and left outer joins. The Zip operator
enumerates two sequences in step, applying a function over each element pair. Rather than
naming the type arguments TOuter and TInner, the Zip operator names them TFirst and
TSecond:
IEnumerable<TFirst>, IEnumerable<TSecond>→ IEnumerable<TResult>

Join, GroupJoin, Zip

Ordering



IEnumerable<TSource> →IOrderedEnumerable<TSource>

Returns a reordering of a sequence.

OrderBy, ThenBy, Reverse

Grouping
IEnumerable<TSource> →IEnumerable<IGrouping<TKey,TElement>>

Groups a sequence into subsequences.

GroupBy

Set operators
IEnumerable<TSource>, IEnumerable<TSource>→ IEnumerable<TSource>
Takes two same-typed sequences and returns their commonality, sum, or difference.

Concat, Union, Intersect, Except

Conversion methods: Import
IEnumerable→IEnumerable<TResult>

OfType, Cast

Conversion methods: Export
IEnumerable<TSource> →An array, list, dictionary, lookup, or sequence

ToArray, ToList, ToDictionary, ToLookup, AsEnumerable, AsQueryable

Sequence→Element or Value
The following query operators accept an input sequence and emit a single element or value.

Element operators
IEnumerable<TSource> →TSource

Picks a single element from a sequence.

First, FirstOrDefault, Last, LastOrDefault, Single, SingleOrDefault,
ElementAt, ElementAtOrDefault, DefaultIfEmpty

Aggregation methods
IEnumerable<TSource> →scalar

Performs a computation across a sequence, returning a scalar value (typically a number).

Aggregate, Average, Count, LongCount, Sum, Max, Min

Quantifiers
IEnumerable<TSource> →bool



An aggregation returning true or false.

All, Any, Contains, SequenceEqual

Void→Sequence
In the third and final category are query operators that produce an output sequence from
scratch.

Generation methods
void→IEnumerable<TResult>

Manufactures a simple sequence.

Empty, Range, Repeat

Filtering
IEnumerable<TSource>→ IEnumerable<TSource>

Method Description SQL equivalents

Where Returns a subset of elements that satisfy a given condition WHERE

Take Returns the first count elements and discards the rest WHERE ROW_NUMBER()...
or TOP n subquery

Skip Ignores the first count elements and returns the rest WHERE ROW_NUMBER()...
or NOT IN (SELECT TOP
n...)

TakeWhile Emits elements from the input sequence until the predicate is false Exception thrown

SkipWhile Ignores elements from the input sequence until the predicate is false, and then emits
the rest

Exception thrown

Distinct Returns a sequence that excludes duplicates SELECT DISTINCT...

NOTE
The “SQL equivalents” column in the reference tables in this chapter do not necessarily
correspond to what an IQueryable implementation such as LINQ to SQL will produce.
Rather, it indicates what you’d typically use to do the same job if you were writing the SQL
query yourself. Where there is no simple translation, the column is left blank. Where there is
no translation at all, the column reads “Exception thrown”.
Enumerable implementation code, when shown, excludes checking for null arguments and
indexing predicates.

With each of the filtering methods, you always end up with either the same number or fewer
elements than you started with. You can never get more! The elements are also identical when
they come out; they are not transformed in any way.

Where

Argument Type



Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => boola

Prohibited with LINQ to SQL and Entity Framework

Query syntax

where bool-expression

Enumerable.Where implementation
The internal implementation of Enumerable.Where, null checking aside, is functionally
equivalent to the following:

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func <TSource, bool> predicate)
{
  foreach (TSource element in source)
    if (predicate (element))
      yield return element;
}

Overview
Where returns the elements from the input sequence that satisfy the given predicate.
For instance:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> query = names.Where (name => name.EndsWith ("y"));

// Result: { "Harry", "Mary", "Jay" }

In query syntax:

IEnumerable<string> query = from n in names
                            where n.EndsWith ("y")
                            select n;

A where clause can appear more than once in a query and be interspersed with let, orderby,
and join clauses:

from n in names
where n.Length > 3
let u = n.ToUpper()
where u.EndsWith ("Y")
select u;                   // Result: { "HARRY", "MARY" }

Standard C# scoping rules apply to such queries. In other words, you cannot refer to a variable
prior to declaring it with a range variable or a let clause.

Indexed filtering
Where’s predicate optionally accepts a second argument, of type int. This is fed with the
position of each element within the input sequence, allowing the predicate to use this
information in its filtering decision. For example, the following skips every second element:

a



IEnumerable<string> query = names.Where ((n, i) => i % 2 == 0);

// Result: { "Tom", "Harry", "Jay" }

An exception is thrown if you use indexed filtering in LINQ to SQL or EF.

SQL LIKE comparisons in LINQ to SQL and EF
The following methods on string translate to SQL’s LIKE operator:

Contains, StartsWith, EndsWith

For instance, c.Name.Contains ("abc") translates to customer.Name LIKE '%abc%' (or
more accurately, a parameterized version of this). Contains lets you compare only against a
locally evaluated expression; to compare against another column, you must use the
SqlMethods.Like method:

... where SqlMethods.Like (c.Description, "%" + c.Name + "%")

SqlMethods.Like also lets you perform more complex comparisons (e.g., LIKE
'abc%def%').

< and > string comparisons in LINQ to SQL and EF
You can perform order comparison on strings with string’s CompareTo method; this maps to
SQL’s < and > operators:

dataContext.Purchases.Where (p => p.Description.CompareTo ("C") < 0)

WHERE x IN (..., ..., ...) in LINQ to SQL and EF
With LINQ to SQL and EF, you can apply the Contains operator to a local collection within a
filter predicate. For instance:

string[] chosenOnes = { "Tom", "Jay" };

from c in dataContext.Customers
where chosenOnes.Contains (c.Name)
...

This maps to SQL’s IN operator — in other words:

WHERE customer.Name IN ("Tom", "Jay")

If the local collection is an array of entities or nonscalar types, LINQ to SQL or EF may instead
emit an EXISTS clause.

Take and Skip

Argument Type

Source sequence IEnumerable<TSource>

Number of elements to take or skip int



Take emits the first n elements and discards the rest; Skip discards the first n elements and
emits the rest. The two methods are useful together when implementing a web page allowing a
user to navigate through a large set of matching records. For instance, suppose a user searches
a book database for the term “mercury,” and there are 100 matches. The following returns the
first 20:

IQueryable<Book> query = dataContext.Books
  .Where   (b => b.Title.Contains ("mercury"))
  .OrderBy (b => b.Title)
  .Take (20);

The next query returns books 21 to 40:

IQueryable<Book> query = dataContext.Books
  .Where   (b => b.Title.Contains ("mercury"))
  .OrderBy (b => b.Title)
  .Skip (20).Take (20);

LINQ to SQL and EF translate Take and Skip to the ROW_NUMBER function in SQL Server 2005,
or a TOP n subquery in earlier versions of SQL Server.

TakeWhile and SkipWhile

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => bool

TakeWhile enumerates the input sequence, emitting each item, until the given predicate is false.
It then ignores the remaining elements:

int[] numbers      = { 3, 5, 2, 234, 4, 1 };
var takeWhileSmall = numbers.TakeWhile (n => n < 100);   // { 3, 5, 2 }

SkipWhile enumerates the input sequence, ignoring each item until the given predicate is false.
It then emits the remaining elements:

int[] numbers      = { 3, 5, 2, 234, 4, 1 };
var skipWhileSmall = numbers.SkipWhile (n => n < 100);   // { 234, 4, 1 }

TakeWhile and SkipWhile have no translation to SQL and throw an exception if used in a
LINQ-to-db query.

Distinct
Distinct returns the input sequence, stripped of duplicates. You can optionally pass in a
custom equality comparer. The following returns distinct letters in a string:

char[] distinctLetters = "HelloWorld".Distinct().ToArray();
string s = new string (distinctLetters);                     // HeloWrd

We can call LINQ methods directly on a string, because string implements
IEnumerable<char>.



Projecting
IEnumerable<TSource>→ IEnumerable<TResult>

Method Description SQL equivalents

Select Transforms each input element with the given lambda expression SELECT

SelectMany Transforms each input element, and then flattens and concatenates the resultant
subsequences

INNER JOIN,
LEFT OUTER JOIN,
CROSS JOIN

NOTE
When querying a database, Select and SelectMany are the most versatile joining constructs;
for local queries, Join and GroupJoin are the most efficient joining constructs.

Select

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => TResult or (TSource,int) => TResulta

Prohibited with LINQ to SQL and Entity Framework

Query syntax

select projection-expression

Enumerable implementation

public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
  foreach (TSource element in source)
    yield return selector (element);
}

Overview
With Select, you always get the same number of elements that you started with. Each element,
however, can be transformed in any manner by the lambda function.
The following selects the names of all fonts installed on the computer (from
System.Drawing):

IEnumerable<string> query = from f in FontFamily.Families
                            select f.Name;

foreach (string name in query) Console.WriteLine (name);

In this example, the select clause converts a FontFamily object to its name. Here’s the
lambda equivalent:

IEnumerable<string> query = FontFamily.Families.Select (f => f.Name);

a



Select statements are often used to project into anonymous types:

var query =
  from f in FontFamily.Families
  select new { f.Name, LineSpacing = f.GetLineSpacing (FontStyle.Bold) };

A projection with no transformation is sometimes used with query syntax, in order to satisfy the
requirement that the query end in a select or group clause. The following selects fonts
supporting strikeout:

IEnumerable<FontFamily> query =
  from f in FontFamily.Families
  where f.IsStyleAvailable (FontStyle.Strikeout)
  select f;

foreach (FontFamily ff in query) Console.WriteLine (ff.Name);

In such cases, the compiler omits the projection when translating to fluent syntax.

Indexed projection
The selector expression can optionally accept an integer argument, which acts as an indexer,
providing the expression with the position of each input in the input sequence. This works only
with local queries:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query = names
  .Select ((s,i) => i + "=" + s);     //  { "0=Tom", "1=Dick", ... }

Select subqueries and object hierarchies
You can nest a subquery in a select clause to build an object hierarchy. The following
example returns a collection describing each directory under D:\source, with a subcollection
of files under each directory:

DirectoryInfo[] dirs = new DirectoryInfo (@"d:\source").GetDirectories();

var query =
  from d in dirs
  where (d.Attributes & FileAttributes.System) == 0
  select new
  {
    DirectoryName = d.FullName,
    Created = d.CreationTime,

    Files = from f in d.GetFiles()
            where (f.Attributes & FileAttributes.Hidden) == 0
            select new { FileName = f.Name, f.Length, }
  };

foreach (var dirFiles in query)
{
  Console.WriteLine ("Directory: " + dirFiles.DirectoryName);
  foreach (var file in dirFiles.Files)
    Console.WriteLine ("  " + file.FileName + " Len: " + file.Length);
}

The inner portion of this query can be called a correlated subquery. A subquery is correlated
if it references an object in the outer query — in this case, it references d, the directory being
enumerated.



NOTE
A subquery inside a Select allows you to map one object hierarchy to another, or map a
relational object model to a hierarchical object model.

With local queries, a subquery within a Select causes double-deferred execution. In our
example, the files don’t get filtered or projected until the inner foreach statement enumerates.

Subqueries and joins in LINQ to SQL and EF
Subquery projections work well in LINQ to SQL and EF and can be used to do the work of
SQL-style joins. Here’s how we retrieve each customer’s name along with their high-value
purchases:

var query =
  from c in dataContext.Customers
  select new {
               c.Name,
               Purchases = from p in dataContext.Purchases
                           where p.CustomerID == c.ID && p.Price > 1000
                           select new { p.Description, p.Price }
             };

foreach (var namePurchases in query)
{
  Console.WriteLine ("Customer: " + namePurchases.Name);
  foreach (var purchaseDetail in namePurchases.Purchases)
    Console.WriteLine ("  - $$$: " + purchaseDetail.Price);
}

WARNING
This style of query is ideally suited to interpreted queries. The outer query and subquery are
processed as a unit, avoiding unnecessary round-tripping. With local queries, however, it’s
inefficient because every combination of outer and inner elements must be enumerated to get
the few matching combinations. A better choice for local queries is Join or GroupJoin,
described in the following sections.

This query matches up objects from two disparate collections, and it can be thought of as a
“Join.” The difference between this and a conventional database join (or subquery) is that
we’re not flattening the output into a single two-dimensional result set. We’re mapping the
relational data to hierarchical data, rather than to flat data.
Here’s the same query simplified by using the Purchases association property on the
Customer entity:

from c in dataContext.Customers
select new
{
  c.Name,
  Purchases = from p in c.Purchases    // Purchases is EntitySet<Purchase>
              where p.Price > 1000
              select new { p.Description, p.Price }
};

Both queries are analogous to a left outer join in SQL in the sense that we get all customers in



the outer enumeration, regardless of whether they have any purchases. To emulate an inner join
— where customers without high-value purchases are excluded — we would need to add a
filter condition on the purchases collection:

from c in dataContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select new {
             c.Name,
             Purchases = from p in c.Purchases
                         where p.Price > 1000
                         select new { p.Description, p.Price }
           };

This is slightly untidy, however, in that we’ve written the same predicate (Price > 1000)
twice. We can avoid this duplication with a let clause:

from c in dataContext.Customers
let highValueP = from p in c.Purchases
                 where p.Price > 1000
                 select new { p.Description, p.Price }
where highValueP.Any()
select new { c.Name, Purchases = highValueP };

This style of query is flexible. By changing Any to Count, for instance, we can modify the
query to retrieve only customers with at least two high-value purchases:

...
where highValueP.Count() >= 2
select new { c.Name, Purchases = highValueP };

Projecting into concrete types
Projecting into anonymous types is useful in obtaining intermediate results, but not so useful if
you want to send a result set back to a client, for instance, because anonymous types can exist
only as local variables within a method. An alternative is to use concrete types for projections,
such as DataSets or custom business entity classes. A custom business entity is simply a class
that you write with some properties, similar to a LINQ to SQL [Table] annotated class or an
EF Entity, but designed to hide lower-level (database-related) details. You might exclude
foreign key fields from business entity classes, for instance. Assuming we wrote custom entity
classes called CustomerEntity and PurchaseEntity, here’s how we could project into
them:

IQueryable<CustomerEntity> query =
  from c in dataContext.Customers
  select new CustomerEntity
  {
    Name = c.Name,
    Purchases =
      (from p in c.Purchases
       where p.Price > 1000
       select new PurchaseEntity {
                                   Description = p.Description,
                                   Value = p.Price
                                 }
      ).ToList()
  };

// Force query execution, converting output to a more convenient List:
List<CustomerEntity> result = query.ToList();



Notice that so far, we’ve not had to use a Join or SelectMany statement. This is because
we’re maintaining the hierarchical shape of the data, as illustrated in Figure 9-2. With LINQ,
you can often avoid the traditional SQL approach of flattening tables into a two-dimensional
result set.

Figure 9-2. Projecting an object hierarchy

SelectMany

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => IEnumerable<TResult>

or (TSource,int) => IEnumerable<TResult>a

Prohibited with LINQ to SQL

Query syntax

from identifier1 in enumerable-expression1
from identifier2 in enumerable-expression2
...

Enumerable implementation

public static IEnumerable<TResult> SelectMany<TSource,TResult>
  (IEnumerable<TSource> source,
   Func <TSource,IEnumerable<TResult>> selector)
{
  foreach (TSource element in source)
    foreach (TResult subElement in selector (element))
      yield return subElement;

a



}

Overview
SelectMany concatenates subsequences into a single flat output sequence.
Recall that for each input element, Select yields exactly one output element. In contrast,
SelectMany yields 0..n output elements. The 0..n elements come from a subsequence or child
sequence that the lambda expression must emit.
SelectMany can be used to expand child sequences, flatten nested collections, and join two
collections into a flat output sequence. Using the conveyor belt analogy, SelectMany funnels
fresh material onto a conveyor belt. With SelectMany, each input element is the trigger for the
introduction of fresh material. The fresh material is emitted by the selector lambda
expression and must be a sequence. In other words, the lambda expression must emit a child
sequence per input element. The final result is a concatenation of the child sequences emitted
for each input element.
Starting with a simple example, suppose we have an array of names as follows:

string[] fullNames = { "Anne Williams", "John Fred Smith", "Sue Green" };

which we wish to convert to a single flat collection of words — in other words:

"Anne", "Williams", "John", "Fred", "Smith", "Sue", Green"

SelectMany is ideal for this task, because we’re mapping each input element to a variable
number of output elements. All we must do is come up with a selector expression that
converts each input element to a child sequence. string.Split does the job nicely — it takes
a string and splits it into words, emitting the result as an array:

string testInputElement = "Anne Williams";
string[] childSequence  = testInputElement.Split();

// childSequence is { "Anne", "Williams" };

So, here’s our SelectMany query and the result:

IEnumerable<string> query = fullNames.SelectMany (name => name.Split());

foreach (string name in query)
  Console.Write (name + "|");  // Anne|Williams|John|Fred|Smith|Sue|Green|

NOTE
If you replace SelectMany with Select, you get the same results in hierarchical form. The
following emits a sequence of string arrays, requiring nested foreach statements to
enumerate:

IEnumerable<string[]> query =
  fullNames.Select (name => name.Split());

foreach (string[] stringArray in query)
  foreach (string name in stringArray)
    Console.Write (name + "|");

The benefit of SelectMany is that it yields a single flat result sequence.



SelectMany is supported in query syntax and is invoked by having an additional generator —
in other words, an extra from clause in the query. The from keyword has two meanings in
query syntax. At the start of a query, it introduces the original range variable and input
sequence. Anywhere else in the query, it translates to SelectMany. Here’s our query in query
syntax:

IEnumerable<string> query =
  from fullName in fullNames
  from name in fullName.Split()     // Translates to SelectMany
  select name;

Note that the additional generator introduces a new range variable — in this case, name. The
old range variable stays in scope, however, and we can subsequently access both.

Multiple range variables
In the preceding example, both name and fullName remain in scope until the query either ends
or reaches an into clause. The extended scope of these variables is the killer scenario for
query syntax over fluent syntax.
To illustrate, we can take the preceding query and include fullName in the final projection:

IEnumerable<string> query =
  from fullName in fullNames
  from name in fullName.Split()
  select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith
...

Behind the scenes, the compiler must pull some tricks to let you access both variables. A good
way to appreciate this is to try writing the same query in fluent syntax. It’s tricky! It gets harder
still if you insert a where or orderby clause before projecting:

from fullName in fullNames
from name in fullName.Split()
orderby fullName, name
select name + " came from " + fullName;

The problem is that SelectMany emits a flat sequence of child elements — in our case, a flat
collection of words. The original “outer” element from which it came (fullName) is lost. The
solution is to “carry” the outer element with each child, in a temporary anonymous type:

from fullName in fullNames
from x in fullName.Split().Select (name => new { name, fullName } )
orderby x.fullName, x.name
select x.name + " came from " + x.fullName;

The only change here is that we’re wrapping each child element (name) in an anonymous type
that also contains its fullName. This is similar to how a let clause is resolved. Here’s the
final conversion to fluent syntax:

IEnumerable<string> query = fullNames



  .SelectMany (fName => fName.Split()
                             .Select (name => new { name, fName } ))
  .OrderBy (x => x.fName)
  .ThenBy  (x => x.name)
  .Select  (x => x.name + " came from " + x.fName);

Thinking in query syntax
As we just demonstrated, there are good reasons to use query syntax if you need multiple range
variables. In such cases, it helps not only to use query syntax, but also to think directly in its
terms.
There are two basic patterns when writing additional generators. The first is expanding and
flattening subsequences. To do this, you call a property or method on an existing range
variable in your additional generator. We did this in the previous example:

from fullName in fullNames
from name in fullName.Split()

Here, we’ve expanded from enumerating full names to enumerating words. An analogous
LINQ-to-db query is when you expand child association properties. The following query lists
all customers along with their purchases:

IEnumerable<string> query = from c in dataContext.Customers
                            from p in c.Purchases
                            select c.Name + " bought a " + p.Description;

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car
...

Here, we’ve expanded each customer into a subsequence of purchases.
The second pattern is performing a cartesian product or cross join — where every element of
one sequence is matched with every element of another. To do this, introduce a generator
whose selector expression returns a sequence unrelated to a range variable:

int[] numbers = { 1, 2, 3 };  string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
                            from l in letters
                            select n.ToString() + l;

RESULT: { "1a", "1b", "2a", "2b", "3a", "3b" }

This style of query is the basis of SelectMany-style joins.

Joining with SelectMany
You can use SelectMany to join two sequences, simply by filtering the results of a cross
product. For instance, suppose we wanted to match players for a game. We could start as
follows:

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query = from name1 in players
                            from name2 in players
                            select name1 + " vs " + name2;



RESULT: { "Tom vs Tom", "Tom vs Jay", "Tom vs Mary",
          "Jay vs Tom", "Jay vs Jay", "Jay vs Mary",
          "Mary vs Tom", "Mary vs "Jay", "Mary vs Mary" }

The query reads: “For every player, reiterate every player, selecting player 1 vs player 2.”
Although we got what we asked for (a cross join), the results are not useful until we add a
filter:

IEnumerable<string> query = from name1 in players
                            from name2 in players
                            where name1.CompareTo (name2) < 0
                            orderby name1, name2
                            select name1 + " vs " + name2;

RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The filter predicate constitutes the join condition. Our query can be called a non-equi join,
because the join condition doesn’t use an equality operator.
We’ll demonstrate the remaining types of joins with LINQ to SQL (they’ll also work with EF
except where we explicitly use a foreign key field).

SelectMany in LINQ to SQL and EF
SelectMany in LINQ to SQL and EF can perform cross joins, non-equi joins, inner joins, and
left outer joins. You can use SelectMany with both predefined associations and ad hoc
relationships — just as with Select. The difference is that SelectMany returns a flat rather
than a hierarchical result set.
A LINQ-to-db cross join is written just as in the preceding section. The following query
matches every customer to every purchase (a cross join):

var query = from c in dataContext.Customers
            from p in dataContext.Purchases
            select c.Name + " might have bought a " + p.Description;

More typically, though, you’d want to match customers to their own purchases only. You
achieve this by adding a where clause with a joining predicate. This results in a standard SQL-
style equi-join:

var query = from c in dataContext.Customers
            from p in dataContext.Purchases
            where c.ID == p.CustomerID
            select c.Name + " bought a " + p.Description;

NOTE
This translates well to SQL. In the next section, we’ll see how it extends to support outer
joins. Reformulating such queries with LINQ’s Join operator actually makes them less
extensible — LINQ is opposite to SQL in this sense.

If you have association properties for relationships in your entities, you can express the same
query by expanding the subcollection instead of filtering the cross product:



from c in dataContext.Customers
from p in c.Purchases
select new { c.Name, p.Description };

NOTE
Entity Framework doesn’t expose foreign keys in the entities, so for recognized relationships
you must use its association properties rather than joining manually as we did previously.

The advantage is that we’ve eliminated the joining predicate. We’ve gone from filtering a cross
product to expanding and flattening. Both queries, however, will result in the same SQL.
You can add where clauses to such a query for additional filtering. For instance, if we wanted
only customers whose names started with “T”, we could filter as follows:

from c in dataContext.Customers
where c.Name.StartsWith ("T")
from p in c.Purchases
select new { c.Name, p.Description };

This LINQ-to-db query would work equally well if the where clause is moved one line down.
If it is a local query, however, moving the where clause down would make it less efficient.
With local queries, you should filter before joining.
You can introduce new tables into the mix with additional from clauses. For instance, if each
purchase had purchase item child rows, you could produce a flat result set of customers with
their purchases, each with their purchase detail lines as follows:

from c in dataContext.Customers
from p in c.Purchases
from pi in p.PurchaseItems
select new { c.Name, p.Description, pi.DetailLine };

Each from clause introduces a new child table. To include data from a parent table (via an
association property), you don’t add a from clause — you simply navigate to the property. For
example, if each customer has a salesperson whose name you want to query, just do this:

from c in dataContext.Customers
select new { Name = c.Name, SalesPerson = c.SalesPerson.Name };

You don’t use SelectMany in this case because there’s no subcollection to flatten. Parent
association properties return a single item.

Outer joins with SelectMany
We saw previously that a Select subquery yields a result analogous to a left outer join:

from c in dataContext.Customers
select new {
             c.Name,
             Purchases = from p in c.Purchases
                         where p.Price > 1000
                         select new { p.Description, p.Price }
           };



In this example, every outer element (customer) is included, regardless of whether the customer
has any purchases. But suppose we rewrite this query with SelectMany, so we can obtain a
single flat collection rather than a hierarchical result set:

from c in dataContext.Customers
from p in c.Purchases
where p.Price > 1000
select new { c.Name, p.Description, p.Price };

In the process of flattening the query, we’ve switched to an inner join: customers are now
included only for whom one or more high-value purchases exist. To get a left outer join with a
flat result set, we must apply the DefaultIfEmpty query operator on the inner sequence. This
method returns a sequence with a single null element if its input sequence has no elements.
Here’s such a query, price predicate aside:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new { c.Name, p.Description, Price = (decimal?) p.Price };

This works perfectly with LINQ to SQL and EF, returning all customers, even if they have no
purchases. But if we were to run this as a local query, it would crash, because when p is null,
p.Description and p.Price throw a NullReferenceException. We can make our query
robust in either scenario as follows:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new {
             c.Name,
             Descript = p == null ? null : p.Description,
             Price = p == null ? (decimal?) null : p.Price
           };

Let’s now reintroduce the price filter. We cannot use a where clause as we did before, because
it would execute after DefaultIfEmpty:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
where p.Price > 1000...

The correct solution is to splice the Where clause before DefaultIfEmpty with a subquery:

from c in dataContext.Customers
from p in c.Purchases.Where (p => p.Price > 1000).DefaultIfEmpty()
select new {
             c.Name,
             Descript = p == null ? null : p.Description,
             Price = p == null ? (decimal?) null : p.Price
           };

LINQ to SQL and EF translate this to a left outer join. This is an effective pattern for writing
such queries.

NOTE
If you’re used to writing outer joins in SQL, you might be tempted to overlook the simpler
option of a Select subquery for this style of query, in favor of the awkward but familiar



SQL-centric flat approach. The hierarchical result set from a Select subquery is often better
suited to outer join-style queries because there are no additional nulls to deal with.

Joining
Method Description SQL equivalents

Join Applies a lookup strategy to match elements from two collections, emitting a flat result set INNER JOIN

GroupJoin As above, but emits a hierarchical result set INNER JOIN,
LEFT OUTER JOIN

Zip Enumerates two sequences in step (like a zipper), applying a function over each element pair. Exception thrown

Join and GroupJoin
IEnumerable<TOuter>, IEnumerable<TInner>→IEnumerable<TResult>

Join arguments

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,TInner) => TResult

GroupJoin arguments

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,IEnumerable<TInner>) => TResult

Query syntax

from outer-var in outer-enumerable
join inner-var in inner-enumerable on outer-key-expr equals inner-key-expr
 [ into identifier ]

Overview
Join and GroupJoin mesh two input sequences into a single output sequence. Join emits flat
output; GroupJoin emits hierarchical output.
Join and GroupJoin provide an alternative strategy to Select and SelectMany. The
advantage of Join and GroupJoin is that they execute efficiently over local in-memory
collections, since they first load the inner sequence into a keyed lookup, avoiding the need to
repeatedly enumerate over every inner element. The disadvantage is that they offer the



equivalent of inner and left outer joins only; cross joins and non-equi joins must still be done
with Select/SelectMany. With LINQ to SQL and Entity Framework queries, Join and
GroupJoin offer no real benefits over Select and SelectMany.
Table 9-1 summarizes the differences between each of the joining strategies.

Table 9-1. Joining strategies

Strategy Result
shape

Local query
efficiency

Inner
joins

Left outer
joins

Cross
joins

Non-equi
joins

Select + SelectMany Flat Bad Yes Yes Yes Yes

Select + Select Nested Bad Yes Yes Yes Yes

Join Flat Good Yes - - -

GroupJoin Nested Good Yes Yes - -

GroupJoin +
SelectMany

Flat Good Yes Yes - -

Join
The Join operator performs an inner join, emitting a flat output sequence.

NOTE
Entity Framework hides foreign key fields, so you can’t manually join across natural
relationships (instead, you can query across association properties, as we described in the
previous two sections).

The simplest way to demonstrate Join is with LINQ to SQL. The following query lists all
customers alongside their purchases, without using an association property:

IQueryable<string> query =
  from c in dataContext.Customers
  join p in dataContext.Purchases on c.ID equals p.CustomerID
  select c.Name + " bought a " + p.Description;

The results match what we would get from a SelectMany-style query:

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car

To see the benefit of Join over SelectMany, we must convert this to a local query. We can
demonstrate this by first copying all customers and purchases to arrays, and then querying the
arrays:

Customer[] customers = dataContext.Customers.ToArray();
Purchase[] purchases = dataContext.Purchases.ToArray();
var slowQuery = from c in customers
                from p in purchases where c.ID == p.CustomerID
                select c.Name + " bought a " + p.Description;

var fastQuery = from c in customers
                join p in purchases on c.ID equals p.CustomerID



                select c.Name + " bought a " + p.Description;

Although both queries yield the same results, the Join query is considerably faster because its
implementation in Enumerable preloads the inner collection (purchases) into a keyed lookup.
The query syntax for join can be written in general terms as follows:

join inner-var in inner-sequence on outer-key-expr equals inner-key-expr

Join operators in LINQ differentiate between the outer sequence and inner sequence.
Syntactically:

The outer sequence is the input sequence (in this case, customers).

The inner sequence is the new collection you introduce (in this case, purchases).

Join performs inner joins, meaning customers without purchases are excluded from the output.
With inner joins, you can swap the inner and outer sequences in the query and still get the same
results:

from p in purchases                                // p is now outer
join c in customers on p.CustomerID equals c.ID    // c is now inner
...

You can add further join clauses to the same query. If each purchase, for instance, has one or
more purchase items, you could join the purchase items as follows:

from c in customers
join p in purchases on c.ID equals p.CustomerID           // first join
join pi in purchaseItems on p.ID equals pi.PurchaseID     // second join
...

purchases acts as the inner sequence in the first join and as the outer sequence in the second
join. You could obtain the same results (inefficiently) using nested foreach statements as
follows:

foreach (Customer c in customers)
  foreach (Purchase p in purchases)
    if (c.ID == p.CustomerID)
      foreach (PurchaseItem pi in purchaseItems)
        if (p.ID == pi.PurchaseID)
          Console.WriteLine (c.Name + "," + p.Price + "," + pi.Detail);

In query syntax, variables from earlier joins remain in scope — just as they do with
SelectMany-style queries. You’re also permitted to insert where and let clauses in between
join clauses.

Joining on multiple keys
You can join on multiple keys with anonymous types as follows:

from x in sequenceX
join y in sequenceY on new { K1 = x.Prop1, K2 = x.Prop2 }
                equals new { K1 = y.Prop3, K2 = y.Prop4 }
...



For this to work, the two anonymous types must be structured identically. The compiler then
implements each with the same internal type, making the joining keys compatible.

Joining in fluent syntax
The following query syntax join:

 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 select new { c.Name, p.Description, p.Price };

in fluent syntax is as follows:

 customers.Join (                // outer collection
       purchases,                // inner collection
       c => c.ID,                // outer key selector
       p => p.CustomerID,        // inner key selector
       (c, p) => new
          { c.Name, p.Description, p.Price }    // result selector
 );

The result selector expression at the end creates each element in the output sequence. If you
have additional clauses prior to projecting, such as orderby in this example:

from c in customers
join p in purchases on c.ID equals p.CustomerID
orderby p.Price
select c.Name + " bought a " + p.Description;

you must manufacture a temporary anonymous type in the result selector in fluent syntax. This
keeps both c and p in scope following the join:

customers.Join (                  // outer collection
      purchases,                  // inner collection
      c => c.ID,                  // outer key selector
      p => p.CustomerID,          // inner key selector
      (c, p) => new { c, p } )    // result selector
  .OrderBy (x => x.p.Price)
  .Select  (x => x.c.Name + " bought a " + x.p.Description);

Query syntax is usually preferable when joining; it’s less fiddly.

GroupJoin
GroupJoin does the same work as Join, but instead of yielding a flat result, it yields a
hierarchical result, grouped by each outer element. It also allows left outer joins.
The query syntax for GroupJoin is the same as for Join, but is followed by the into keyword.
Here’s the most basic example:

IEnumerable<IEnumerable<Purchase>> query =
  from c in customers
  join p in purchases on c.ID equals p.CustomerID
  into custPurchases
  select custPurchases;   // custPurchases is a sequence

NOTE



An into clause translates to GroupJoin only when it appears directly after a join clause. After
a select or group clause, it means query continuation. The two uses of the into keyword
are quite different, although they have one feature in common: they both introduce a new
range variable.

The result is a sequence of sequences, which we could enumerate as follows:

foreach (IEnumerable<Purchase> purchaseSequence in query)
  foreach (Purchase p in purchaseSequence)
    Console.WriteLine (p.Description);

This isn’t very useful, however, because purchaseSequence has no reference to the customer.
More commonly, you’d do this:

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

This gives the same results as the following (inefficient) Select subquery:

from c in customers
select new
{
  CustName = c.Name,
  custPurchases = purchases.Where (p => c.ID == p.CustomerID)
};

By default, GroupJoin does the equivalent of a left outer join. To get an inner join — where
customers without purchases are excluded — you need to filter on custPurchases:

from c in customers join p in purchases on c.ID equals p.CustomerID
into custPurchases
where custPurchases.Any()
select ...

Clauses after a group-join into operate on subsequences of inner child elements, not
individual child elements. This means that to filter individual purchases, you’d have to call
Where before joining:

from c in customers
join p in purchases.Where (p2 => p2.Price > 1000)
  on c.ID equals p.CustomerID
into custPurchases ...

You can construct lambda queries with GroupJoin as you would with Join.

Flat outer joins
You run into a dilemma if you want both an outer join and a flat result set. GroupJoin gives
you the outer join; Join gives you the flat result set. The solution is to first call GroupJoin,
and then DefaultIfEmpty on each child sequence, and then finally SelectMany on the result:

from c in customers
join p in purchases on c.ID equals p.CustomerID into custPurchases
from cp in custPurchases.DefaultIfEmpty()



select new
{
  CustName = c.Name,
  Price = cp == null ? (decimal?) null : cp.Price
};

DefaultIfEmpty emits a sequence with a single null value if a subsequence of purchases is
empty. The second from clause translates to SelectMany. In this role, it expands and flattens
all the purchase subsequences, concatenating them into a single sequence of purchase elements.

Joining with lookups
The Join and GroupJoin methods in Enumerable work in two steps. First, they load the inner
sequence into a lookup. Second, they query the outer sequence in combination with the lookup.
A lookup is a sequence of groupings that can be accessed directly by key. Another way to think
of it is as a dictionary of sequences — a dictionary that can accept many elements under each
key (sometimes called a multi-dictionary). Lookups are read-only and defined by the
following interface:

public interface ILookup<TKey,TElement> :
   IEnumerable<IGrouping<TKey,TElement>>, IEnumerable
{
  int Count { get; }
  bool Contains (TKey key);
  IEnumerable<TElement> this [TKey key] { get; }
}

NOTE
The joining operators — like other sequence-emitting operators — honor deferred or lazy
execution semantics. This means the lookup is not built until you begin enumerating the
output sequence (and then the entire lookup is built right then).

You can create and query lookups manually as an alternative strategy to using the joining
operators, when dealing with local collections. There are a couple of benefits in doing so:

You can reuse the same lookup over multiple queries — as well as in ordinary imperative
code.

Querying a lookup is an excellent way of understanding how Join and GroupJoin work.

The ToLookup extension method creates a lookup. The following loads all purchases into a
lookup — keyed by their CustomerID:

ILookup<int?,Purchase> purchLookup =
  purchases.ToLookup (p => p.CustomerID, p => p);

The first argument selects the key; the second argument selects the objects that are to be loaded
as values into the lookup.
Reading a lookup is rather like reading a dictionary, except that the indexer returns a sequence
of matching items, rather than a single matching item. The following enumerates all purchases
made by the customer whose ID is 1:



foreach (Purchase p in purchLookup [1])
  Console.WriteLine (p.Description);

With a lookup in place, you can write SelectMany/Select queries that execute as efficiently
as Join/GroupJoin queries. Join is equivalent to using SelectMany on a lookup:

from c in customers
from p in purchLookup [c.ID]
select new { c.Name, p.Description, p.Price };

Tom Bike 500
Tom Holiday 2000
Dick Bike 600
Dick Phone 300
...

Adding a call to DefaultIfEmpty makes this into an outer join:

from c in customers
from p in purchLookup [c.ID].DefaultIfEmpty()
 select new {
              c.Name,
              Descript = p == null ? null : p.Description,
              Price = p == null ? (decimal?) null : p.Price
            };

GroupJoin is equivalent to reading the lookup inside a projection:

from c in customers
select new {
             CustName = c.Name,
             CustPurchases = purchLookup [c.ID]
           };

Enumerable implementations
Here’s the simplest valid implementation of Enumerable.Join, null checking aside:

public static IEnumerable <TResult> Join
                                    <TOuter,TInner,TKey,TResult> (
  this IEnumerable <TOuter>     outer,
  IEnumerable <TInner>          inner,
  Func <TOuter,TKey>            outerKeySelector,
  Func <TInner,TKey>            innerKeySelector,
  Func <TOuter,TInner,TResult>  resultSelector)
{
  ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);
  return
    from outerItem in outer
    from innerItem in lookup [outerKeySelector (outerItem)]
    select resultSelector (outerItem, innerItem);
}

GroupJoin’s implementation is like that of Join, but simpler:

public static IEnumerable <TResult> GroupJoin
                                    <TOuter,TInner,TKey,TResult> (
  this IEnumerable <TOuter>     outer,
  IEnumerable <TInner>          inner,
  Func <TOuter,TKey>            outerKeySelector,
  Func <TInner,TKey>            innerKeySelector,
  Func <TOuter,IEnumerable<TInner>,TResult>  resultSelector)
{
  ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);



  return
    from outerItem in outer
    select resultSelector
     (outerItem, lookup [outerKeySelector (outerItem)]);
}

The Zip Operator
IEnumerable<TFirst>, IEnumerable<TSecond>→ IEnumerable<TResult>
The Zip operator was added in Framework 4.0. It enumerates two sequences in step (like a
zipper), returning a sequence based on applying a function over each element pair. For
instance, the following:

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip = numbers.Zip (words, (n, w) => n + "=" + w);

produces a sequence with the following elements:

3=three
5=five
7=seven

Extra elements in either input sequence are ignored. Zip is not supported by EF and L2S.

Ordering
IEnumerable<TSource>→ IOrderedEnumerable<TSource>

Method Description SQL equivalents

OrderBy, ThenBy Sorts a sequence in ascending order ORDER BY ...

OrderByDescending, ThenByDescending Sorts a sequence in descending order ORDER BY ... DESC

Reverse Returns a sequence in reverse order Exception thrown

Ordering operators return the same elements in a different order.

OrderBy, OrderByDescending, ThenBy, and ThenByDescending

OrderBy and OrderByDescending arguments

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Return type = IOrderedEnumerable<TSource>

ThenBy and ThenByDescending arguments

Argument Type

Input sequence IOrderedEnumerable<TSource>

Key selector TSource => TKey



Query syntax

orderby expression1 [descending] [, expression2 [descending] ... ]

Overview
OrderBy returns a sorted version of the input sequence, using the keySelector expression to
make comparisons. The following query emits a sequence of names in alphabetical order:

IEnumerable<string> query = names.OrderBy (s => s);

The following sorts names by length:

IEnumerable<string> query = names.OrderBy (s => s.Length);

// Result: { "Jay", "Tom", "Mary", "Dick", "Harry" };

The relative order of elements with the same sorting key (in this case, Jay/Tom and Mary/Dick)
is indeterminate — unless you append a ThenBy operator:

IEnumerable<string> query = names.OrderBy (s => s.Length).ThenBy (s => s);

// Result: { "Jay", "Tom", "Dick", "Mary", "Harry" };

ThenBy reorders only elements that had the same sorting key in the preceding sort. You can
chain any number of ThenBy operators. The following sorts first by length, then by the second
character, and finally by the first character:

names.OrderBy (s => s.Length).ThenBy (s => s[1]).ThenBy (s => s[0]);

The equivalent in query syntax is this:

from s in names
orderby s.Length, s[1], s[0]
select s;

WARNING
The following variation is incorrect — it will actually order first by s[1], and then by
s.Length (or in the case of a database query, it will order only by s[1] and discard the former
ordering):

from s in names
orderby s.Length
orderby s[1]
...

LINQ also provides OrderByDescending and ThenByDescending operators, which do the
same things, emitting the results in reverse order. The following LINQ-to-db query retrieves
purchases in descending order of price, with those of the same price listed alphabetically:



dataContext.Purchases.OrderByDescending (p => p.Price)
                     .ThenBy (p => p.Description);

In query syntax:

from p in dataContext.Purchases
orderby p.Price descending, p.Description
select p;

Comparers and collations
In a local query, the key selector objects themselves determine the ordering algorithm via their
default IComparable implementation (see Chapter 7). You can override the sorting algorithm
by passing in an IComparer object. The following performs a case-insensitive sort:

names.OrderBy (n => n, StringComparer.CurrentCultureIgnoreCase);

Passing in a comparer is not supported in query syntax, nor in any way by LINQ to SQL or EF.
When querying a database, the comparison algorithm is determined by the participating
column’s collation. If the collation is case-sensitive, you can request a case-insensitive sort by
calling ToUpper in the key selector:

from p in dataContext.Purchases
orderby p.Description.ToUpper()
select p;

IOrderedEnumerable and IOrderedQueryable
The ordering operators return special subtypes of IEnumerable<T>. Those in Enumerable
return IOrderedEnumerable<TSource>; those in Queryable return
IOrderedQueryable<TSource>. These subtypes allow a subsequent ThenBy operator to
refine rather than replace the existing ordering.
The additional members that these subtypes define are not publicly exposed, so they present
like ordinary sequences. The fact that they are different types comes into play when building
queries progressively:

IOrderedEnumerable<string> query1 = names.OrderBy (s => s.Length);
IOrderedEnumerable<string> query2 = query1.ThenBy (s => s);

If we instead declare query1 of type IEnumerable<string>, the second line would not
compile — ThenBy requires an input of type IOrderedEnumerable<string>. You can avoid
worrying about this by implicitly typing range variables:

var query1 = names.OrderBy (s => s.Length);
var query2 = query1.ThenBy (s => s);

Implicit typing can create problems of its own, though. The following will not compile:

var query = names.OrderBy (s => s.Length);
query = query.Where (n => n.Length > 3);       // Compile-time error

The compiler infers query to be of type IOrderedEnumerable<string>, based on OrderBy’s
output sequence type. However, the Where on the next line returns an ordinary



IEnumerable<string>, which cannot be assigned back to query. You can work around this
either with explicit typing or by calling AsEnumerable() after OrderBy:

var query = names.OrderBy (s => s.Length).AsEnumerable();
query = query.Where (n => n.Length > 3);                   // OK

The equivalent in interpreted queries is to call AsQueryable.

Grouping
IEnumerable<TSource>→ IEnumerable<IGrouping<TKey,TElement>>

Method Description SQL equivalents

GroupBy Groups a sequence into subsequences GROUP BY

GroupBy

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

Query syntax

group element-expression by key-expression

Overview
GroupBy organizes a flat input sequence into sequences of groups. For example, the following
organizes all the files in c:\temp by extension:

string[] files = Directory.GetFiles ("c:\\temp");

IEnumerable<IGrouping<string,string>> query =
  files.GroupBy (file => Path.GetExtension (file));

Or if you’re comfortable with implicit typing:

var query = files.GroupBy (file => Path.GetExtension (file));

Here’s how to enumerate the result:

foreach (IGrouping<string,string> grouping in query)
{
  Console.WriteLine ("Extension: " + grouping.Key);
  foreach (string filename in grouping)
    Console.WriteLine ("   - " + filename);
}

Extension: .pdf
  -- chapter03.pdf
  -- chapter04.pdf
Extension: .doc



  -- todo.doc
  -- menu.doc
  -- Copy of menu.doc
...

Enumerable.GroupBy works by reading the input elements into a temporary dictionary of lists
so that all elements with the same key end up in the same sublist. It then emits a sequence of
groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey,TElement> : IEnumerable<TElement>,
                                             IEnumerable
{
  TKey Key { get; }    // Key applies to the subsequence as a whole
}

By default, the elements in each grouping are untransformed input elements, unless you specify
an elementSelector argument. The following projects each input element to uppercase:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper());

An elementSelector is independent of the keySelector. In our case, this means that the Key
on each grouping is still in its original case:

Extension: .pdf
  -- CHAPTER03.PDF
  -- CHAPTER04.PDF
Extension: .doc
  -- TODO.DOC

Note that the subcollections are not emitted in alphabetical order of key. GroupBy groups only;
it does not sort; in fact, it preserves the original ordering. To sort, you must add an OrderBy
operator:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper())
     .OrderBy (grouping => grouping.Key);

GroupBy has a simple and direct translation in query syntax:

group element-expr by key-expr

Here’s our example in query syntax:

from file in files
group file.ToUpper() by Path.GetExtension (file);

As with select, group “ends” a query — unless you add a query continuation clause:

from file in files
group file.ToUpper() by Path.GetExtension (file) into grouping
orderby grouping.Key
select grouping;

Query continuations are often useful in a group by query. The next query filters out groups that
have fewer than five files in them:

from file in files



group file.ToUpper() by Path.GetExtension (file) into grouping
where grouping.Count() >= 5
select grouping;

NOTE
A where after a group by is equivalent to HAVING in SQL. It applies to each subsequence or
grouping as a whole, rather than the individual elements.

Sometimes you’re interested purely in the result of an aggregation on a grouping and so can
abandon the subsequences:

string[] votes = { "Bush", "Gore", "Gore", "Bush", "Bush" };

IEnumerable<string> query = from vote in votes
                            group vote by vote into g
                            orderby g.Count() descending
                            select g.Key;

string winner = query.First();    // Bush

GroupBy in LINQ to SQL and EF
Grouping works in the same way when querying a database. If you have association properties
set up, you’ll find, however, that the need to group arises less frequently than with standard
SQL. For instance, to select customers with at least two purchases, you don’t need to group;
the following query does the job nicely:

from c in dataContext.Customers
where c.Purchases.Count >= 2
select c.Name + " has made " + c.Purchases.Count + " purchases";

An example of when you might use grouping is to list total sales by year:

from p in dataContext.Purchases
group p.Price by p.Date.Year into salesByYear
select new {
             Year       = salesByYear.Key,
             TotalValue = salesByYear.Sum()
           };

LINQ’s grouping is more powerful than SQL’s “GROUP BY”. For instance, it’s legal to fetch
all detail rows without any aggregation:

from p in dataContext.Purchases
group p by p.Date.Year

This works well in EF, but in L2S it causes excessive round-tripping. An easy workaround is
to call .AsEnumerable() just before grouping, so that the grouping happens on the client. This
is no less efficient, as long as you perform any filtering before grouping, so that you only fetch
the data you need from the server.
Another departure from traditional SQL comes in there being no obligation to project the
variables or expressions used in grouping or sorting.



Grouping by multiple keys
You can group by a composite key, using an anonymous type:

from n in names
group n by new { FirstLetter = n[0], Length = n.Length };

Custom equality comparers
You can pass a custom equality comparer into GroupBy, in a local query, to change the
algorithm for key comparison. Rarely is this required, though, because changing the key
selector expression is usually sufficient. For instance, the following creates a case-insensitive
grouping:

group name by name.ToUpper()

Set Operators
IEnumerable<TSource>, IEnumerable<TSource>→IEnumerable<TSource>

Method Description SQL equivalents

Concat Returns a concatenation of elements in each of the two sequences UNION ALL

Union Returns a concatenation of elements in each of the two sequences, excluding
duplicates

UNION

Intersect Returns elements present in both sequences WHERE ... IN (...)

Except Returns elements present in the first, but not the second sequence EXCEPT
or
WHERE ... NOT IN (...)

Concat and Union
Concat returns all the elements of the first sequence, followed by all the elements of the
second. Union does the same, but removes any duplicates:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
  concat = seq1.Concat (seq2),    //  { 1, 2, 3, 3, 4, 5 }
  union  = seq1.Union  (seq2);    //  { 1, 2, 3, 4, 5 }

Specifying the type argument explicitly is useful when the sequences are differently typed, but
the elements have a common base type. For instance, with the reflection API (Chapter 19),
methods and properties are represented with MethodInfo and PropertyInfo classes, which
have a common base class called MemberInfo. We can concatenate methods and properties by
stating that base class explicitly when calling Concat:

MethodInfo[] methods = typeof (string).GetMethods();
PropertyInfo[] props = typeof (string).GetProperties();
IEnumerable<MemberInfo> both = methods.Concat<MemberInfo> (props);

In the next example, we filter the methods before concatenating:

var methods = typeof (string).GetMethods().Where (m => !m.IsSpecialName);
var props = typeof (string).GetProperties();



var both = methods.Concat<MemberInfo> (props);

This example relies on interface type parameter variance: methods is of type
IEnumerable<MethodInfo>, which requires a covariant conversion to
IEnumerable<MemberInfo>. It’s a good illustration of how variance makes things work more
as you’d expect.

Intersect and Except
Intersect returns the elements that two sequences have in common. Except returns the
elements in the first input sequence that are not present in the second:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
  commonality = seq1.Intersect (seq2),    //  { 3 }
  difference1 = seq1.Except    (seq2),    //  { 1, 2 }
  difference2 = seq2.Except    (seq1);    //  { 4, 5 }

Enumerable.Except works internally by loading all of the elements in the first collection into
a dictionary, then removing from the dictionary all elements present in the second sequence.
The equivalent in SQL is a NOT EXISTS or NOT IN subquery:

SELECT number FROM numbers1Table
WHERE number NOT IN (SELECT number FROM numbers2Table)

Conversion Methods
LINQ deals primarily in sequences — in other words, collections of type IEnumerable<T>.
The conversion methods convert to and from other types of collections:

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an exception if there are any wrongly typed elements

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

ToDictionary Converts IEnumerable<T> to Dictionary<TKey,TValue>

ToLookup Converts IEnumerable<T> to ILookup<TKey,TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

OfType and Cast
OfType and Cast accept a nongeneric IEnumerable collection and emit a generic
IEnumerable<T> sequence that you can subsequently query:

ArrayList classicList = new ArrayList();          // in System.Collections
classicList.AddRange ( new int[] { 3, 4, 5 } );
IEnumerable<int> sequence1 = classicList.Cast<int>();

Cast and OfType differ in their behavior when encountering an input element that’s of an



incompatible type. Cast throws an exception; OfType ignores the incompatible element.
Continuing the preceding example:

DateTime offender = DateTime.Now;
classicList.Add (offender);
IEnumerable<int>
  sequence2 = classicList.OfType<int>(), // OK - ignores offending DateTime
  sequence3 = classicList.Cast<int>();   // Throws exception

The rules for element compatibility exactly follow those of C#’s is operator, and therefore
consider only reference conversions and unboxing conversions. We can see this by examining
the internal implementation of OfType:

public static IEnumerable<TSource> OfType <TSource> (IEnumerable source)
{
  foreach (object element in source)
    if (element is TSource)
      yield return (TSource)element;
}

Cast has an identical implementation, except that it omits the type compatibility test:

public static IEnumerable<TSource> Cast <TSource> (IEnumerable source)
{
  foreach (object element in source)
    yield return (TSource)element;
}

A consequence of these implementations is that you cannot use Cast to perform numeric or
custom conversions (for these, you must perform a Select operation instead). In other words,
Cast is not as flexible as C#’s cast operator:

int i = 3;
long l = i;         // Implicit numeric conversion int->long
int i2 = (int) l;   // Explicit numeric conversion long->int

We can demonstrate this by attempting to use OfType or Cast to convert a sequence of ints to
a sequence of longs:

int[] integers = { 1, 2, 3 };

IEnumerable<long> test1 = integers.OfType<long>();
IEnumerable<long> test2 = integers.Cast<long>();

When enumerated, test1 emits zero elements and test2 throws an exception. Examining
OfType’s implementation, it’s fairly clear why. After substituting TSource, we get the
following expression:

(element is long)

which returns false for an int element, due to the lack of an inheritance relationship.

NOTE
The reason for test2 throwing an exception, when enumerated, is subtler. Notice in Cast’s
implementation that element is of type object. When TSource is a value type, the CLR



assumes this is an unboxing conversion, and synthesizes a method that reproduces the
scenario described in the Chapter 3:

int value = 123;
object element = value;
long result = (long) element;  // exception

Because the element variable is declared of type object, an object-to-long cast is performed
(an unboxing) rather than an int-to-long numeric conversion. Unboxing operations require an
exact type match, so the object-to-long unbox fails when given an int.

As we suggested previously, the solution is to use an ordinary Select:

IEnumerable<long> castLong = integers.Select (s => (long) s);

OfType and Cast are also useful in downcasting elements in a generic input sequence. For
instance, if you have an input sequence of type IEnumerable<Fruit>, OfType<Apple> would
return just the apples. This is particularly useful in LINQ to XML (see Chapter 10).
Cast has query syntax support; simply precede the range variable with a type:

from TreeNode node in myTreeView.Nodes
...

ToArray, ToList, ToDictionary, and ToLookup
ToArray and ToList emit the results into an array or generic list. These operators force the
immediate enumeration of the input sequence (unless indirected via a subquery or expression
tree). For examples, refer to the section “Deferred Execution” in Chapter 8.
ToDictionary and ToLookup accept the following arguments:

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

ToDictionary also forces immediate execution of a sequence, writing the results to a generic
Dictionary. The keySelector expression you provide must evaluate to a unique value for
each element in the input sequence; otherwise, an exception is thrown. In contrast, ToLookup
allows many elements of the same key. We describe lookups in the earlier section “Joining with
lookups”.

AsEnumerable and AsQueryable
AsEnumerable upcasts a sequence to IEnumerable<T>, forcing the compiler to bind
subsequent query operators to methods in Enumerable, instead of Queryable. For an example,
see the section “Combining Interpreted and Local Queries” in Chapter 8.
AsQueryable downcasts a sequence to IQueryable<T> if it implements that interface.
Otherwise, it instantiates an IQueryable<T> wrapper over the local query.



Element Operators
IEnumerable<TSource>→ TSource

Method Description SQL equivalents

First,
FirstOrDefault

Returns the first element in the sequence, optionally satisfying a predicate SELECT TOP 1 ... ORDER
BY ...

Last,
LastOrDefault

Returns the last element in the sequence, optionally satisfying a predicate SELECT TOP 1 ... ORDER
BY ... DESC

Single,
SingleOrDefault

Equivalent to First/FirstOrDefault, but throws an exception if there is
more than one match

 

ElementAt,
ElementAtOrDefault

Returns the element at the specified position Exception thrown

DefaultIfEmpty Returns a single-element sequence whose value is default(TSource) if
the sequence has no elements

OUTER JOIN

Methods ending in “OrDefault” return default(TSource) rather than throwing an exception if
the input sequence is empty or if no elements match the supplied predicate.
default(TSource) is null for reference-type elements, false for the bool type, and zero for
numeric types.

First, Last, and Single

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

The following example demonstrates First and Last:

int[] numbers  = { 1, 2, 3, 4, 5 };
int first      = numbers.First();                      // 1
int last       = numbers.Last();                       // 5
int firstEven  = numbers.First  (n => n % 2 == 0);     // 2
int lastEven   = numbers.Last   (n => n % 2 == 0);     // 4

The following demonstrates First versus FirstOrDefault:

int firstBigError  = numbers.First          (n => n > 10);   // Exception
int firstBigNumber = numbers.FirstOrDefault (n => n > 10);   // 0

To avoid an exception, Single requires exactly one matching element; SingleOrDefault
requires one or zero matching elements:

int onlyDivBy3 = numbers.Single (n => n % 3 == 0);   // 3
int divBy2Err  = numbers.Single (n => n % 2 == 0);   // Error: 2 & 4 match

int singleError = numbers.Single          (n => n > 10);      // Error
int noMatches   = numbers.SingleOrDefault (n => n > 10);      // 0
int divBy2Error = numbers.SingleOrDefault (n => n % 2 == 0);  // Error

Single is the “fussiest” in this family of element operators. FirstOrDefault and
LastOrDefault are the most tolerant.



In LINQ to SQL and EF, Single is often used to retrieve a row from a table by primary key:

Customer cust = dataContext.Customers.Single (c => c.ID == 3);

ElementAt

Argument Type

Source sequence IEnumerable<TSource>

Index of element to return int

ElementAt picks the nth element from the sequence:

int[] numbers  = { 1, 2, 3, 4, 5 };
int third      = numbers.ElementAt (2);            // 3
int tenthError = numbers.ElementAt (9);            // Exception
int tenth      = numbers.ElementAtOrDefault (9);   // 0

Enumerable.ElementAt is written such that if the input sequence happens to implement
IList<T>, it calls IList<T>’s indexer. Otherwise, it enumerates n times, and then returns the
next element. ElementAt is not supported in LINQ to SQL or EF.

DefaultIfEmpty
DefaultIfEmpty returns a sequence containing a single element whose value is
default(TSource) if the input sequence has no elements. Otherwise it returns the input
sequence unchanged. This is used in writing flat outer joins: see the earlier sections “Outer
joins with SelectMany” and “Flat outer joins”.

Aggregation Methods
IEnumerable<TSource>→ scalar

Method Description SQL equivalents

Count,
LongCount

Returns the number of elements in the input sequence, optionally satisfying a
predicate

COUNT (...)

Min, Max Returns the smallest or largest element in the sequence MIN (...), MAX
(...)

Sum, Average Calculates a numeric sum or average over elements in the sequence SUM (...), AVG
(...)

Aggregate Performs a custom aggregation Exception thrown

Count and LongCount

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

Count simply enumerates over a sequence, returning the number of items:

int fullCount = new int[] { 5, 6, 7 }.Count();    // 3



The internal implementation of Enumerable.Count tests the input sequence to see whether it
happens to implement ICollection<T>. If it does, it simply calls ICollection<T>.Count.
Otherwise, it enumerates over every item, incrementing a counter.
You can optionally supply a predicate:

int digitCount = "pa55w0rd".Count (c => char.IsDigit (c));   // 3

LongCount does the same job as Count, but returns a 64-bit integer, allowing for sequences of
greater than 2 billion elements.

Min and Max

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Min and Max return the smallest or largest element from a sequence:

int[] numbers = { 28, 32, 14 };
int smallest = numbers.Min();  // 14;
int largest  = numbers.Max();  // 32;

If you include a selector expression, each element is first projected:

int smallest = numbers.Max (n => n % 10);  // 8;

A selector expression is mandatory if the items themselves are not intrinsically comparable
— in other words, if they do not implement IComparable<T>:

Purchase runtimeError = dataContext.Purchases.Min ();             // Error
decimal? lowestPrice = dataContext.Purchases.Min (p => p.Price);  // OK

A selector expression determines not only how elements are compared, but also the final
result. In the preceding example, the final result is a decimal value, not a purchase object. To
get the cheapest purchase, you need a subquery:

Purchase cheapest = dataContext.Purchases
  .Where (p => p.Price == dataContext.Purchases.Min (p2 => p2.Price))
  .FirstOrDefault();

In this case, you could also formulate the query without an aggregation — using an OrderBy
followed by FirstOrDefault.

Sum and Average

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult



Sum and Average are aggregation operators that are used in a similar manner to Min and Max:

decimal[] numbers  = { 3, 4, 8 };
decimal sumTotal   = numbers.Sum();               // 15
decimal average    = numbers.Average();           // 5   (mean value)

The following returns the total length of each of the strings in the names array:

int combinedLength = names.Sum (s => s.Length);   // 19

Sum and Average are fairly restrictive in their typing. Their definitions are hard-wired to each
of the numeric types (int, long, float, double, decimal, and their nullable versions). In
contrast, Min and Max can operate directly on anything that implements IComparable<T> —
such as a string, for instance.
Further, Average always returns either decimal, float, or double, according to the following
table:

Selector type Result type
decimal decimal

float float

int, long, double double

This means the following does not compile (“cannot convert double to int”):

int avg = new int[] { 3, 4 }.Average();

But this will compile:

double avg = new int[] { 3, 4 }.Average();   // 3.5

Average implicitly upscales the input values to avoid loss of precision. In this example, we
averaged integers and got 3.5, without needing to resort to an input element cast:

double avg = numbers.Average (n => (double) n);

When querying a database, Sum and Average translate to the standard SQL aggregations. The
following query returns customers whose average purchase was more than $500:

from c in dataContext.Customers
where c.Purchases.Average (p => p.Price) > 500
select c.Name;

Aggregate
Aggregate allows you to specify a custom accumulation algorithm for implementing unusual
aggregations. Aggregate is not supported in LINQ to SQL or Entity Framework, and is
somewhat specialized in its use cases. The following demonstrates how Aggregate can do the
work of Sum:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate (0, (total, n) => total + n);   // 9



The first argument to Aggregate is the seed, from which accumulation starts. The second
argument is an expression to update the accumulated value, given a fresh element. You can
optionally supply a third argument to project the final result value from the accumulated value.

NOTE
Most problems for which Aggregate has been designed can be solved as easily with a foreach
loop — and with more familiar syntax. The advantage of using Aggregate is that with large or
complex aggregations, you can automatically parallelize the operation with PLINQ (see
Chapter 23).

Unseeded aggregations
You can omit the seed value when calling Aggregate, in which case the first element becomes
the implicit seed, and aggregation proceeds from the second element. Here’s the preceding
example, unseeded:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate ((total, n) => total + n);   // 6

This gives the same result as before, but we’re actually doing a different calculation. Before,
we were calculating 0+1+2+3; now we’re calculating 1+2+3. We can better illustrate the
difference by multiplying instead of adding:

int[] numbers = { 1, 2, 3 };
int x = numbers.Aggregate (0, (prod, n) => prod * n);   // 0*1*2*3 = 0
int y = numbers.Aggregate (   (prod, n) => prod * n);   //   1*2*3 = 6

As we’ll see in Chapter 23, unseeded aggregations have the advantage of being parallelizable
without requiring the use of special overloads. However, there are some traps with unseeded
aggregations.

Traps with unseeded aggregations
The unseeded aggregation methods are intended for use with delegates that are commutative
and associative. If used otherwise, the result is either unintuitive (with ordinary queries) or
nondeterministic (in the case that you parallelize the query with PLINQ). For example,
consider the following function:

(total, n) => total + n * n

This is neither commutative nor associative. (For example, 1+2*2 != 2+1*1). Let’s see what
happens when we use it to sum the square of the numbers 2, 3, and 4:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate ((total, n) => total + n * n);    // 27

Instead of calculating:

2*2 + 3*3 + 4*4    // 29



it calculates:

2 + 3*3 + 4*4      // 27

We can fix this in a number of ways. First, we could include 0 as the first element:

int[] numbers = { 0, 2, 3, 4 };

Not only is this inelegant, but it will still give incorrect results if parallelized — because
PLINQ leverages the function’s assumed associativity by selecting multiple elements as seeds.
To illustrate, if we denote our aggregation function as follows:

f(total, n) => total + n * n

then LINQ to Objects would calculate this:

f(f(f(0, 2),3),4)

whereas PLINQ may do this:

f(f(0,2),f(3,4))

with the following result:

First partition:   a = 0 + 2*2  (= 4)
Second partition:  b = 3 + 4*4  (= 19)
Final result:          a + b*b  (= 365)
OR EVEN:               b + a*a  (= 35)

There are two good solutions. The first is to turn this into a seeded aggregation — with zero as
the seed. The only complication is that with PLINQ, we’d need to use a special overload in
order for the query not to execute sequentially (see “Optimizing PLINQ” in Chapter 23).
The second solution is to restructure the query such that the aggregation function is commutative
and associative:

int sum = numbers.Select (n => n * n).Aggregate ((total, n) => total + n);

NOTE
Of course, in such simple scenarios you can (and should) use the Sum operator instead of
Aggregate:

int sum = numbers.Sum (n => n * n);

You can actually go quite far just with Sum and Average. For instance, you can use Average to
calculate a root-mean-square:

Math.Sqrt (numbers.Average (n => n * n))

and even standard deviation:

double mean = numbers.Average();



double sdev = Math.Sqrt (numbers.Average (n =>
              {
                double dif = n - mean;
                return dif * dif;
              }));

Both are safe, efficient, and fully parallelizable. In Chapter 23, we’ll give a practical example
of a custom aggregation that can’t be reduced to Sum or Average.

Quantifiers
IEnumerable<TSource>→ bool

Method Description SQL equivalents

Contains Returns true if the input sequence contains the given element WHERE ... IN (...)

Any Returns true if any elements satisfy the given predicate WHERE ... IN (...)

All Returns true if all elements satisfy the given predicate WHERE (...)

SequenceEqual Returns true if the second sequence has identical elements to the input sequence  

Contains and Any
The Contains method accepts an argument of type TSource; Any accepts an optional
predicate.
Contains returns true if the given element is present:

bool hasAThree = new int[] { 2, 3, 4 }.Contains (3);       // true;

Any returns true if the given expression is true for at least one element. We can rewrite the
preceding query with Any as follows:

bool hasAThree = new int[] { 2, 3, 4 }.Any (n => n == 3);  // true;

Any can do everything that Contains can do, and more:

bool hasABigNumber = new int[] { 2, 3, 4 }.Any (n => n > 10);  // false;

Calling Any without a predicate returns true if the sequence has one or more elements. Here’s
another way to write the preceding query:

 bool hasABigNumber = new int[] { 2, 3, 4 }.Where (n => n > 10).Any();

Any is particularly useful in subqueries and is used often when querying databases, for
example:

from c in dataContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select c

All and SequenceEqual
All returns true if all elements satisfy a predicate. The following returns customers whose



purchases are less than $100:

dataContext.Customers.Where (c => c.Purchases.All (p => p.Price < 100));

SequenceEqual compares two sequences. To return true, each sequence must have identical
elements, in the identical order. You can optionally provide an equality comparer; the default is
EqualityComparer<T>.Default.

Generation Methods
void→IEnumerable<TResult>

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

Empty, Repeat, and Range are static (nonextension) methods that manufacture simple local
sequences.

Empty
Empty manufactures an empty sequence and requires just a type argument:

foreach (string s in Enumerable.Empty<string>())
  Console.Write (s);                              // <nothing>

In conjunction with the ?? operator, Empty does the reverse of DefaultIfEmpty. For example,
suppose we have a jagged array of integers, and we want to get all the integers into a single flat
list. The following SelectMany query fails if any of the inner arrays is null:

int[][] numbers =
{
  new int[] { 1, 2, 3 },
  new int[] { 4, 5, 6 },
  null                     // this null makes the query below fail.
};

IEnumerable<int> flat = numbers.SelectMany (innerArray => innerArray);

Empty in conjunction with ?? fixes the problem:

IEnumerable<int> flat = numbers
  .SelectMany (innerArray => innerArray ?? Enumerable.Empty <int>());

foreach (int i in flat)
  Console.Write (i + " ");     // 1 2 3 4 5 6

Range and Repeat
Range accepts a starting index and count (both integers):

foreach (int i in Enumerable.Range (5, 3))
  Console.Write (i + " ");                    // 5 6 7



Repeat accepts an element to repeat, and the number of repetitions:

foreach (bool x in Enumerable.Repeat (true, 3))
  Console.Write (x + " ");                    // True True True



Chapter 10. LINQ to XML

The .NET Framework provides a number of APIs for working with XML data. From .NET
Framework 3.5, the primary choice for general-purpose XML document processing is LINQ to
XML. LINQ to XML comprises a lightweight LINQ-friendly XML document object model, plus
a set of supplementary query operators.
In this chapter, we concentrate entirely on LINQ to XML. In Chapter 11, we cover the more
specialized XML types and APIs, including the forward-only reader/writer, the types for
working with schemas, stylesheets, and XPaths, and the legacy XmlDocument-based DOM.

NOTE
The LINQ to XML DOM is extremely well designed and highly performant. Even without
LINQ, the LINQ to XML DOM is valuable as a lightweight façade over the low-level
XmlReader and XmlWriter classes.

All LINQ to XML types are defined in the System.Xml.Linq namespace.

Architectural Overview
This section starts with a very brief introduction to the concept of a DOM, and then explains
the rationale behind LINQ to XML’s DOM.

What Is a DOM?
Consider the following XML file:

<?xml version="1.0" encoding="utf-8"?>
<customer id="123" status="archived">
  <firstname>Joe</firstname>
  <lastname>Bloggs</lastname>
</customer>

As with all XML files, we start with a declaration, and then a root element, whose name is
customer. The customer element has two attributes, each with a name (id and status) and
value ("123" and "archived"). Within customer, there are two child elements, firstname
and lastname, each having simple text content ("Joe" and "Bloggs").
Each of these constructs — declaration, element, attribute, value, and text content — can be
represented with a class. And if such classes have collection properties for storing child
content, we can assemble a tree of objects to fully describe a document. This is called a
document object model, or DOM.

The LINQ to XML DOM
LINQ to XML comprises two things:

An XML DOM, which we call the X-DOM



A set of about 10 supplementary query operators

As you might expect, the X-DOM consists of types such as XDocument, XElement, and
XAttribute. Interestingly, the X-DOM types are not tied to LINQ — you can load, instantiate,
update, and save an X-DOM without ever writing a LINQ query.
Conversely, you could use LINQ to query a DOM created of the older W3C-compliant types.
However, this would be frustrating and limiting. The distinguishing feature of the X-DOM is
that it’s LINQ-friendly. This means:

It has methods that emit useful IEnumerable sequences, upon which you can query.

Its constructors are designed such that you can build an X-DOM tree through a LINQ
projection.

X-DOM Overview
Figure 10-1 shows the core X-DOM types. The most frequently used of these types is
XElement. XObject is the root of the inheritance hierarchy; XElement and XDocument are
roots of the containership hierarchy.
Figure 10-2 shows the X-DOM tree created from the following code:

string xml = @"<customer id='123' status='archived'>
                 <firstname>Joe</firstname>
                 <lastname>Bloggs<!--nice name--></lastname>
               </customer>";

XElement customer = XElement.Parse (xml);



Figure 10-1. Core X-DOM types

Figure 10-2. A simple X-DOM tree

XObject is the abstract base class for all XML content. It defines a link to the Parent element
in the containership tree as well as an optional XDocument.



XNode is the base class for most XML content excluding attributes. The distinguishing feature
of XNode is that it can sit in an ordered collection of mixed-type XNodes. For instance, consider
the following XML:

<data>
  Hello world
  <subelement1/>
  <!--comment-->
  <subelement2/>
</data>

Within the parent element <data>, there’s first an XText node (Hello world), then an
XElement node, then an XComment node, and then a second XElement node. In contrast, an
XAttribute will tolerate only other XAttributes as peers.
Although an XNode can access its parent XElement, it has no concept of child nodes: this is the
job of its subclass XContainer. XContainer defines members for dealing with children and is
the abstract base class for XElement and XDocument.
XElement introduces members for managing attributes — as well as a Name and Value. In the
(fairly common) case of an element having a single XText child node, the Value property on
XElement encapsulates this child’s content for both get and set operations, cutting unnecessary
navigation. Thanks to Value, you can mostly avoid working directly with XText nodes.
XDocument represents the root of an XML tree. More precisely, it wraps the root XElement,
adding an XDeclaration, processing instructions, and other root-level “fluff.” Unlike with the
W3C DOM, its use is optional: you can load, manipulate, and save an X-DOM without ever
creating an XDocument! The nonreliance on XDocument also means you can efficiently and
easily move a node subtree to another X-DOM hierarchy.

Loading and Parsing
Both XElement and XDocument provide static Load and Parse methods to build an X-DOM
tree from an existing source:

Load builds an X-DOM from a file, URI, Stream, TextReader, or XmlReader.

Parse builds an X-DOM from a string.

For example:

XDocument fromWeb = XDocument.Load ("http://albahari.com/sample.xml");

XElement fromFile = XElement.Load (@"e:\media\somefile.xml");

XElement config = XElement.Parse (
@"<configuration>
    <client enabled='true'>
      <timeout>30</timeout>
    </client>
  </configuration>");

In later sections, we describe how to traverse and update an X-DOM. As a quick preview,
here’s how to manipulate the config element we just populated:

foreach (XElement child in config.Elements())
  Console.WriteLine (child.Name);                     // client



XElement client = config.Element ("client");

bool enabled = (bool) client.Attribute ("enabled");   // Read attribute
Console.WriteLine (enabled);                          // True
client.Attribute ("enabled").SetValue (!enabled);     // Update attribute

int timeout = (int) client.Element ("timeout");       // Read element
Console.WriteLine (timeout);                          // 30
client.Element ("timeout").SetValue (timeout * 2);    // Update element

client.Add (new XElement ("retries", 3));             // Add new elememt

Console.WriteLine (config);         // Implicitly call config.ToString()

Here’s the result of that last Console.WriteLine:

<configuration>
  <client enabled="false">
    <timeout>60</timeout>
    <retries>3</retries>
  </client>
</configuration>

NOTE
XNode also provides a static ReadFrom method that instantiates and populates any type of node
from an XmlReader. Unlike Load, it stops after reading one (complete) node, so you can
continue to read manually from the XmlReader afterward.
You can also do the reverse and use an XmlReader or XmlWriter to read or write an XNode, via
its CreateReader and CreateWriter methods.
We describe XML readers and writers and how to use them with the X-DOM in Chapter 11.

Saving and Serializing
Calling ToString on any node converts its content to an XML string — formatted with line
breaks and indentation as we just saw. (You can disable the line breaks and indentation by
specifying SaveOptions.DisableFormatting when calling ToString.)
XElement and XDocument also provide a Save method that writes an X-DOM to a file,
Stream, TextWriter, or XmlWriter. If you specify a file, an XML declaration is
automatically written. There is also a WriteTo method defined in the XNode class, which
accepts just an XmlWriter.
We describe the handling of XML declarations when saving in more detail in the section
“Documents and Declarations” later in this chapter.

Instantiating an X-DOM
Rather than using the Load or Parse methods, you can build an X-DOM tree by manually
instantiating objects and adding them to a parent via XContainer’s Add method.
To construct an XElement and XAttribute, simply provide a name and value:

XElement lastName = new XElement ("lastname", "Bloggs");
lastName.Add (new XComment ("nice name"));



XElement customer = new XElement ("customer");
customer.Add (new XAttribute ("id", 123));
customer.Add (new XElement ("firstname", "Joe"));
customer.Add (lastName);

Console.WriteLine (customer.ToString());

The result:

<customer id="123">
  <firstname>Joe</firstname>
  <lastname>Bloggs<!--nice name--></lastname>
</customer>

A value is optional when constructing an XElement — you can provide just the element name
and add content later. Notice that when we did provide a value, a simple string sufficed — we
didn’t need to explicitly create and add an XText child node. The X-DOM does this work
automatically, so you can deal simply with “values.”

Functional Construction
In our preceding example, it’s hard to glean the XML structure from the code. X-DOM supports
another mode of instantiation, called functional construction (from functional programming).
With functional construction, you build an entire tree in a single expression:

XElement customer =
  new XElement ("customer", new XAttribute ("id", 123),
    new XElement ("firstname", "joe"),
    new XElement ("lastname", "bloggs",
      new XComment ("nice name")
    )
  );

This has two benefits. First, the code resembles the shape of the XML. Second, it can be
incorporated into the select clause of a LINQ query. For example, the following LINQ to SQL
query projects directly into an X-DOM:

XElement query =
  new XElement ("customers",
    from c in dataContext.Customers
    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("firstname", c.FirstName),
        new XElement ("lastname", c.LastName,
          new XComment ("nice name")
        )
      )
  );

More on this later in this chapter, in the section “Projecting into an X-DOM”.

Specifying Content
Functional construction is possible because the constructors for XElement (and XDocument)
are overloaded to accept a params object array:

public XElement (XName name, params object[] content)



The same holds true for the Add method in XContainer:

public void Add (params object[] content)

Hence, you can specify any number of child objects of any type when building or appending an
X-DOM. This works because anything counts as legal content. To see how, we need to
examine how each content object is processed internally. Here are the decisions made by
XContainer, in order:

1. If the object is null, it’s ignored.

2. If the object is based on XNode or XStreamingElement, it’s added as is to the Nodes
collection.

3. If the object is an XAttribute, it’s added to the Attributes collection.

4. If the object is a string, it gets wrapped in an XText node and added to Nodes.1

5. If the object implements IEnumerable, it’s enumerated, and the same rules are applied to
each element.

6. Otherwise, the object is converted to a string, wrapped in an XText node, and then added
to Nodes.2

Everything ends up in one of two buckets: Nodes or Attributes. Furthermore, any object is
valid content because it can always ultimately call ToString on it and treat it as an XText
node.

NOTE
Before calling ToString on an arbitrary type, XContainer first tests whether it is one of the
following types:

float, double, decimal, bool,
DateTime, DateTimeOffset, TimeSpan

If so, it calls an appropriate typed ToString method on the XmlConvert helper class instead of
calling ToString on the object itself. This ensures that the data is round-trippable and
compliant with standard XML formatting rules.

Automatic Deep Cloning
When a node or attribute is added to an element (whether via functional construction or an Add
method) the node or attribute’s Parent property is set to that element. A node can have only
one parent element: if you add an already parented node to a second parent, the node is
automatically deep-cloned. In the following example, each customer has a separate copy of
address:

var address = new XElement ("address",
                  new XElement ("street", "Lawley St"),
                  new XElement ("town", "North Beach")
              );



var customer1 = new XElement ("customer1", address);
var customer2 = new XElement ("customer2", address);

customer1.Element ("address").Element ("street").Value = "Another St";
Console.WriteLine (
  customer2.Element ("address").Element ("street").Value);   // Lawley St

This automatic duplication keeps X-DOM object instantiation free of side effects — another
hallmark of functional programming.

Navigating and Querying
As you might expect, the XNode and XContainer classes define methods and properties for
traversing the X-DOM tree. Unlike a conventional DOM, however, these functions don’t return
a collection that implements IList<T>. Instead, they return either a single value or a sequence
that implements IEnumerable<T> — upon which you are then expected to execute a LINQ
query (or enumerate with a foreach). This allows for advanced queries as well as simple
navigation tasks — using familiar LINQ query syntax.

NOTE
Element and attribute names are case-sensitive in the X-DOM — just as they are in XML.

Child Node Navigation

Return type Members Works on
XNode FirstNode { get; } XContainer

 LastNode { get; } XContainer

IEnumerable<XNode> Nodes() XContainer*

 DescendantNodes() XContainer*

 DescendantNodesAndSelf() XElement*

XElement Element (XName) XContainer

IEnumerable<XElement> Elements() XContainer*

 Elements (XName) XContainer*

 Descendants() XContainer*

 Descendants (XName) XContainer*

 DescendantsAndSelf() XElement*

 DescendantsAndSelf (XName) XElement*

bool HasElements { get; } XElement

NOTE
Functions marked with an asterisk in the third column of this and other tables also operate on
sequences of the same type. For instance, you can call Nodes on either an XContainer or a
sequence of XContainer objects. This is possible because of extension methods defined in
System.Xml.Linq — the supplementary query operators we talked about in the overview.



FirstNode, LastNode, and Nodes
FirstNode and LastNode give you direct access to the first or last child node; Nodes returns
all children as a sequence. All three functions consider only direct descendants. For example:

var bench = new XElement ("bench",
              new XElement ("toolbox",
                new XElement ("handtool", "Hammer"),
                new XElement ("handtool", "Rasp")
              ),
              new XElement ("toolbox",
                new XElement ("handtool", "Saw"),
                new XElement ("powertool", "Nailgun")
              ),
              new XComment ("Be careful with the nailgun")
            );
foreach (XNode node in bench.Nodes())
  Console.WriteLine (node.ToString (SaveOptions.DisableFormatting) + ".");

This is the output:

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>.
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>.
<!--Be careful with the nailgun-->.

Retrieving elements
The Elements method returns just the child nodes of type XElement:

foreach (XElement e in bench.Elements())
  Console.WriteLine (e.Name + "=" + e.Value);    // toolbox=HammerRasp
                                                 // toolbox=SawNailgun

The following LINQ query finds the toolbox with the nail gun:

IEnumerable<string> query =
  from toolbox in bench.Elements()
  where toolbox.Elements().Any (tool => tool.Value == "Nailgun")
  select toolbox.Value;

RESULT: { "SawNailgun" }

The next example uses a SelectMany query to retrieve the hand tools in all toolboxes:

IEnumerable<string> query =
  from toolbox in bench.Elements()
  from tool in toolbox.Elements()
  where tool.Name == "handtool"
  select tool.Value;

RESULT: { "Hammer", "Rasp", "Saw" }

NOTE
Elements itself is equivalent to a LINQ query on Nodes. Our preceding query could be started
as follows:

from toolbox in bench.Nodes().OfType<XElement>()
where ...



Elements can also return just the elements of a given name. For example:

int x = bench.Elements ("toolbox").Count();    // 2

This is equivalent to:

int x = bench.Elements().Where (e => e.Name == "toolbox").Count();  // 2

Elements is also defined as an extension method accepting IEnumerable<XContainer> or,
more precisely, it accepts an argument of this type:

IEnumerable<T> where T : XContainer

This allows it to work with sequences of elements, too. Using this method, we can rewrite the
query that finds the hand tools in all toolboxes as follows:

from tool in bench.Elements ("toolbox").Elements ("handtool")
select tool.Value.ToUpper();

The first call to Elements binds to XContainer’s instance method; the second call to
Elements binds to the extension method.

Retrieving a single element
The method Element (singular) returns the first matching element of the given name. Element
is useful for simple navigation, as follows:

XElement settings = XElement.Load ("databaseSettings.xml");
string cx = settings.Element ("database").Element ("connectString").Value;

Element is equivalent to calling Elements() and then applying LINQ’s FirstOrDefault
query operator with a name-matching predicate. Element returns null if the requested element
doesn’t exist.

NOTE
Element("xyz").Value will throw a NullReferenceException if element xyz does not exist. If
you’d prefer a null rather than an exception, cast the XElement to a string instead of
querying its Value property. In other words:

string xyz = (string) settings.Element ("xyz");

This works because XElement defines an explicit string conversion — just for this purpose!
From C# 6, an alternative is to use the null-conditional operator, i.e., Element("xyz")?.Value.

Retrieving descendants
XContainer also provides Descendants and DescendantNodes methods that return child
elements or nodes plus all of their children, and so on (the entire tree). Descendants accepts
an optional element name. Returning to our earlier example, we can use Descendants to find
all the hand tools as follows:



Console.WriteLine (bench.Descendants ("handtool").Count());  // 3

Both parent and leaf nodes are included, as the following example demonstrates:

foreach (XNode node in bench.DescendantNodes())
  Console.WriteLine (node.ToString (SaveOptions.DisableFormatting));

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>
<handtool>Hammer</handtool>
Hammer
<handtool>Rasp</handtool>
Rasp
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>
<handtool>Saw</handtool>
Saw
<powertool>Nailgun</powertool>
Nailgun
<!--Be careful with the nailgun-->

The next query extracts all comments anywhere within the X-DOM that contain the word
“careful”:

IEnumerable<string> query =
  from c in bench.DescendantNodes().OfType<XComment>()
  where c.Value.Contains ("careful")
  orderby c.Value
  select c.Value;

Parent Navigation
All XNodes have a Parent property and AncestorXXX methods for parent navigation. A parent
is always an XElement:

Return type Members Works on
XElement Parent { get; } XNode*

Enumerable<XElement> Ancestors() XNode*

 Ancestors (XName) XNode*

 AncestorsAndSelf() XElement*

 AncestorsAndSelf (XName) XElement*

If x is an XElement, the following always prints true:

foreach (XNode child in x.Nodes())
  Console.WriteLine (child.Parent == x);

The same is not the case, however, if x is an XDocument. XDocument is peculiar: it can have
children, but can never be anyone’s parent! To access the XDocument, you instead use the
Document property — this works on any object in the X-DOM tree.
Ancestors returns a sequence whose first element is Parent, and whose next element is
Parent.Parent, and so on, until the root element.

NOTE
You can navigate to the root element with the LINQ query AncestorsAndSelf().Last().



Another way to achieve the same thing is to call Document.Root — although this works only if
an XDocument is present.

Peer Node Navigation

Return type Members Defined in
bool IsBefore (XNode node) XNode

 IsAfter (XNode node) XNode

XNode PreviousNode { get; } XNode

 NextNode { get; } XNode

IEnumerable<XNode> NodesBeforeSelf() XNode

 NodesAfterSelf() XNode

IEnumerable<XElement> ElementsBeforeSelf() XNode

 ElementsBeforeSelf (XName name) XNode

 ElementsAfterSelf() XNode

 ElementsAfterSelf (XName name) XNode

With PreviousNode and NextNode (and FirstNode/LastNode), you can traverse nodes with
the feel of a linked list. This is noncoincidental: internally, nodes are stored in a linked list.

WARNING
XNode internally uses a singly linked list, so PreviousNode is not performant.

Attribute Navigation

Return type Members Defined in
bool HasAttributes { get; } XElement

XAttribute Attribute (XName name) XElement

 FirstAttribute { get; } XElement

 LastAttribute { get; } XElement

IEnumerable<XAttribute> Attributes() XElement

 Attributes (XName name) XElement

In addition, XAttribute defines PreviousAttribute and NextAttribute properties, as
well as Parent.
The Attributes method that accepts a name returns a sequence with either zero or one
element; an element cannot have duplicate attribute names in XML.

Updating an X-DOM
You can update elements and attributes in the following ways:

Call SetValue or reassign the Value property.



Call SetElementValue or SetAttributeValue.

Call one of the RemoveXXX methods.

Call one of the AddXXX or ReplaceXXX methods, specifying fresh content.

You can also reassign the Name property on XElement objects.

Simple Value Updates

Members Works on

SetValue (object value) XElement, XAttribute

Value { get; set } XElement, XAttribute

The SetValue method replaces an element or attribute’s content with a simple value. Setting
the Value property does the same, but accepts string data only. We describe both of these
functions in detail later in this chapter (see the section “Working with Values”).
An effect of calling SetValue (or reassigning Value) is that it replaces all child nodes:

XElement settings = new XElement ("settings",
                      new XElement ("timeout", 30)
                    );
settings.SetValue ("blah");
Console.WriteLine (settings.ToString());  // <settings>blah</settings>

Updating Child Nodes and Attributes

Category Members Works on

Add Add (params object[] content) XContainer

 AddFirst (params object[] content) XContainer

Remove RemoveNodes() XContainer

 RemoveAttributes() XElement

 RemoveAll() XElement

Update ReplaceNodes (params object[] content) XContainer

 ReplaceAttributes (params object[] content) XElement

 ReplaceAll (params object[] content XElement

 SetElementValue (XName name, object value) XElement

 SetAttributeValue (XName name, object value) XElement

The most convenient methods in this group are the last two: SetElementValue and
SetAttributeValue. They serve as shortcuts for instantiating an XElement or XAttribute
and then Adding it to a parent, replacing any existing element or attribute of that name:

XElement settings = new XElement ("settings");
settings.SetElementValue ("timeout", 30);     // Adds child node
settings.SetElementValue ("timeout", 60);     // Update it to 60

Add appends a child node to an element or document. AddFirst does the same thing, but inserts



at the beginning of the collection rather than the end.
You can remove all child nodes or attributes in one hit with RemoveNodes or Remove 
Attributes. RemoveAll is equivalent to calling both of these methods.
The ReplaceXXX methods are equivalent to Removing and then Adding. They take a snapshot of
the input, so e.ReplaceNodes(e.Nodes()) works as expected.

Updating Through the Parent

Members Works on
AddBeforeSelf (params object[] content) XNode

AddAfterSelf (params object[] content) XNode

Remove() XNode*, XAttribute*

ReplaceWith (params object[] content) XNode

The methods AddBeforeSelf, AddAfterSelf, Remove, and ReplaceWith don’t operate on the
node’s children. Instead, they operate on the collection in which the node itself is in. This
requires that the node have a parent element — otherwise, an exception is thrown.
AddBeforeSelf and AddAfterSelf are useful for inserting a node into an arbitrary position:

XElement items = new XElement ("items",
                   new XElement ("one"),
                   new XElement ("three")
                 );
items.FirstNode.AddAfterSelf (new XElement ("two"));

Here’s the result:

<items><one /><two /><three /></items>

Inserting into an arbitrary position within a long sequence of elements is actually quite
efficient, because nodes are stored internally in a linked list.
The Remove method removes the current node from its parent. ReplaceWith does the same —
and then inserts some other content at the same position. For instance:

XElement items = XElement.Parse ("<items><one/><two/><three/></items>");
items.FirstNode.ReplaceWith (new XComment ("One was here"));

Here’s the result:

<items><!--one was here--><two /><three /></items>

Removing a sequence of nodes or attributes
Thanks to extension methods in System.Xml.Linq, you can also call Remove on a sequence of
nodes or attributes. Consider this X-DOM:

XElement contacts = XElement.Parse (
@"<contacts>
    <customer name='Mary'/>
    <customer name='Chris' archived='true'/>
    <supplier name='Susan'>
      <phone archived='true'>012345678<!--confidential--></phone>



    </supplier>
  </contacts>");

The following removes all customers:

contacts.Elements ("customer").Remove();

The next statement removes all archived contacts (so Chris disappears):

contacts.Elements().Where (e => (bool?) e.Attribute ("archived") == true)
                   .Remove();

If we replaced Elements() with Descendants(), all archived elements throughout the DOM
would disappear, with this result:

<contacts>
  <customer name="Mary" />
  <supplier name="Susan" />
</contacts>

The next example removes all contacts that feature the comment “confidential” anywhere in
their tree:

contacts.Elements().Where (e => e.DescendantNodes()
                                 .OfType<XComment>()
                                 .Any (c => c.Value == "confidential")
                          ).Remove();

This is the result:

<contacts>
  <customer name="Mary" />
  <customer name="Chris" archived="true" />
</contacts>

Contrast this with the following simpler query, which strips all comment nodes from the tree:

contacts.DescendantNodes().OfType<XComment>().Remove();

NOTE
Internally, the Remove methods first read all matching elements into a temporary list, and then
enumerate over the temporary list to perform the deletions. This avoids errors that could
otherwise result from deleting and querying at the same time.

Working with Values
XElement and XAttribute both have a Value property of type string. If an element has a
single XText child node, XElement’s Value property acts as a convenient shortcut to the
content of that node. With XAttribute, the Value property is simply the attribute’s value.
Despite the storage differences, the X-DOM provides a consistent set of operations for
working with element and attribute values.



Setting Values
There are two ways to assign a value: call SetValue or assign the Value property. SetValue
is more flexible because it accepts not just strings, but other simple data types too:

var e = new XElement ("date", DateTime.Now);
e.SetValue (DateTime.Now.AddDays(1));
Console.Write (e.Value);              // 2007-03-02T16:39:10.734375+09:00

We could have instead just set the element’s Value property, but this would mean manually
converting the DateTime to a string. This is more complicated than calling ToString — it
requires the use of XmlConvert for an XML-compliant result.
When you pass a value into XElement or XAttribute’s constructor, the same automatic
conversion takes place for nonstring types. This ensures that DateTimes are correctly
formatted; true is written in lowercase, and double.NegativeInfinity is written as “-
INF”.

Getting Values
To go the other way around and parse a Value back to a base type, you simply cast the
XElement or XAttribute to the desired type. It sounds like it shouldn’t work — but it does!
For instance:

XElement e = new XElement ("now", DateTime.Now);
DateTime dt = (DateTime) e;

XAttribute a = new XAttribute ("resolution", 1.234);
double res = (double) a;

An element or attribute doesn’t store DateTimes or numbers natively — they’re always stored
as text, and then parsed as needed. It also doesn’t “remember” the original type, so you must
cast it correctly to avoid a runtime error. To make your code robust, you can put the cast in a
try/catch block, catching a FormatException.
Explicit casts on XElement and XAttribute can parse to the following types:

All standard numeric types

string, bool, DateTime, DateTimeOffset, TimeSpan, and Guid

Nullable<> versions of the aforementioned value types

Casting to a nullable type is useful in conjunction with the Element and Attribute methods,
because if the requested name doesn’t exist, the cast still works. For instance, if x has no
timeout element, the first line generates a runtime error and the second line does not:

int timeout = (int) x.Element ("timeout");      // Error
int? timeout = (int?) x.Element ("timeout");    // OK; timeout is null.

You can factor away the nullable type in the final result with the ?? operator. The following
evaluates to 1.0 if the resolution attribute doesn’t exist:

double resolution = (double?) x.Attribute ("resolution") ?? 1.0;



Casting to a nullable type won’t get you out of trouble, though, if the element or attribute exists
and has an empty (or improperly formatted) value. For this, you must catch a
FormatException.
You can also use casts in LINQ queries. The following returns “John”:

var data = XElement.Parse (
  @"<data>
      <customer id='1' name='Mary' credit='100' />
      <customer id='2' name='John' credit='150' />
      <customer id='3' name='Anne' />
    </data>");

IEnumerable<string> query = from cust in data.Elements()
                            where (int?) cust.Attribute ("credit") > 100
                            select cust.Attribute ("name").Value;

Casting to a nullable int avoids a NullReferenceException in the case of Anne, who has no
credit attribute. Another solution would be to add a predicate to the where clause:

where cust.Attributes ("credit").Any() && (int) cust.Attribute...

The same principles apply in querying element values.

Values and Mixed Content Nodes
Given the value of Value, you might wonder when you’d ever need to deal directly with XText
nodes. The answer is when you have mixed content. For example:

<summary>An XAttribute is <bold>not</bold> an XNode</summary>

A simple Value property is not enough to capture summary’s content. The summary element
contains three children: an XText node followed by an XElement, followed by another XText
node. Here’s how to construct it:

XElement summary = new XElement ("summary",
                      new XText ("An XAttribute is "),
                      new XElement ("bold", "not"),
                      new XText (" an XNode")
                    );

Interestingly, we can still query summary’s Value — without getting an exception. Instead, we
get a concatenation of each child’s value:

An XAttribute is not an XNode

It’s also legal to reassign summary’s Value, at the cost of replacing all previous children with
a single new XText node.

Automatic XText Concatenation
When you add simple content to an XElement, the X-DOM appends to the existing XText child
rather than creating a new one. In the following examples, e1 and e2 end up with just one child
XText element whose value is HelloWorld:



var e1 = new XElement ("test", "Hello"); e1.Add ("World");
var e2 = new XElement ("test", "Hello", "World");

If you specifically create XText nodes, however, you end up with multiple children:

var e = new XElement ("test", new XText ("Hello"), new XText ("World"));
Console.WriteLine (e.Value);             // HelloWorld
Console.WriteLine (e.Nodes().Count());   // 2

XElement doesn’t concatenate the two XText nodes, so the nodes’ object identities are
preserved.

Documents and Declarations

XDocument
As we said previously, an XDocument wraps a root XElement and allows you to add an
XDeclaration, processing instructions, a document type, and root-level comments. An
XDocument is optional and can be ignored or omitted: unlike with the W3C DOM, it does not
serve as glue to keep everything together.
An XDocument provides the same functional constructors as XElement. And because it’s based
on XContainer, it also supports the AddXXX, RemoveXXX, and ReplaceXXX methods. Unlike
XElement, however, an XDocument can accept only limited content:

A single XElement object (the “root”)

A single XDeclaration object

A single XDocumentType object (to reference a DTD)

Any number of XProcessingInstruction objects

Any number of XComment objects

NOTE
Of these, only the root XElement is mandatory in order to have a valid XDocument. The
XDeclaration is optional — if omitted, default settings are applied during serialization.

The simplest valid XDocument has just a root element:

var doc = new XDocument (
            new XElement ("test", "data")
          );

Notice that we didn’t include an XDeclaration object. The file generated by calling
doc.Save would still contain an XML declaration, however, because one is generated by
default.
The next example produces a simple but correct XHTML file, illustrating all the constructs that



an XDocument can accept:

var styleInstruction = new XProcessingInstruction (
  "xml-stylesheet", "href='styles.css' type='text/css'");

var docType = new XDocumentType ("html",
  "-//W3C//DTD XHTML 1.0 Strict//EN",
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd", null);

XNamespace ns = "http://www.w3.org/1999/xhtml";
var root =
  new XElement (ns + "html",
    new XElement (ns + "head",
      new XElement (ns + "title", "An XHTML page")),
    new XElement (ns + "body",
      new XElement (ns + "p", "This is the content"))
  );

var doc =
  new XDocument (
    new XDeclaration ("1.0", "utf-8", "no"),
    new XComment ("Reference a stylesheet"),
    styleInstruction,
    docType,
    root);

doc.Save ("test.html");

The resultant test.html reads as follows:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!--Reference a stylesheet-->
<?xml-stylesheet href='styles.css' type='text/css'?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <title>An XHTML page</title>
  </head>
  <body>
    <p>This is the content</p>
  </body>
</html>

XDocument has a Root property that serves as a shortcut for accessing a document’s single
XElement. The reverse link is provided by XObject’s Document property, which works for all
objects in the tree:

Console.WriteLine (doc.Root.Name.LocalName);          // html
XElement bodyNode = doc.Root.Element (ns + "body");
Console.WriteLine (bodyNode.Document == doc);         // True

Recall that a document’s children have no Parent:

Console.WriteLine (doc.Root.Parent == null);          // True
foreach (XNode node in doc.Nodes())
  Console.Write (node.Parent == null);                // TrueTrueTrueTrue

NOTE
An XDeclaration is not an XNode and does not appear in the document’s Nodes collection —
unlike comments, processing instructions, and the root element. Instead, it gets assigned to a
dedicated property called Declaration. This is why “True” is repeated four and not five times



in the last example.

XML Declarations
A standard XML file starts with a declaration such as the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

An XML declaration ensures that the file will be correctly parsed and understood by a reader.
XElement and XDocument follow these rules in emitting XML declarations:

Calling Save with a filename always writes a declaration.

Calling Save with an XmlWriter writes a declaration unless the XmlWriter is instructed
otherwise.

The ToString method never emits an XML declaration.

NOTE
You can instruct an XmlWriter not to produce a declaration by setting the OmitXmlDeclaration
and ConformanceLevel properties of an XmlWriterSettings object when constructing the
XmlWriter. We describe this in Chapter 11.

The presence or absence of an XDeclaration object has no effect on whether an XML
declaration gets written. The purpose of an XDeclaration is instead to hint the XML
serialization — in two ways:

What text encoding to use

What to put in the XML declaration’s encoding and standalone attributes (should a
declaration be written)

XDeclaration’s constructor accepts three arguments, which correspond to the attributes
version, encoding, and standalone. In the following example, test.xml is encoded in UTF-
16:

var doc = new XDocument (
            new XDeclaration ("1.0", "utf-16", "yes"),
            new XElement ("test", "data")
          );
doc.Save ("test.xml");

NOTE
Whatever you specify for the XML version is ignored by the XML writer: it always writes
"1.0".

The encoding must use an IETF code such as "utf-16" — just as it would appear in the XML



declaration.

Writing a declaration to a string
Suppose we want to serialize an XDocument to a string — including the XML declaration.
Because ToString doesn’t write a declaration, we’d have to use an XmlWriter instead:

var doc = new XDocument (
            new XDeclaration ("1.0", "utf-8", "yes"),
            new XElement ("test", "data")
          );
var output = new StringBuilder();
var settings = new XmlWriterSettings { Indent = true };
using (XmlWriter xw = XmlWriter.Create (output, settings))
  doc.Save (xw);
Console.WriteLine (output.ToString());

This is the result:

<?xml version="1.0" encoding="utf-16" standalone="yes"?>
<test>data</test>

Notice that we got UTF-16 in the output — even though we explicitly requested UTF-8 in an
XDeclaration! This might look like a bug, but in fact, XmlWriter is being remarkably smart.
Because we’re writing to a string and not a file or stream, it’s impossible to apply any
encoding other than UTF-16 — the format in which strings are internally stored. Hence,
XmlWriter writes "utf-16" — so as not to lie.
This also explains why the ToString method doesn’t emit an XML declaration. Imagine that
instead of calling Save, you did the following to write an XDocument to a file:

File.WriteAllText ("data.xml", doc.ToString());

As it stands, data.xml would lack an XML declaration, making it incomplete but still parsable
(you can infer the text encoding). But if ToString() emitted an XML declaration, data.xml
would actually contain an incorrect declaration (encoding="utf-16"), which might prevent it
from being read at all, because WriteAllText encodes using UTF-8.

Names and Namespaces
Just as .NET types can have namespaces, so too can XML elements and attributes.
XML namespaces achieve two things. First, rather like namespaces in C#, they help avoid
naming collisions. This can become an issue when you merge data from one XML file into
another. Second, namespaces assign absolute meaning to a name. The name “nil,” for instance,
could mean anything. Within the http://www.w3.org/2001/xmlschema-instance namespace,
however, “nil” means something equivalent to null in C# and comes with specific rules on
how it can be applied.
Because XML namespaces are a significant source of confusion, we’ll cover the topic first in
general, and then move on to how they’re used in LINQ to XML.

Namespaces in XML
Suppose we want to define a customer element in the namespace



OReilly.Nutshell.CSharp. There are two ways to proceed. The first is to use the xmlns
attribute as follows:

<customer xmlns="OReilly.Nutshell.CSharp"/>

xmlns is a special reserved attribute. When used in this manner, it performs two functions:
It specifies a namespace for the element in question.

It specifies a default namespace for all descendant elements.

This means that in the following example, address and postcode implicitly live in the
OReilly.Nutshell.CSharp namespace:

<customer xmlns="OReilly.Nutshell.CSharp">
  <address>
    <postcode>02138</postcode>
  </address>
</customer>

If we want address and postcode to have no namespace, we’d have to do this:

<customer xmlns="OReilly.Nutshell.CSharp">
  <address xmlns="">
    <postcode>02138</postcode>     <!-- postcode now inherits empty ns -->
  </address>
</customer>

Prefixes
The other way to specify a namespace is with a prefix. A prefix is an alias that you assign to a
namespace to save typing. There are two steps in using a prefix — defining the prefix and
using it. You can do both together as follows:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp"/>

Two distinct things are happening here. On the right, xmlns:nut="..." defines a prefix called
nut and makes it available to this element and all its descendants. On the left, nut:customer
assigns the newly allocated prefix to the customer element.
A prefixed element does not define a default namespace for descendants. In the following
XML, firstname has an empty namespace:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp">
  <firstname>Joe</firstname>
</customer>

To give firstname the OReilly.Nutshell.CSharp prefix, we must do this:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp">
  <nut:firstname>Joe</firstname>
</customer>

You can also define a prefix — or prefixes — for the convenience of your descendants, without
assigning any of them to the parent element itself. The following defines two prefixes, i and z,
while leaving the customer element itself with an empty namespace:



<customer xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
          xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
  ...
</customer>

If this was the root node, the whole document would have i and z at its fingertips. Prefixes are
convenient when elements need to draw from a number of namespaces.
Notice that both namespaces in this example are URIs. Using URIs (that you own) is standard
practice: it ensures namespace uniqueness. So, in real life, our customer element would more
likely be:

<customer xmlns="http://oreilly.com/schemas/nutshell/csharp"/>

or:

<nut:customer xmlns:nut="http://oreilly.com/schemas/nutshell/csharp"/>

Attributes
You can assign namespaces to attributes too. The main difference is that it always requires a
prefix. For instance:

<customer xmlns:nut="OReilly.Nutshell.CSharp" nut:id="123" />

Another difference is that an unqualified attribute always has an empty namespace: it never
inherits a default namespace from a parent element.
Attributes tend not to need namespaces because their meaning is usually local to the element.
An exception is with general-purpose or metadata attributes, such as the nil attribute defined
by W3C:

<customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <firstname>Joe</firstname>
  <lastname xsi:nil="true"/>
</customer>

This indicates unambiguously that lastname is nil (null in C#) and not an empty string.
Because we’ve used the standard namespace, a general-purpose parsing utility could know
with certainty our intention.

Specifying Namespaces in the X-DOM
So far in this chapter, we’ve used just simple strings for XElement and XAttribute names. A
simple string corresponds to an XML name with an empty namespace — rather like a .NET
type defined in the global namespace.
There are a couple of ways to specify an XML namespace. The first is to enclose it in braces,
before the local name. For example:

var e = new XElement ("{http://domain.com/xmlspace}customer", "Bloggs");
Console.WriteLine (e.ToString());

Here’s the resulting XML:



<customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

The second (and more performant) approach is to use the XNamespace and XName types. Here
are their definitions:

public sealed class XNamespace
{
  public string NamespaceName { get; }
}

public sealed class XName     // A local name with optional namespace
{
  public string LocalName { get; }
  public XNamespace Namespace { get; }   // Optional
}

Both types define implicit casts from string, so the following is legal:

XNamespace ns   = "http://domain.com/xmlspace";
XName localName = "customer";
XName fullName  = "{http://domain.com/xmlspace}customer";

XNamespace also overloads the + operator, allowing you to combine a namespace and name
into an XName without using braces:

XNamespace ns = "http://domain.com/xmlspace";
XName fullName = ns + "customer";
Console.WriteLine (fullName);     // {http://domain.com/xmlspace}customer

All constructors and methods in the X-DOM that accept an element or attribute name actually
accept an XName object rather than a string. The reason you can substitute a string — as in all
our examples to date — is because of the implicit cast.
Specifying a namespace is the same whether for an element or an attribute:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
              new XAttribute (ns + "id", 123)
           );

The X-DOM and Default Namespaces
The X-DOM ignores the concept of default namespaces until it comes time to actually output
XML. This means that when you construct a child XElement, you must give it a namespace
explicitly if needed; it will not inherit from the parent:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
             new XElement (ns + "customer", "Bloggs"),
             new XElement (ns + "purchase", "Bicycle")
           );

The X-DOM does, however, apply default namespaces when reading and outputting XML:

Console.WriteLine (data.ToString());

OUTPUT:
  <data xmlns="http://domain.com/xmlspace">
    <customer>Bloggs</customer>



    <purchase>Bicycle</purchase>
  </data>

Console.WriteLine (data.Element (ns + "customer").ToString());

OUTPUT:
  <customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

If you construct XElement children without specifying namespaces — in other words:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
             new XElement ("customer", "Bloggs"),
             new XElement ("purchase", "Bicycle")
           );
Console.WriteLine (data.ToString());

you get this result instead:

<data xmlns="http://domain.com/xmlspace">
  <customer xmlns="">Bloggs</customer>
  <purchase xmlns="">Bicycle</purchase>
</data>

Another trap is failing to include a namespace when navigating an X-DOM:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
             new XElement (ns + "customer", "Bloggs"),
             new XElement (ns + "purchase", "Bicycle")
           );
XElement x = data.Element (ns + "customer");    // ok
XElement y = data.Element ("customer");         // null

If you build an X-DOM tree without specifying namespaces, you can subsequently assign every
element to a single namespace as follows:

foreach (XElement e in data.DescendantsAndSelf())
  if (e.Name.Namespace == "")
    e.Name = ns + e.Name.LocalName;

Prefixes
The X-DOM treats prefixes just as it treats namespaces: purely as a serialization function. This
means you can choose to completely ignore the issue of prefixes — and get by! The only reason
you might want to do otherwise is for efficiency when outputting to an XML file. For example,
consider this:

XNamespace ns1 = "http://domain.com/space1";
XNamespace ns2 = "http://domain.com/space2";

var mix = new XElement (ns1 + "data",
            new XElement (ns2 + "element", "value"),
            new XElement (ns2 + "element", "value"),
            new XElement (ns2 + "element", "value")
          );

By default, XElement will serialize this as follows:

<data xmlns="http://domain.com/space1">



  <element xmlns="http://domain.com/space2">value</element>
  <element xmlns="http://domain.com/space2">value</element>
  <element xmlns="http://domain.com/space2">value</element>
</data>

As you can see, there’s a bit of unnecessary duplication. The solution is not to change the way
you construct the X-DOM, but instead to hint the serializer prior to writing the XML. Do this
by adding attributes defining prefixes that you want to see applied. This is typically done on the
root element:

mix.SetAttributeValue (XNamespace.Xmlns + "ns1", ns1);
mix.SetAttributeValue (XNamespace.Xmlns + "ns2", ns2);

This assigns the prefix “ns1” to our XNamespace variable ns1, and “ns2” to ns2. The X-DOM
automatically picks up these attributes when serializing and uses them to condense the resulting
XML. Here’s the result now of calling ToString on mix:

<ns1:data xmlns:ns1="http://domain.com/space1"
          xmlns:ns2="http://domain.com/space2">
  <ns2:element>value</ns2:element>
  <ns2:element>value</ns2:element>
  <ns2:element>value</ns2:element>
</ns1:data>

Prefixes don’t change the way you construct, query, or update the X-DOM — for these
activities, you ignore the presence of prefixes and continue to use full names. Prefixes come
into play only when converting to and from XML files or streams.
Prefixes are also honored in serializing attributes. In the following example, we record a
customer’s date of birth and credit as "nil" using the W3C-standard attribute. The highlighted
line ensures that the prefix is serialized without unnecessary namespace repetition:

XNamespace xsi = "http://www.w3.org/2001/XMLSchema-instance";
var nil = new XAttribute (xsi + "nil", true);

var cust = new XElement ("customers",
             new XAttribute (XNamespace.Xmlns + "xsi", xsi),
             new XElement ("customer",
               new XElement ("lastname", "Bloggs"),
               new XElement ("dob", nil),
               new XElement ("credit", nil)
             )
           );

This is its XML:

<customers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <customer>
    <lastname>Bloggs</lastname>
    <dob xsi:nil="true" />
    <credit xsi:nil="true" />
  </customer>
</customers>

For brevity, we predeclared the nil XAttribute so that we could use it twice in building the
DOM. You’re allowed to reference the same attribute twice because it’s automatically
duplicated as required.



Annotations
You can attach custom data to any XObject with an annotation. Annotations are intended for
your own private use and are treated as black boxes by X-DOM. If you’ve ever used the Tag
property on a Windows Forms or WPF control, you’ll be familiar with the concept — the
difference is that you have multiple annotations, and your annotations can be privately scoped.
You can create an annotation that other types cannot even see — let alone overwrite.
The following methods on XObject add and remove annotations:

public void AddAnnotation (object annotation)
public void RemoveAnnotations<T>()     where T : class

The following methods retrieve annotations:

public T Annotation<T>()               where T : class
public IEnumerable<T> Annotations<T>() where T : class

Each annotation is keyed by its type, which must be a reference type. The following adds and
then retrieves a string annotation:

XElement e = new XElement ("test");
e.AddAnnotation ("Hello");
Console.WriteLine (e.Annotation<string>());   // Hello

You can add multiple annotations of the same type, and then use the Annotations method to
retrieve a sequence of matches.
A public type such as string doesn’t make a great key, however, because code in other types
can interfere with your annotations. A better approach is to use an internal or (nested) private
class:

class X
{
  class CustomData { internal string Message; }   // Private nested type

  static void Test()
  {
    XElement e = new XElement ("test");
    e.AddAnnotation (new CustomData { Message = "Hello" } );
    Console.Write (e.Annotations<CustomData>().First().Message);  // Hello
  }
}

To remove annotations, you must also have access to the key’s type:

e.RemoveAnnotations<CustomData>();

Projecting into an X-DOM
So far, we’ve shown how to use LINQ to get data out of an X-DOM. You can also use LINQ
queries to project into an X-DOM. The source can be anything over which LINQ can query,
such as:

LINQ to SQL or Entity Framework queries



A local collection

Another X-DOM

Regardless of the source, the strategy is the same in using LINQ to emit an X-DOM: first write
a functional construction expression that produces the desired X-DOM shape, and then build a
LINQ query around the expression.
For instance, suppose we want to retrieve customers from a database into the following XML:

<customers>
  <customer id="1">
    <name>Sue</name>
    <buys>3</buys>
  </customer>
  ...
</customers>

We start by writing a functional construction expression for the X-DOM using simple literals:

var customers =
  new XElement ("customers",
    new XElement ("customer", new XAttribute ("id", 1),
      new XElement ("name", "Sue"),
      new XElement ("buys", 3)
    )
  );

We then turn this into a projection and build a LINQ query around it:

var customers =
  new XElement ("customers",
    from c in dataContext.Customers
    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),
        new XElement ("buys", c.Purchases.Count)
      )
    );

NOTE
In Entity Framework, you must call .ToList() after retrieving customers, so that the third
line reads:

from c in objectContext.Customers.ToList()

Here’s the result:

<customers>
  <customer id="1">
    <name>Tom</name>
    <buys>3</buys>
  </customer>
  <customer id="2">
    <name>Harry</name>
    <buys>2</buys>
  </customer>



    ...
</customers>

We can see how this works more clearly by constructing the same query in two steps. First:

IEnumerable<XElement> sqlQuery =
  from c in dataContext.Customers
  select
    new XElement ("customer", new XAttribute ("id", c.ID),
      new XElement ("name", c.Name),
      new XElement ("buys", c.Purchases.Count)
    );

This inner portion is a normal LINQ to SQL query that projects into custom types (from LINQ
to SQL’s perspective). Here’s the second step:

var customers = new XElement ("customers", sqlQuery);

This constructs the root XElement. The only thing unusual is that the content, sqlQuery, is not
a single XElement but an IQueryable<XElement> — which implements
IEnumerable<XElement>. Remember that in the processing of XML content, collections are
automatically enumerated. So, each XElement gets added as a child node.
This outer query also defines the line at which the query transitions from being a database
query to a local LINQ to enumerable query. XElement’s constructor doesn’t know about
IQueryable<>, so it forces enumeration of the database query — and execution of the SQL
statement.

Eliminating Empty Elements
Suppose in the preceding example that we also wanted to include details of the customer’s
most recent high-value purchase. We could do this as follows:

var customers =
  new XElement ("customers",
    from c in dataContext.Customers
    let lastBigBuy = (from p in c.Purchases
                      where p.Price > 1000
                      orderby p.Date descending
                      select p).FirstOrDefault()
    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),
        new XElement ("buys", c.Purchases.Count),
        new XElement ("lastBigBuy",
          new XElement ("description", lastBigBuy?.Description),
          new XElement ("price", lastBigBuy?.Price ?? 0m)
        )
      )
  );

This emits empty elements, though, for customers with no high-value purchases. (If it was a
local query rather than a database query, it would throw a NullReference Exception.) In such
cases, it would be better to omit the lastBigBuy node entirely. We can achieve this by
wrapping the constructor for the lastBigBuy element in a conditional operator:

    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),



        new XElement ("buys", c.Purchases.Count),
        lastBigBuy == null ? null :
          new XElement ("lastBigBuy",
            new XElement ("description", lastBigBuy.Description),
            new XElement ("price", lastBigBuy.Price)

For customers with no lastBigBuy, a null is emitted instead of an empty XElement. This is
what we want, because null content is simply ignored.

Streaming a Projection
If you’re projecting into an X-DOM only to Save it (or call ToString on it), you can improve
memory efficiency through an XStreamingElement. An XStreamingElement is a cut-down
version of XElement that applies deferred loading semantics to its child content. To use it, you
simply replace the outer XElements with XStreaming Elements:

var customers =
  new XStreamingElement ("customers",
    from c in dataContext.Customers
    select
      new XStreamingElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),
        new XElement ("buys", c.Purchases.Count)
      )
    );
customers.Save ("data.xml");

The queries passed into an XStreamingElement’s constructor are not enumerated until you
call Save, ToString, or WriteTo on the element; this avoids loading the whole X-DOM into
memory at once. The flipside is that the queries are reevaluated, should you re-Save. Also, you
cannot traverse an XStreamingElement’s child content — it does not expose methods such as
Elements or Attributes.
XStreamingElement is not based on XObject — or any other class — because it has such a
limited set of members. The only members it has, besides Save, ToString, and WriteTo, are:

An Add method, which accepts content like the constructor

A Name property

XStreamingElement does not allow you to read content in a streamed fashion — for this, you
must use an XmlReader in conjunction with the X-DOM. We describe how to do this in the
section “Patterns for Using XmlReader/XmlWriter” in Chapter 11.

Transforming an X-DOM
You can transform an X-DOM by reprojecting it. For instance, suppose we want to transform
an msbuild XML file, used by the C# compiler and Visual Studio to describe a project, into a
simple format suitable for generating a report. An msbuild file looks like this:

<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/dev...>
  <PropertyGroup>
    <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
    <ProductVersion>9.0.11209</ProductVersion>
    ...
  </PropertyGroup>
  <ItemGroup>
    <Compile Include="ObjectGraph.cs" />



    <Compile Include="Program.cs" />
    <Compile Include="Properties\AssemblyInfo.cs" />
    <Compile Include="Tests\Aggregation.cs" />
    <Compile Include="Tests\Advanced\RecursiveXml.cs" />
  </ItemGroup>
  <ItemGroup>
    ...
  </ItemGroup>
   ...
</Project>

Let’s say we want to include only files, as follows:

<ProjectReport>
  <File>ObjectGraph.cs</File>
  <File>Program.cs</File>
  <File>Properties\AssemblyInfo.cs</File>
  <File>Tests\Aggregation.cs</File>
  <File>Tests\Advanced\RecursiveXml.cs</File>
</ProjectReport>

The following query performs this transformation:

XElement project = XElement.Load ("myProjectFile.csproj");
XNamespace ns = project.Name.Namespace;
var query =
  new XElement ("ProjectReport",
    from compileItem in
      project.Elements (ns + "ItemGroup").Elements (ns + "Compile")
    let include = compileItem.Attribute ("Include")
    where include != null
    select new XElement ("File", include.Value)
  );

The query first extracts all ItemGroup elements, and then uses the Elements extension method
to obtain a flat sequence of all their Compile subelements. Notice that we had to specify an
XML namespace — everything in the original file inherits the namespace defined by the
Project element — so a local element name such as ItemGroup won’t work on its own. Then,
we extracted the Include attribute value and projected its value as an element.

Advanced transformations
When querying a local collection such as an X-DOM, you’re free to write custom query
operators to assist with more complex queries.
Suppose in the preceding example that we instead wanted a hierarchical output, based on
folders:

<Project>
  <File>ObjectGraph.cs</File>
  <File>Program.cs</File>
  <Folder name="Properties">
    <File>AssemblyInfo.cs</File>
  </Folder>
  <Folder name="Tests">
    <File>Aggregation.cs</File>
    <Folder name="Advanced">
      <File>RecursiveXml.cs</File>
    </Folder>
  </Folder>
</Project>

To produce this, we need to process path strings such as Tests\Advanced\RecursiveXml.cs



recursively. The following method does just this: it accepts a sequence of path strings and
emits an X-DOM hierarchy consistent with our desired output:

static IEnumerable<XElement> ExpandPaths (IEnumerable<string> paths)
{
  var brokenUp = from path in paths
                 let split = path.Split (new char[] { '\\' }, 2)
                 orderby split[0]
                 select new
                 {
                   name = split[0],
                   remainder = split.ElementAtOrDefault (1)
                 };

  IEnumerable<XElement> files = from b in brokenUp
                                where b.remainder == null
                                select new XElement ("file", b.name);

  IEnumerable<XElement> folders = from b in brokenUp
                                  where b.remainder != null
                                  group b.remainder by b.name into grp
                                  select new XElement ("folder",
                                    new XAttribute ("name", grp.Key),
                                    ExpandPaths (grp)
                                  );
  return files.Concat (folders);
}

The first query splits each path string at the first backslash, into a name + remainder:

Tests\Advanced\RecursiveXml.cs -> Tests + Advanced\RecursiveXml.cs

If remainder is null, we’re dealing with a straight filename. The files query extracts these
cases.
If remainder is not null, we’ve got a folder. The folders query handles these cases.
Because other files can be in the same folder, it must group by folder name to bring them all
together. For each group, it then executes the same function for the subelements.
The final result is a concatenation of files and folders. The Concat operator preserves
order, so all the files come first, alphabetically, then all the folders, alphabetically.
With this method in place, we can complete the query in two steps. First, we extract a simple
sequence of path strings:

IEnumerable<string> paths =
  from compileItem in
    project.Elements (ns + "ItemGroup").Elements (ns + "Compile")
  let include = compileItem.Attribute ("Include")
  where include != null
  select include.Value;

Then, we feed this into our ExpandPaths method for the final result:

var query = new XElement ("Project", ExpandPaths (paths));

The X-DOM actually optimizes this step internally by storing simple text content in a string. The
XTEXT node is not actually created until you call Nodes( ) on the XContainer.

See footnote 1.
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Chapter 11. Other XML Technologies

The System.Xml namespace comprises the following namespaces and core classes:

System.Xml.*

XmlReader and XmlWriter
High-performance, forward-only cursors for reading or writing an XML stream

XmlDocument

Represents an XML document in a W3C-style DOM (obsolete)

System.Xml.XLinq

Modern LINQ-centric DOM for working with XML (see Chapter 10)

System.Xml.XmlSchema

Infrastructure and API for (W3C) XSD schemas

System.Xml.Xsl

Infrastructure and API (XslCompiledTransform) for performing (W3C) XSLT
transformations of XML

System.Xml.Serialization

Supports the serialization of classes to and from XML (see Chapter 17)
W3C is an abbreviation for World Wide Web Consortium, where the XML standards are
defined.
XmlConvert, the static class for parsing and formatting XML strings, is covered in Chapter 6.

XmlReader
XmlReader is a high-performance class for reading an XML stream in a low-level, forward-
only manner.
Consider the following XML file:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer id="123" status="archived">
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
</customer>

To instantiate an XmlReader, you call the static XmlReader.Create method, passing in a
Stream, a TextReader, or a URI string. For example:

using (XmlReader reader = XmlReader.Create ("customer.xml"))
  ...

NOTE
Because XmlReader lets you read from potentially slow sources (Streams and URIs), it offers
asynchronous versions of most of its methods so that you can easily write nonblocking code.



We’ll cover asynchrony in detail in Chapter 14.

To construct an XmlReader that reads from a string:

XmlReader reader = XmlReader.Create (
  new System.IO.StringReader (myString));

You can also pass in an XmlReaderSettings object to control parsing and validation options.
The following three properties on XmlReaderSettings are particularly useful for skipping
over superfluous content:

bool IgnoreComments                  // Skip over comment nodes?
bool IgnoreProcessingInstructions    // Skip over processing instructions?
bool IgnoreWhitespace                // Skip over whitespace?

In the following example, we instruct the reader not to emit whitespace nodes, which are a
distraction in typical scenarios:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader reader = XmlReader.Create ("customer.xml", settings))
  ...

Another useful property on XmlReaderSettings is ConformanceLevel. Its default value of
Document instructs the reader to assume a valid XML document with a single root node. This
is a problem if you want to read just an inner portion of XML, containing multiple nodes:

<firstname>Jim</firstname>
<lastname>Bo</lastname>

To read this without throwing an exception, you must set ConformanceLevel to Fragment.
XmlReaderSettings also has a property called CloseInput, which indicates whether to
close the underlying stream when the reader is closed (there’s an analogous property on
XmlWriterSettings called CloseOutput). The default value for CloseInput and
CloseOutput is false.

Reading Nodes
The units of an XML stream are XML nodes. The reader traverses the stream in textual (depth-
first) order. The Depth property of the reader returns the current depth of the cursor.
The most primitive way to read from an XmlReader is to call Read. It advances to the next
node in the XML stream, rather like MoveNext in IEnumerator. The first call to Read
positions the cursor at the first node. When Read returns false, it means the cursor has
advanced past the last node, at which point the XmlReader should be closed and abandoned.
In this example, we read every node in the XML stream, outputting each node type as we go:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader reader = XmlReader.Create ("customer.xml", settings))
  while (reader.Read())



  {
    Console.Write (new string (' ',reader.Depth*2));  // Write indentation
    Console.WriteLine (reader.NodeType);
  }

The output is as follows:

XmlDeclaration
Element
  Element
    Text
  EndElement
  Element
    Text
  EndElement
EndElement

NOTE
Attributes are not included in Read-based traversal (see the section “Reading Attributes” later
in this chapter).

NodeType is of type XmlNodeType, which is an enum with these members:

None
XmlDeclaration
Element
EndElement
Text
Attribute

Comment
Entity
EndEntity
EntityReference
ProcessingInstruction
CDATA

Document
DocumentType
DocumentFragment
Notation
Whitespace
SignificantWhitespace

Two string properties on XmlReader provide access to a node’s content: Name and Value.
Depending on the node type, either Name or Value (or both) is populated:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
settings.DtdProcessing = DtdProcessing.Parse;    // Required to read DTDs

using (XmlReader r = XmlReader.Create ("customer.xml", settings))
  while (r.Read())
  {
    Console.Write (r.NodeType.ToString().PadRight (17, '-'));
    Console.Write ("> ".PadRight (r.Depth * 3));

    switch (r.NodeType)
    {
      case XmlNodeType.Element:
      case XmlNodeType.EndElement:
        Console.WriteLine (r.Name); break;

      case XmlNodeType.Text:
      case XmlNodeType.CDATA:
      case XmlNodeType.Comment:
      case XmlNodeType.XmlDeclaration:
        Console.WriteLine (r.Value); break;

      case XmlNodeType.DocumentType:
        Console.WriteLine (r.Name + " - " + r.Value); break;

      default: break;
    }
  }



To demonstrate this, we’ll expand our XML file to include a document type, entity, CDATA,
and comment:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE customer [ <!ENTITY tc "Top Customer"> ]>
<customer id="123" status="archived">
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
  <quote><![CDATA[C#'s operators include: < > &]]></quote>
  <notes>Jim Bo is a &tc;</notes>
  <!--  That wasn't so bad! -->
</customer>

An entity is like a macro; a CDATA is like a verbatim string (@"...") in C#. Here’s the result:

XmlDeclaration---> version="1.0" encoding="utf-8"
DocumentType-----> customer -  <!ENTITY tc "Top Customer">
Element----------> customer
Element---------->  firstname
Text------------->     Jim
EndElement------->  firstname
Element---------->  lastname
Text------------->     Bo
EndElement------->  lastname
Element---------->  quote
CDATA------------>     C#'s operators include: < > &
EndElement------->  quote
Element---------->  notes
Text------------->     Jim Bo is a Top Customer
EndElement------->  notes
Comment---------->    That wasn't so bad!
EndElement------->  customer

XmlReader automatically resolves entities, so in our example, the entity reference &tc;
expands into Top Customer.

Reading Elements
Often, you already know the structure of the XML document that you’re reading. To help with
this, XmlReader provides a range of methods that read while presuming a particular structure.
This simplifies your code, as well as performing some validation at the same time.

NOTE
XmlReader throws an XmlException if any validation fails. XmlException has LineNumber and
LinePosition properties indicating where the error occurred — logging this information is
essential if the XML file is large!

ReadStartElement verifies that the current NodeType is Element, and then calls Read. If you
specify a name, it verifies that it matches that of the current element.
ReadEndElement verifies that the current NodeType is EndElement, and then calls Read.
For instance, we could read this:

<firstname>Jim</firstname>



as follows:

reader.ReadStartElement ("firstname");
Console.WriteLine (reader.Value);
reader.Read();
reader.ReadEndElement();

The ReadElementContentAsString method does all of this in one hit. It reads a start element,
a text node, and an end element, returning the content as a string:

string firstName = reader.ReadElementContentAsString ("firstname", "");

The second argument refers to the namespace, which is blank in this example. There are also
typed versions of this method, such as ReadElementContentAsInt, which parse the result.
Returning to our original XML document:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer id="123" status="archived">
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
  <creditlimit>500.00</creditlimit>    <!-- OK, we sneaked this in! -->
</customer>

We could read it in as follows:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader r = XmlReader.Create ("customer.xml", settings))
{
  r.MoveToContent();                // Skip over the XML declaration
  r.ReadStartElement ("customer");
  string firstName    = r.ReadElementContentAsString ("firstname", "");
  string lastName     = r.ReadElementContentAsString ("lastname", "");
  decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");

  r.MoveToContent();      // Skip over that pesky comment
  r.ReadEndElement();     // Read the closing customer tag
}

NOTE
The MoveToContent method is really useful. It skips over all the fluff: XML declarations,
whitespace, comments, and processing instructions. You can also instruct the reader to do
most of this automatically through the properties on XmlReaderSettings.

Optional elements
In the previous example, suppose that <lastname> was optional. The solution to this is
straightforward:

r.ReadStartElement ("customer");
string firstName    = r. ReadElementContentAsString ("firstname", "");
string lastName     = r.Name == "lastname"
                      ? r.ReadElementContentAsString() : null;
decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");



Random element order
The examples in this section rely on elements appearing in the XML file in a set order. If you
need to cope with elements appearing in any order, the easiest solution is to read that section of
the XML into an X-DOM. We describe how to do this later in the section “Patterns for Using
XmlReader/XmlWriter”.

Empty elements
The way that XmlReader handles empty elements presents a horrible trap. Consider the
following element:

<customerList></customerList>

In XML, this is equivalent to:

<customerList/>

And yet, XmlReader treats the two differently. In the first case, the following code works as
expected:

reader.ReadStartElement ("customerList");
reader.ReadEndElement();

In the second case, ReadEndElement throws an exception, because there is no separate “end
element” as far as XmlReader is concerned. The workaround is to check for an empty element
as follows:

bool isEmpty = reader.IsEmptyElement;
reader.ReadStartElement ("customerList");
if (!isEmpty) reader.ReadEndElement();

In reality, this is a nuisance only when the element in question may contain child elements (such
as a customer list). With elements that wrap simple text (such as firstname), you can avoid
the whole issue by calling a method such as ReadElementContentAsString. The
ReadElementXXX methods handle both kinds of empty elements correctly.

Other ReadXXX methods
Table 11-1 summarizes all ReadXXX methods in XmlReader. Most of these are designed to
work with elements. The sample XML fragment shown in bold is the section read by the
method described.

Table 11-1. Read methods

Members Works on NodeType Sample XML fragment Input parameters Data returned

ReadContentAsXXX Text <a>x</a>  x

ReadString Text <a>x</a>  x

ReadElementString Element <a>x</a>  x

ReadElementContentAsXXX Element <a>x</a>  x

ReadInnerXml Element <a>x</a>  x

ReadOuterXml Element <a>x</a>  <a>x</a>



ReadStartElement Element <a>x</a>   

ReadEndElement Element <a>x</a>   

ReadSubtree Element <a>x</a>  <a>x</a>

ReadToDescendant Element <a>x<b></b></a> "b"  

ReadToFollowing Element <a>x<b></b></a> "b"  

ReadToNextSibling Element <a>x</a><b></b> "b"  

ReadAttributeValue Attribute See “Reading Attributes”   

The ReadContentAsXXX methods parse a text node into type XXX. Internally, the XmlConvert
class performs the string-to-type conversion. The text node can be within an element or an
attribute.
The ReadElementContentAsXXX methods are wrappers around corresponding
ReadContentAsXXX methods. They apply to the element node, rather than the text node
enclosed by the element.

NOTE
The typed ReadXXX methods also include versions that read base 64 and BinHex formatted
data into a byte array.

ReadInnerXml is typically applied to an element, and it reads and returns an element and all
its descendants. When applied to an attribute, it returns the value of the attribute.
ReadOuterXml is the same as ReadInnerXml, except it includes rather than excludes the
element at the cursor position.
ReadSubtree returns a proxy reader that provides a view over just the current element (and its
descendants). The proxy reader must be closed before the original reader can be safely read
again. At the point the proxy reader is closed, the cursor position of the original reader moves
to the end of the subtree.
ReadToDescendant moves the cursor to the start of the first descendant node with the
specified name/namespace.
ReadToFollowing moves the cursor to the start of the first node — regardless of depth — with
the specified name/namespace.
ReadToNextSibling moves the cursor to the start of the first sibling node with the specified
name/namespace.
ReadString and ReadElementString behave like ReadContentAsString and Read 
ElementContentAsString, except that they throw an exception if there’s more than a single
text node within the element. In general, these methods should be avoided because they throw
an exception if an element contains a comment.

Reading Attributes
XmlReader provides an indexer giving you direct (random) access to an element’s attributes —
by name or position. Using the indexer is equivalent to calling GetAttribute.
Given the following XML fragment:



<customer id="123" status="archived"/>

we could read its attributes as follows:

Console.WriteLine (reader ["id"]);              // 123
Console.WriteLine (reader ["status"]);          // archived
Console.WriteLine (reader ["bogus"] == null);   // True

WARNING
The XmlReader must be positioned on a start element in order to read attributes. After calling
ReadStartElement, the attributes are gone forever!

Although attribute order is semantically irrelevant, you can access attributes by their ordinal
position. We could rewrite the preceding example as follows:

Console.WriteLine (reader [0]);            // 123
Console.WriteLine (reader [1]);            // archived

The indexer also lets you specify the attribute’s namespace — if it has one.
AttributeCount returns the number of attributes for the current node.

Attribute nodes
To explicitly traverse attribute nodes, you must make a special diversion from the normal path
of just calling Read. A good reason to do so is if you want to parse attribute values into other
types, via the ReadContentAsXXX methods.
The diversion must begin from a start element. To make the job easier, the forward-only rule is
relaxed during attribute traversal: you can jump to any attribute (forward or backward) by
calling MoveToAttribute.

NOTE
MoveToElement returns you to the start element from anyplace within the attribute node
diversion.

Returning to our previous example:

<customer id="123" status="archived"/>

we can do this:

reader.MoveToAttribute ("status");
string status = reader.ReadContentAsString();

reader.MoveToAttribute ("id");
int id = reader.ReadContentAsInt();

MoveToAttribute returns false if the specified attribute doesn’t exist.



You can also traverse each attribute in sequence by calling the MoveToFirstAttribute and
then the MoveToNextAttribute methods:

if (reader.MoveToFirstAttribute())
  do
  {
    Console.WriteLine (reader.Name + "=" + reader.Value);
  }
  while (reader.MoveToNextAttribute());

// OUTPUT:
id=123
status=archived

Namespaces and Prefixes
XmlReader provides two parallel systems for referring to element and attribute names:

Name

NamespaceURI and LocalName

Whenever you read an element’s Name property or call a method that accepts a single name
argument, you’re using the first system. This works well if no namespaces or prefixes are
present; otherwise, it acts in a crude and literal manner. Namespaces are ignored, and prefixes
are included exactly as they were written. For example:

Sample fragment Name
<customer ...> customer

<customer xmlns='blah' ...> customer

<x:customer ...> x:customer

The following code works with the first two cases:

reader.ReadStartElement ("customer");

The following is required to handle the third case:

reader.ReadStartElement ("x:customer");

The second system works through two namespace-aware properties: NamespaceURI and
LocalName. These properties take into account prefixes and default namespaces defined by
parent elements. Prefixes are automatically expanded. This means that NamespaceURI always
reflects the semantically correct namespace for the current element, and LocalName is always
free of prefixes.
When you pass two name arguments into a method such as ReadStartElement, you’re using
this same system. For example, consider the following XML:

<customer xmlns="DefaultNamespace" xmlns:other="OtherNamespace">
  <address>
    <other:city>
    ...

We could read this as follows:



reader.ReadStartElement ("customer", "DefaultNamespace");
reader.ReadStartElement ("address",  "DefaultNamespace");
reader.ReadStartElement ("city",     "OtherNamespace");

Abstracting away prefixes is usually exactly what you want. If necessary, you can see what
prefix was used through the Prefix property and convert it into a namespace by calling
LookupNamespace.

XmlWriter
XmlWriter is a forward-only writer of an XML stream. The design of XmlWriter is
symmetrical to XmlReader.
As with XmlTextReader, you construct an XmlWriter by calling Create with an optional
settings object. In the following example, we enable indenting to make the output more
human-readable, and then write a simple XML file:

XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

using (XmlWriter writer = XmlWriter.Create ("..\\..\\foo.xml", settings))
{
  writer.WriteStartElement ("customer");
  writer.WriteElementString ("firstname", "Jim");
  writer.WriteElementString ("lastname"," Bo");
  writer.WriteEndElement();
}

This produces the following document (the same as the file we read in the first example of
XmlReader):

<?xml version="1.0" encoding="utf-8" ?>
<customer>
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
</customer>

XmlWriter automatically writes the declaration at the top unless you indicate otherwise in
XmlWriterSettings, by setting OmitXmlDeclaration to true or ConformanceLevel to
Fragment. The latter also permits writing multiple root nodes — something that otherwise
throws an exception.
The WriteValue method writes a single text node. It accepts both string and nonstring types
such as bool and DateTime, internally calling XmlConvert to perform XML-compliant string
conversions:

writer.WriteStartElement ("birthdate");
writer.WriteValue (DateTime.Now);
writer.WriteEndElement();

In contrast, if we call:

WriteElementString ("birthdate", DateTime.Now.ToString());

the result would be both non-XML-compliant and vulnerable to incorrect parsing.
WriteString is equivalent to calling WriteValue with a string. XmlWriter automatically



escapes characters that would otherwise be illegal within an attribute or element, such as & <
>, and extended Unicode characters.

Writing Attributes
You can write attributes immediately after writing a start element:

writer.WriteStartElement ("customer");
writer.WriteAttributeString ("id", "1");
writer.WriteAttributeString ("status", "archived");

To write nonstring values, call WriteStartAttribute, WriteValue, and then
WriteEndAttribute.

Writing Other Node Types
XmlWriter also defines the following methods for writing other kinds of nodes:

WriteBase64       // for binary data
WriteBinHex       // for binary data
WriteCData
WriteComment
WriteDocType
WriteEntityRef
WriteProcessingInstruction
WriteRaw
WriteWhitespace

WriteRaw directly injects a string into the output stream. There is also a WriteNode method
that accepts an XmlReader, echoing everything from the given XmlReader.

Namespaces and Prefixes
The overloads for the Write* methods allow you to associate an element or attribute with a
namespace. Let’s rewrite the contents of the XML file in our previous example. This time we
will associate all the elements with the http://oreilly.com namespace, declaring the prefix o at
the customer element:

writer.WriteStartElement ("o", "customer", "http://oreilly.com");
writer.WriteElementString ("o", "firstname", "http://oreilly.com", "Jim");
writer.WriteElementString ("o", "lastname", "http://oreilly.com", "Bo");
writer.WriteEndElement();

The output is now as follows:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<o:customer xmlns:o='http://oreilly.com'>
  <o:firstname>Jim</o:firstname>
  <o:lastname>Bo</o:lastname>
</o:customer>

Notice how for brevity XmlWriter omits the child element’s namespace declarations when
they are already declared by the parent element.

Patterns for Using XmlReader/XmlWriter



Working with Hierarchical Data
Consider the following classes:

public class Contacts
{
  public IList<Customer> Customers = new List<Customer>();
  public IList<Supplier> Suppliers = new List<Supplier>();
}

public class Customer { public string FirstName, LastName; }
public class Supplier { public string Name;                }

Suppose you want to use XmlReader and XmlWriter to serialize a Contacts object to XML as
in the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<contacts>
   <customer id="1">
      <firstname>Jay</firstname>
      <lastname>Dee</lastname>
   </customer>
   <customer>                     <!-- we'll assume id is optional -->
      <firstname>Kay</firstname>
      <lastname>Gee</lastname>
   </customer>
   <supplier>
      <name>X Technologies Ltd</name>
   </supplier>
</contacts>

The best approach is not to write one big method, but to encapsulate XML functionality in the
Customer and Supplier types themselves by writing ReadXml and WriteXml methods on
these types. The pattern in doing so is straightforward:

ReadXml and WriteXml leave the reader/writer at the same depth when they exit.

ReadXml reads the outer element, whereas WriteXml writes only its inner content.

Here’s how we would write the Customer type:

public class Customer
{
  public const string XmlName = "customer";
  public int? ID;
  public string FirstName, LastName;

  public Customer () { }
  public Customer (XmlReader r) { ReadXml (r); }

  public void ReadXml (XmlReader r)
  {
    if (r.MoveToAttribute ("id")) ID = r.ReadContentAsInt();
    r.ReadStartElement();
    FirstName = r.ReadElementContentAsString ("firstname", "");
    LastName = r.ReadElementContentAsString ("lastname", "");
    r.ReadEndElement();
  }

  public void WriteXml (XmlWriter w)
  {
    if (ID.HasValue) w.WriteAttributeString ("id", "", ID.ToString());
    w.WriteElementString ("firstname", FirstName);
    w.WriteElementString ("lastname", LastName);
  }



}

Notice that ReadXml reads the outer start and end element nodes. If its caller did this job
instead, Customer couldn’t read its own attributes. The reason for not making WriteXml
symmetrical in this regard is twofold:

The caller might need to choose how the outer element is named.

The caller might need to write extra XML attributes, such as the element’s subtype (which
could then be used to decide which class to instantiate when reading back the element).

Another benefit of following this pattern is that it makes your implementation compatible with
IXmlSerializable (see Chapter 17).
The Supplier class is analogous:

public class Supplier
{
  public const string XmlName = "supplier";
  public string Name;

  public Supplier () { }
  public Supplier (XmlReader r) { ReadXml (r); }

  public void ReadXml (XmlReader r)
  {
    r.ReadStartElement();
    Name = r.ReadElementContentAsString ("name", "");
    r.ReadEndElement();
  }

  public void WriteXml (XmlWriter w)
  {
    w.WriteElementString ("name", Name);
  }
}

With the Contacts class, we must enumerate the customers element in ReadXml, checking
whether each subelement is a customer or a supplier. We also have to code around the empty
element trap:

public void ReadXml (XmlReader r)
{
  bool isEmpty = r.IsEmptyElement;           // This ensures we don't get
  r.ReadStartElement();                      // snookered by an empty
  if (isEmpty) return;                       // <contacts/> element!
  while (r.NodeType == XmlNodeType.Element)
  {
    if (r.Name == Customer.XmlName)      Customers.Add (new Customer (r));
    else if (r.Name == Supplier.XmlName) Suppliers.Add (new Supplier (r));
    else
      throw new XmlException ("Unexpected node: " + r.Name);
  }
  r.ReadEndElement();
}

public void WriteXml (XmlWriter w)
{
  foreach (Customer c in Customers)
  {
    w.WriteStartElement (Customer.XmlName);
    c.WriteXml (w);
    w.WriteEndElement();
  }
  foreach (Supplier s in Suppliers)



  {
    w.WriteStartElement (Supplier.XmlName);
    s.WriteXml (w);
    w.WriteEndElement();
  }
}

Mixing XmlReader/XmlWriter with an X-DOM
You can fly in an X-DOM at any point in the XML tree where XmlReader or XmlWriter
becomes too cumbersome. Using the X-DOM to handle inner elements is an excellent way to
combine X-DOM’s ease of use with the low-memory footprint of XmlReader and XmlWriter.

Using XmlReader with XElement
To read the current element into an X-DOM, you call XNode.ReadFrom, passing in the
XmlReader. Unlike XElement.Load, this method is not “greedy” in that it doesn’t expect to see
a whole document. Instead, it reads just the end of the current subtree.
For instance, suppose we have an XML logfile structured as follows:

<log>
  <logentry id="1">
    <date>...</date>
    <source>...</source>
    ...
  </logentry>
  ...
</log>

If there were a million logentry elements, reading the whole thing into an X-DOM would
waste memory. A better solution is to traverse each logentry with an XmlReader, and then use
XElement to process the elements individually:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader r = XmlReader.Create ("logfile.xml", settings))
{
  r.ReadStartElement ("log");
  while (r.Name == "logentry")
  {
    XElement logEntry = (XElement) XNode.ReadFrom (r);
    int id = (int) logEntry.Attribute ("id");
    DateTime date = (DateTime) logEntry.Element ("date");
    string source = (string) logEntry.Element ("source");
    ...
  }
  r.ReadEndElement();
}

If you follow the pattern described in the previous section, you can slot an XElement into a
custom type’s ReadXml or WriteXml method without the caller ever knowing you’ve cheated!
For instance, we could rewrite Customer’s ReadXml method as follows:

public void ReadXml (XmlReader r)
{
  XElement x = (XElement) XNode.ReadFrom (r);
  FirstName = (string) x.Element ("firstname");
  LastName = (string) x.Element ("lastname");
}



XElement collaborates with XmlReader to ensure that namespaces are kept intact and prefixes
are properly expanded — even if defined at an outer level. So, if our XML file read like this:

<log xmlns="http://loggingspace">
  <logentry id="1">
  ...

the XElements we constructed at the logentry level would correctly inherit the outer
namespace.

Using XmlWriter with XElement
You can use an XElement just to write inner elements to an XmlWriter. The following code
writes a million logentry elements to an XML file using XElement — without storing the
whole thing in memory:

using (XmlWriter w = XmlWriter.Create ("log.xml"))
{
  w.WriteStartElement ("log");
  for (int i = 0; i < 1000000; i++)
  {
    XElement e = new XElement ("logentry",
                   new XAttribute ("id", i),
                   new XElement ("date", DateTime.Today.AddDays (-1)),
                   new XElement ("source", "test"));
    e.WriteTo (w);
  }
  w.WriteEndElement ();
}

Using an XElement incurs minimal execution overhead. If we amend this example to use
XmlWriter throughout, there’s no measurable difference in execution time.

XSD and Schema Validation
The content of a particular XML document is nearly always domain-specific, such as a
Microsoft Word document, an application configuration document, or a web service. For each
domain, the XML file conforms to a particular pattern. There are several standards for
describing the schema of such a pattern, to standardize and automate the interpretation and
validation of XML documents. The most widely accepted standard is XSD, short for XML
Schema Definition. Its precursors, DTD and XDR, are also supported by System.Xml.
Consider the following XML document:

<?xml version="1.0"?>
<customers>
  <customer id="1" status="active">
    <firstname>Jim</firstname>
    <lastname>Bo</lastname>
  </customer>
  <customer id="1" status="archived">
    <firstname>Thomas</firstname>
    <lastname>Jefferson</lastname>
  </customer>
</customers>

We can write an XSD for this document as follows:



<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
           elementFormDefault="qualified"
           xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="customers">
    <xs:complexType>
      <xs:sequence>
        <xs:element maxOccurs="unbounded" name="customer">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="firstname" type="xs:string" />
              <xs:element name="lastname" type="xs:string" />
            </xs:sequence>
            <xs:attribute name="id" type="xs:int" use="required" />
            <xs:attribute name="status" type="xs:string" use="required" />
          </xs:complexType>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>

As you can see, XSD documents are themselves written in XML. Furthermore, an XSD
document is describable with XSD — you can find that definition at
http://www.w3.org/2001/xmlschema.xsd.

Performing Schema Validation
You can validate an XML file or document against one or more schemas before reading or
processing it. There are a number of reasons to do so:

You can get away with less error checking and exception handling.

Schema validation picks up errors you might otherwise overlook.

Error messages are detailed and informative.

To perform validation, plug a schema into an XmlReader, an XmlDocument, or an X-DOM
object, and then read or load the XML as you would normally. Schema validation happens
automatically as content is read, so the input stream is not read twice.

Validating with an XmlReader
Here’s how to plug a schema from the file customers.xsd into an XmlReader:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");

using (XmlReader r = XmlReader.Create ("customers.xml", settings))
  ...

If the schema is inline, set the following flag instead of adding to Schemas:

settings.ValidationFlags |= XmlSchemaValidationFlags.ProcessInlineSchema;

You then Read as you would normally. If schema validation fails at any point, an
XmlSchemaValidationException is thrown.

http://www.w3.org/2001/xmlschema.xsd


NOTE
Calling Read on its own validates both elements and attributes: you don’t need to navigate to
each individual attribute for it to be validated.

If you want only to validate the document, you can do this:

using (XmlReader r = XmlReader.Create ("customers.xml", settings))
  try { while (r.Read()) ; }
  catch (XmlSchemaValidationException ex)
  {
    ...
  }

XmlSchemaValidationException has properties for the error Message, LineNumber, and
LinePosition. In this case, it only tells you about the first error in the document. If you want
to report on all errors in the document, you instead must handle the ValidationEventHandler
event:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");
settings.ValidationEventHandler += ValidationHandler;
using (XmlReader r = XmlReader.Create ("customers.xml", settings))
  while (r.Read()) ;

When you handle this event, schema errors no longer throw exceptions. Instead, they fire your
event handler:

static void ValidationHandler (object sender, ValidationEventArgs e)
{
  Console.WriteLine ("Error: " + e.Exception.Message);
}

The Exception property of ValidationEventArgs contains the
XmlSchemaValidationException that would have otherwise been thrown.

NOTE
The System.Xml namespace also contains a class called XmlValidatingReader. This was used
to perform schema validation prior to Framework 2.0, and it is now deprecated.

Validating an X-DOM
To validate an XML file or stream while reading into an X-DOM, you create an XmlReader,
plug in the schemas, and then use the reader to load the DOM:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");

XDocument doc;
using (XmlReader r = XmlReader.Create ("customers.xml", settings))
  try { doc = XDocument.Load (r); }
  catch (XmlSchemaValidationException ex) { ... }



You can also validate an XDocument or XElement that’s already in memory, by calling
extension methods in System.Xml.Schema. These methods accept an XmlSchemaSet (a
collection of schemas) and a validation event handler:

XDocument doc = XDocument.Load (@"customers.xml");
XmlSchemaSet set = new XmlSchemaSet ();
set.Add (null, @"customers.xsd");
StringBuilder errors = new StringBuilder ();
doc.Validate (set, (sender, args) => { errors.AppendLine
                                       (args.Exception.Message); }
             );
Console.WriteLine (errors.ToString());

XSLT
XSLT stands for Extensible Stylesheet Language Transformations. It is an XML language that
describes how to transform one XML language into another. The quintessential example of such
a transformation is transforming an XML document (that typically describes data) into an
XHTML document (that describes a formatted document).
Consider the following XML file:

<customer>
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
</customer>

The following XSLT file describes such a transformation:

<?xml version="1.0" encoding="UTF-8"?>
  <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
  <xsl:template match="/">
    <html>
      <p><xsl:value-of select="//firstname"/></p>
      <p><xsl:value-of select="//lastname"/></p>
    </html>
  </xsl:template>
</xsl:stylesheet>

The output is as follows:

<html>
  <p>Jim</p>
  <p>Bo</p>
</html>

The System.Xml.Xsl.XslCompiledTransform transform class efficiently performs XSLT
transforms. It renders XmlTransform obsolete. XslCompiledTransform works very simply:

XslCompiledTransform transform = new XslCompiledTransform();
transform.Load ("test.xslt");
transform.Transform ("input.xml", "output.xml");

Generally, it’s more useful to use the overload of Transform that accepts an XmlWriter rather
than an output file, so you can control the formatting.



Chapter 12. Disposal and Garbage Collection

Some objects require explicit teardown code to release resources such as open files, locks,
operating system handles, and unmanaged objects. In .NET parlance, this is called disposal,
and it is supported through the IDisposable interface. The managed memory occupied by
unused objects must also be reclaimed at some point; this function is known as garbage
collection and is performed by the CLR.
Disposal differs from garbage collection in that disposal is usually explicitly instigated;
garbage collection is totally automatic. In other words, the programmer takes care of such
things as releasing file handles, locks, and operating system resources while the CLR takes
care of releasing memory.
This chapter discusses both disposal and garbage collection, also describing C# finalizers and
the pattern by which they can provide a backup for disposal. Lastly, we discuss the intricacies
of the garbage collector and other memory management options.

IDisposable, Dispose, and Close
The .NET Framework defines a special interface for types requiring a tear-down method:

public interface IDisposable
{
  void Dispose();
}

C#’s using statement provides a syntactic shortcut for calling Dispose on objects that
implement IDisposable, using a try/finally block. For example:

using (FileStream fs = new FileStream ("myFile.txt", FileMode.Open))
{
  // ... Write to the file ...
}

The compiler converts this to:

FileStream fs = new FileStream ("myFile.txt", FileMode.Open);
try
{
  // ... Write to the file ...
}
finally
{
  if (fs != null) ((IDisposable)fs).Dispose();
}

The finally block ensures that the Dispose method is called even when an exception is
thrown,1 or the code exits the block early.
In simple scenarios, writing your own disposable type is just a matter of implementing
IDisposable and writing the Dispose method:

sealed class Demo : IDisposable
{



  public void Dispose()
  {
    // Perform cleanup / tear-down.
    ...
  }
}

NOTE
This pattern works well in simple cases and is appropriate for sealed classes. In “Calling
Dispose from a Finalizer”, we’ll describe a more elaborate pattern that can provide a backup
for consumers that forget to call Dispose. With unsealed types, there’s a strong case for
following this latter pattern from the outset — otherwise, it becomes very messy if the
subtype wants to add such functionality itself.

Standard Disposal Semantics
The Framework follows a de facto set of rules in its disposal logic. These rules are not hard-
wired to the Framework or C# language in any way; their purpose is to define a consistent
protocol to consumers. Here they are:

1. Once disposed, an object is beyond redemption. It cannot be reactivated, and calling its
methods or properties (other than Dispose) throws an ObjectDisposedException.

2. Calling an object’s Dispose method repeatedly causes no error.

3. If disposable object x “owns” disposable object y, x’s Dispose method automatically
calls y’s Dispose method — unless instructed otherwise.

These rules are also helpful when writing your own types, though not mandatory. Nothing
prevents you from writing an “Undispose” method, other than, perhaps, the flak you might cop
from colleagues!
According to rule 3, a container object automatically disposes its child objects. A good
example is a Windows container control such as a Form or Panel. The container may host
many child controls, yet you don’t dispose every one of them explicitly: closing or disposing
the parent control or form takes care of the whole lot. Another example is when you wrap a
FileStream in a DeflateStream. Disposing the DeflateStream also disposes the
FileStream — unless you instructed otherwise in the constructor.

Close and Stop
Some types define a method called Close in addition to Dispose. The Framework is not
completely consistent on the semantics of a Close method, although in nearly all cases it’s
either:

Functionally identical to Dispose

A functional subset of Dispose

An example of the latter is IDbConnection: a Closed connection can be re-Opened; a
Disposed connection cannot. Another example is a Windows Form activated with
ShowDialog: Close hides it; Dispose releases its resources.



Some classes define a Stop method (e.g., Timer or HttpListener). A Stop method may
release unmanaged resources, like Dispose, but unlike Dispose, it allows for re-Starting.
With WinRT, Close is considered identical to Dispose — in fact, the runtime projects methods
called Close into methods called Dispose, to make their types friendly to using statements.

When to Dispose
A safe rule to follow (in nearly all cases) is “if in doubt, dispose.” A disposable object — if it
could talk — would say the following:

When you’ve finished with me, let me know. If simply abandoned, I might cause trouble for
other object instances, the application domain, the computer, the network, or the database!

Objects wrapping an unmanaged resource handle will nearly always require disposal, in order
to free the handle. Examples include Windows Forms controls, file or network streams,
network sockets, GDI+ pens, brushes, and bitmaps. Conversely, if a type is disposable, it will
often (but not always) reference an unmanaged handle, directly or indirectly. This is because
unmanaged handles provide the gateway to the “outside world” of operating system resources,
network connections, database locks — the primary means by which objects can create trouble
outside of themselves if improperly abandoned.
There are, however, three scenarios for not disposing:

When you don’t “own” the object, e.g., when obtaining a shared object via a static field or
property

When an object’s Dispose method does something that you don’t want

When an object’s Dispose method is unnecessary by design, and disposing that object
would add complexity to your program

The first category is rare. The main cases are in the System.Drawing namespace: the GDI+
objects obtained through static fields or properties (such as Brushes.Blue) must never be
disposed because the same instance is used throughout the life of the application. Instances that
you obtain through constructors, however (such as new SolidBrush), should be disposed, as
should instances obtained through static methods (such as Font.FromHdc).
The second category is more common. There are some good examples in the System.IO and
System.Data namespaces:

Type Disposal function When not to dispose

MemoryStream Prevents further I/O When you later need to read/write the stream

StreamReader,
StreamWriter

Flushes the reader/writer and closes
the underlying stream

When you want to keep the underlying stream open (you must instead
call Flush on a StreamWriter when you’re done)

IDbConnection Releases a database connection and
clears the connection string

If you need to re-Open it, you should call Close instead of Dispose

DataContext
(LINQ to SQL)

Prevents further use When you might have lazily evaluated queries connected to that
context

MemoryStream’s Dispose method disables only the object; it doesn’t perform any critical
cleanup because a MemoryStream holds no unmanaged handles or other such resources.
The third category includes the following classes: WebClient, StringReader,



StringWriter, and BackgroundWorker (in System.ComponentModel). These types are
disposable under the duress of their base class rather than through a genuine need to perform
essential cleanup. If you happen to instantiate and work with such an object entirely in one
method, wrapping it in a using block adds little inconvenience. But if the object is longer-
lasting, keeping track of when it’s no longer used so that you can dispose of it adds unnecessary
complexity. In such cases, you can simply ignore object disposal.

NOTE
Ignoring disposal can sometimes incur a performance cost (see “Calling Dispose from a
Finalizer”).

Opt-in Disposal
Because IDisposable makes a type tractable with C#’s using construct, there’s a temptation
to extend the reach of IDisposable to nonessential activities. For instance:

public sealed class HouseManager : IDisposable
{
  public void Dispose()
  {
    CheckTheMail();
  }
  ...
}

The idea is that a consumer of this class can choose to circumvent the nonessential cleanup —
simply by not calling Dispose. This, however, relies on the consumer knowing what’s inside
HouseManager’s Dispose method. It also breaks if essential cleanup activity is later added:

public void Dispose()
{
  CheckTheMail();    // Nonessential
  LockTheHouse();    // Essential
}

The solution to this problem is the opt-in disposal pattern:

public sealed class HouseManager : IDisposable
{
  public readonly bool CheckMailOnDispose;

  public HouseManager (bool checkMailOnDispose)
  {
    CheckMailOnDispose = checkMailOnDispose;
  }

  public void Dispose()
  {
    if (CheckMailOnDispose) CheckTheMail();
    LockTheHouse();
  }
  ...
}

The consumer can then always call Dispose — providing simplicity and avoiding the need for
special documentation or reflection. An example of where this pattern is implemented is in the



DeflateStream class, in System.IO.Compression. Here’s its constructor:

public DeflateStream (Stream stream, CompressionMode mode, bool leaveOpen)

The nonessential activity is closing the inner stream (the first parameter) upon disposal. There
are times when you want to leave the inner stream open and yet still dispose the
DeflateStream to perform its essential tear-down activity (flushing buffered data).
This pattern might look simple, yet until Framework 4.5, it escaped StreamReader and
StreamWriter (in the System.IO namespace). The result is messy: StreamWriter must
expose another method (Flush) to perform essential cleanup for consumers not calling
Dispose. (Framework 4.5 now exposes a constructor on these classes that lets you keep the
stream open.) The CryptoStream class in System .Security.Cryptography suffers a similar
problem and requires that you call FlushFinalBlock to tear it down while keeping the inner
stream open.

NOTE
You could describe this as an ownership issue. The question for a disposable object is: do I
really own the underlying resource that I’m using? Or am I just renting it from someone else
who manages both the underlying resource lifetime and, by some undocumented contract,
my lifetime?
Following the opt-in pattern avoids this problem by making the ownership contract
documented and explicit.

Clearing Fields in Disposal
In general, you don’t need to clear an object’s fields in its Dispose method. However, it is
good practice to unsubscribe from events that the object has subscribed to internally over its
lifetime (see “Managed Memory Leaks” for an example). Unsubscribing from such events
avoids receiving unwanted event notifications — and avoids unintentionally keeping the object
alive in the eyes of the garbage collector (GC).

NOTE
A Dispose method itself does not cause (managed) memory to be released — this can happen
only in garbage collection.

It’s also worth setting a field to indicate that the object is disposed so that you can throw an
ObjectDisposedException if a consumer later tries to call members on the object. A good
pattern is to use a publicly readable automatic property for this:

public bool IsDisposed { get; private set; }

Although technically unnecessary, it can also be good to clear an object’s own event handlers
(by setting them to null) in the Dispose method. This eliminates the possibility of those events
firing during or after disposal.



Occasionally, an object holds high-value secrets, such as encryption keys. In these cases, it can
make sense to clear such data from fields during disposal (to avoid discovery by less
privileged assemblies or malware). The SymmetricAlgorithm class in
System.Security.Cryptography does exactly this, by calling Array.Clear on the byte
array holding the encryption key.

Automatic Garbage Collection
Regardless of whether an object requires a Dispose method for custom tear-down logic, at
some point the memory it occupies on the heap must be freed. The CLR handles this side of it
entirely automatically, via an automatic GC. You never deallocate managed memory yourself.
For example, consider the following method:

public void Test()
{
  byte[] myArray = new byte[1000];
  ...
}

When Test executes, an array to hold 1,000 bytes is allocated on the memory heap. The array
is referenced by the variable myArray, stored on the local variable stack. When the method
exits, this local variable myArray pops out of scope, meaning that nothing is left to reference
the array on the memory heap. The orphaned array then becomes eligible to be reclaimed in
garbage collection.

NOTE
In debug mode with optimizations disabled, the lifetime of an object referenced by a local
variable extends to the end of the code block to ease debugging. Otherwise, it becomes
eligible for collection at the earliest point at which it’s no longer used.

Garbage collection does not happen immediately after an object is orphaned. Rather like
garbage collection on the street, it happens periodically, although (unlike garbage collection on
the street) not to a fixed schedule. The CLR bases its decision on when to collect upon a
number of factors, such as the available memory, the amount of memory allocation, and the time
since the last collection. This means that there’s an indeterminate delay between an object
being orphaned and being released from memory. This delay can range from nanoseconds to
days.

NOTE
The GC doesn’t collect all garbage with every collection. Instead, the memory manager
divides objects into generations and the GC collects new generations (recently allocated
objects) more frequently than old generations (long-lived objects). We’ll discuss this in more
detail in “How the Garbage Collector Works”.

GARBAGE COLLECTION AND MEMORY CONSUMPTION



The GC tries to strike a balance between the time it spends doing garbage collection and the
application’s memory consumption (working set). Consequently, applications can consume more
memory than they need, particularly if large temporary arrays are constructed.
You can monitor a process’s memory consumption via the Windows Task Manager or Resource
Monitor — or programmatically by querying a performance counter:

// These types are in System.Diagnostics:
string procName = Process.GetCurrentProcess().ProcessName;
using (PerformanceCounter pc = new PerformanceCounter
      ("Process", "Private Bytes", procName))
  Console.WriteLine (pc.NextValue());

This queries the private working set, which gives the best overall indication of your program’s
memory consumption. Specifically, it excludes memory that the CLR has internally deallocated and
is willing to rescind to the operating system should another process need it.

Roots
A root is something that keeps an object alive. If an object is not directly or indirectly
referenced by a root, it will be eligible for garbage collection.
A root is one of the following:

A local variable or parameter in an executing method (or in any method in its call stack)

A static variable

An object on the queue that stores objects ready for finalization (see next section)

It’s impossible for code to execute in a deleted object, so if there’s any possibility of an
(instance) method executing, its object must somehow be referenced in one of these ways.
Note that a group of objects that reference each other cyclically are considered dead without a
root referee (see Figure 12-1). To put it in another way, objects that cannot be accessed by
following the arrows (references) from a root object are unreachable — and therefore subject
to collection.



Figure 12-1. Roots

Garbage Collection and WinRT
Windows Runtime relies on COM’s reference-counting mechanism to release memory instead
of depending on an automatic garbage collector. Despite this, WinRT objects that you
instantiate from C# have their lifetime managed by the CLR’s garbage collector, because the
CLR mediates access to the COM object through an object that it creates behind the scenes
called a runtime callable wrapper (Chapter 24).

Finalizers
Prior to an object being released from memory, its finalizer runs, if it has one. A finalizer is
declared like a constructor, but it is prefixed by the ˜ symbol:

class Test
{
  ˜Test()
  {
    // Finalizer logic...
  }
}

(Although similar in declaration to a constructor, finalizers cannot be declared as public or
static, cannot have parameters, and cannot call the base class.)
Finalizers are possible because garbage collection works in distinct phases. First, the GC
identifies the unused objects ripe for deletion. Those without finalizers are deleted right away.
Those with pending (unrun) finalizers are kept alive (for now) and are put onto a special



queue.
At that point, garbage collection is complete, and your program continues executing. The
finalizer thread then kicks in and starts running in parallel to your program, picking objects off
that special queue and running their finalization methods. Prior to each object’s finalizer
running, it’s still very much alive — that queue acts as a root object. Once it’s been dequeued
and the finalizer executed, the object becomes orphaned and will get deleted in the next
collection (for that object’s generation).
Finalizers can be useful, but they come with some provisos:

Finalizers slow the allocation and collection of memory (the GC needs to keep track of
which finalizers have run).

Finalizers prolong the life of the object and any referred objects (they must all await the
next garbage truck for actual deletion).

It’s impossible to predict in what order the finalizers for a set of objects will be called.

You have limited control over when the finalizer for an object will be called.

If code in a finalizer blocks, other objects cannot get finalized.

Finalizers may be circumvented altogether if an application fails to unload cleanly.

In summary, finalizers are somewhat like lawyers — although there are cases in which you
really need them, in general you don’t want to use them unless absolutely necessary. If you do
use them, you need to be 100% sure you understand what they are doing for you.
Here are some guidelines for implementing finalizers:

Ensure that your finalizer executes quickly.

Never block in your finalizer (Chapter 14).

Don’t reference other finalizable objects.

Don’t throw exceptions.

WARNING
An object’s finalizer can get called even if an exception is thrown during construction. For
this reason, it pays not to assume that fields are correctly initialized when writing a finalizer.

Calling Dispose from a Finalizer
A popular pattern is to have the finalizer call Dispose. This makes sense when cleanup is not
urgent and hastening it by calling Dispose is more of an optimization than a necessity.

NOTE
Bear in mind that with this pattern, you couple memory deallocation to resource deallocation



— two things with potentially divergent interests (unless the resource is itself memory). You
also increase the burden on the finalization thread.
This pattern can also be used as a backup for cases when a consumer simply forgets to call
Dispose. However, it’s then a good idea to log the failure so that you can fix the bug.

There’s a standard pattern for implementing this, as follows:

class Test : IDisposable
{
  public void Dispose()             // NOT virtual
  {
    Dispose (true);
    GC.SuppressFinalize (this);     // Prevent finalizer from running.
  }

  protected virtual void Dispose (bool disposing)
  {
    if (disposing)
    {
      // Call Dispose() on other objects owned by this instance.
      // You can reference other finalizable objects here.
      // ...
    }

    // Release unmanaged resources owned by (just) this object.
    // ...
  }

  ~Test()
  {
    Dispose (false);
  }
}

Dispose is overloaded to accept a bool disposing flag. The parameterless version is not
declared as virtual and simply calls the enhanced version with true.
The enhanced version contains the actual disposal logic and is protected and virtual; this
provides a safe point for subclasses to add their own disposal logic. The disposing flag
means it’s being called “properly” from the Dispose method rather than in “last-resort mode”
from the finalizer. The idea is that when called with disposing set to false, this method
should not, in general, reference other objects with finalizers (because such objects may
themselves have been finalized and so be in an unpredictable state). This rules out quite a lot!
Here are a couple of tasks it can still perform in last-resort mode, when disposing is false:

Releasing any direct references to operating system resources (obtained, perhaps, via a
P/Invoke call to the Win32 API)

Deleting a temporary file created on construction

To make this robust, any code capable of throwing an exception should be wrapped in a
try/catch block, and the exception, ideally, logged. Any logging should be as simple and
robust as possible.
Notice that we call GC.SuppressFinalize in the parameterless Dispose method — this
prevents the finalizer from running when the GC later catches up with it. Technically, this is
unnecessary, as Dispose methods must tolerate repeated calls. However, doing so improves
performance because it allows the object (and its referenced objects) to be garbage-collected



in a single cycle.

Resurrection
Suppose a finalizer modifies a living object such that it refers back to the dying object. When
the next garbage collection happens (for the object’s generation), the CLR will see the
previously dying object as no longer orphaned — and so it will evade garbage collection. This
is an advanced scenario, and is called resurrection.
To illustrate, suppose we want to write a class that manages a temporary file. When an instance
of that class is garbage-collected, we’d like the finalizer to delete the temporary file. It sounds
easy:

public class TempFileRef
{
  public readonly string FilePath;
  public TempFileRef (string filePath) { FilePath = filePath; }

  ~TempFileRef() { File.Delete (FilePath); }
}

Unfortunately, this has a bug: File.Delete might throw an exception (due to a lack of
permissions, perhaps, or the file being in use, or having already been deleted). Such an
exception would take down the whole application (as well as preventing other finalizers from
running). We could simply “swallow” the exception with an empty catch block, but then we’d
never know that anything went wrong. Calling some elaborate error reporting API would also
be undesirable because it would burden the finalizer thread, hindering garbage collection for
other objects. We want to restrict finalization actions to those that are simple, reliable, and
quick.
A better option is to record the failure to a static collection as follows:

public class TempFileRef
{
  static ConcurrentQueue<TempFileRef> _failedDeletions
    = new ConcurrentQueue<TempFileRef>();

  public readonly string FilePath;
  public Exception DeletionError { get; private set; }

  public TempFileRef (string filePath) { FilePath = filePath; }

  ~TempFileRef()
  {
    try { File.Delete (FilePath); }
    catch (Exception ex)
    {
      DeletionError = ex;
      _failedDeletions.Enqueue (this);   // Resurrection
    }
  }
}

Enqueuing the object to the static _failedDeletions collection gives the object another
referee, ensuring that it remains alive until the object is eventually dequeued.

NOTE



ConcurrentQueue<T> is a thread-safe version of Queue<T> and is defined in
System.Collections.Concurrent (see Chapter 23). There are a couple of reasons for using a
thread-safe collection. First, the CLR reserves the right to execute finalizers on more than one
thread in parallel. This means that when accessing shared state such as a static collection, we
must consider the possibility of two objects being finalized at once. Second, at some point
we’re going to want to dequeue items from _failedDeletions so that we can do something
about them. This also has to be done in a thread-safe fashion, because it could happen while
the finalizer is concurrently enqueuing another object.

GC.ReRegisterForFinalize
A resurrected object’s finalizer will not run a second time — unless you call GC.Re 
RegisterForFinalize.
In the following example, we try to delete a temporary file in a finalizer (as in the last
example). But if the deletion fails, we reregister the object so as to try again in the next garbage
collection:

public class TempFileRef
{
  public readonly string FilePath;
  int _deleteAttempt;

  public TempFileRef (string filePath) { FilePath = filePath; }

  ~TempFileRef()
  {
    try { File.Delete (FilePath); }
    catch
    {
      if (_deleteAttempt++ < 3) GC.ReRegisterForFinalize (this);
    }
  }
}

After the third failed attempt, our finalizer will silently give up trying to delete the file. We
could enhance this by combining it with the previous example — in other words, adding it to
the _failedDeletions queue after the third failure.

NOTE
Be careful to call ReRegisterForFinalize just once in the finalizer method. If you call it
twice, the object will be reregistered twice and will have to undergo two more finalizations!

How the Garbage Collector Works
The standard CLR uses a generational mark-and-compact GC that performs automatic memory
management for objects stored on the managed heap. The GC is considered to be a tracing
garbage collector in that it doesn’t interfere with every access to an object, but rather wakes up
intermittently and traces the graph of objects stored on the managed heap to determine which
objects can be considered garbage and therefore collected.
The GC initiates a garbage collection upon performing a memory allocation (via the new
keyword) either after a certain threshold of memory has been allocated, or at other times to



reduce the application’s memory footprint. This process can also be initiated manually by
calling System.GC.Collect. During a garbage collection, all threads may by frozen (more on
this in the next section).
The GC begins with its root object references and walks the object graph, marking all the
objects it touches as reachable. Once this process is complete, all objects that have not been
marked are considered unused and are subject to garbage collection.
Unused objects without finalizers are immediately discarded; unused objects with finalizers
are enqueued for processing on the finalizer thread after the GC is complete. These objects then
become eligible for collection in the next GC for the object’s generation (unless resurrected).
The remaining “live” objects are then shifted to the start of the heap (compacted), freeing space
for more objects. This compaction serves two purposes: it avoids memory fragmentation, and it
allows the GC to employ a very simple strategy when allocating new objects, which is to
always allocate memory at the end of the heap. This avoids the potentially time-consuming task
of maintaining a list of free memory segments.
If there is insufficient space to allocate memory for a new object after garbage collection, and
the operating system is unable to grant further memory, an OutOfMemoryException is thrown.

Optimization Techniques
The GC incorporates various optimization techniques to reduce the garbage collection time.

Generational collection
The most important optimization is that the GC is generational. This takes advantage of the fact
that although many objects are allocated and discarded rapidly, certain objects are long-lived
and thus don’t need to be traced during every collection.
Basically, the GC divides the managed heap into three generations. Objects that have just been
allocated are in Gen0, and objects that have survived one collection cycle are in Gen1; all
other objects are in Gen2. Gen0 and Gen1 are known as ephemeral (short-lived) generations.
The CLR keeps the Gen0 section relatively small (a maximum of 256 MB on the 64-bit
workstation CLR, with a typical size of a few hundred KB to a few MB). When the Gen0
section fills up, the GC instigates a Gen0 collection — which happens relatively often. The GC
applies a similar memory threshold to Gen1 (which acts as a buffer to Gen2), and so Gen1
collections are relatively quick and frequent, too. Full collections that include Gen2, however,
take much longer and so happen infrequently. Figure 12-2 shows the effect of a full collection.



Figure 12-2. Heap generations

To give some very rough ballpark figures, a Gen0 collection might take less than 1 ms, which is
not enough to be noticed in a typical application. A full collection, however, might take as long
as 100 ms on a program with large object graphs. These figures depend on numerous factors
and so may vary considerably — particularly in the case of Gen2, whose size is unbounded
(unlike Gen0 and Gen1).
The upshot is that short-lived objects are very efficient in their use of the GC. The
StringBuilders created in the following method would almost certainly be collected in a fast
Gen0:

string Foo()
{
  var sb1 = new StringBuilder ("test");
  sb1.Append ("...");
  var sb2 = new StringBuilder ("test");
  sb2.Append (sb1.ToString());
  return sb2.ToString();
}

The Large Object Heap
The GC uses a separate heap called the Large Object Heap (LOH) for objects larger than a
certain threshold (currently 85,000 bytes). This avoids excessive Gen0 collections — without
the LOH, allocating a series of 16 MB objects might trigger a Gen0 collection after every
allocation.
By default, the LOH is not subject to compaction, because moving large blocks of memory



during garbage collection would be prohibitively expensive. This has two consequences:
Allocations can be slower, because the GC can’t always simply allocate objects at the end
of the heap — it must also look in the middle for gaps, and this requires maintaining a
linked list of free memory blocks.2

The LOH is subject to fragmentation. This means that the freeing of an object can create a
hole in the LOH that may be hard to fill later. For instance, a hole left by an 86,000-byte
object can be filled only by an object of between 85,000 bytes and 86,000 bytes (unless
adjoined by another hole).

In cases where this might cause problems, you can instruct the GC to compact the LOH in the
next collection as follows:

GCSettings.LargeObjectHeapCompactionMode =
  GCLargeObjectHeapCompactionMode.CompactOnce;

The large object heap is also nongenerational: all objects are treated as Gen2.

Concurrent and background collection
The GC must freeze (block) your execution threads for periods during a collection. This
includes the entire period during which a Gen0 or Gen1 collection takes place.
The GC makes a special attempt, though, at allowing threads to run during a Gen2 collection as
it’s undesirable to freeze an application for a potentially long period. This optimization applies
to the workstation version of the CLR only, which is used on desktop versions of Windows
(and on all versions of Windows with standalone applications). The rationale is that the latency
from a blocking collection is less likely to be a problem for server applications that don’t have
a user interface.

NOTE
A mitigating factor is that the server CLR leverages all available cores to perform GCs, so an
eight-core server will perform a full GC many times faster. In effect, the server GC is tuned
to maximize throughput rather than minimize latency.

The workstation optimization has historically been called concurrent collection. From CLR
4.0, it’s been revamped and renamed to background collection. Background collection
removes a limitation whereby a concurrent collection would cease to be concurrent if the Gen0
section filled up while a Gen2 collection was running. This means that from CLR 4.0,
applications that continually allocate memory will be more responsive.

GC notifications (server CLR)
The server version of the CLR can notify you just before a full GC will occur. This is intended
for server farm configurations: the idea is that you divert requests to another server just before
a collection. You then instigate the collection immediately and wait for it to complete before
rerouting requests back to that server.
To start notification, call GC.RegisterForFullGCNotification. Then start up another thread
(see Chapter 14) that first calls GC.WaitForFullGCApproach. When this method returns a



GCNotificationStatus indicating that a collection is near, you can reroute requests to other
servers and force a manual collection (see the following section). You then call
GC.WaitForFullGCComplete: when this method returns, GC is complete, and you can again
accept requests. You then repeat the whole cycle.

Forcing Garbage Collection
You can manually force a GC at any time by calling GC.Collect. Calling GC.Collect without
an argument instigates a full collection. If you pass in an integer value, only generations to that
value are collected, so GC.Collect(0) performs only a fast Gen0 collection.
In general, you get the best performance by allowing the GC to decide when to collect: forcing
collection can hurt performance by unnecessarily promoting Gen0 objects to Gen1 (and Gen1
objects to Gen2). It can also upset the GC’s self-tuning ability, whereby the GC dynamically
tweaks the thresholds for each generation to maximize performance as the application executes.
There are exceptions, however. The most common case for intervention is when an application
goes to sleep for a while: a good example is a Windows Service that performs a daily activity
(checking for updates, perhaps). Such an application might use a System.Timers.Timer to
initiate the activity every 24 hours. After completing the activity, no further code executes for
24 hours, which means that for this period, no memory allocations are made and so the GC has
no opportunity to activate. Whatever memory the service consumed in performing its activity, it
will continue to consume for the following 24 hours — even with an empty object graph! The
solution is to call GC.Collect right after the daily activity completes.
To ensure the collection of objects for which collection is delayed by finalizers, you can take
the additional step of calling WaitForPendingFinalizers and re-collecting:

GC.Collect();
GC.WaitForPendingFinalizers();
GC.Collect();

Often this is done in a loop: the act of running finalizers can free up more objects that
themselves have finalizers.
Another case for calling GC.Collect is when you’re testing a class that has a finalizer.

Tuning Garbage Collection
The static GCSettings.LatencyMode property determines how the GC balances latency with
overall efficiency. Changing this from its default value of Interactive to LowLatency
instructs the CLR to favor quicker (but more frequent) collections. This is useful if your
application needs to respond very quickly to real-time events.
From Framework 4.6, you can also tell the GC to temporarily suspend GC by calling
GC.TryStartNoGCRegion, and resume it with GC.EndNoGCRegion.

Memory Pressure
The runtime decides when to initiate collections based on a number of factors, including the
total memory load on the machine. If your program allocates unmanaged memory (Chapter 25),
the runtime will get an unrealistically optimistic perception of its memory usage, because the
CLR knows only about managed memory. You can mitigate this by telling the CLR to assume a



specified quantity of unmanaged memory has been allocated, by calling
GC.AddMemoryPressure. To undo this (when the unmanaged memory is released) call
GC.RemoveMemoryPressure.

Managed Memory Leaks
In unmanaged languages such as C++, you must remember to manually deallocate memory when
an object is no longer required; otherwise, a memory leak will result. In the managed world,
this kind of error is impossible due to the CLR’s automatic garbage collection system.
Nonetheless, large and complex .NET applications can exhibit a milder form of the same
syndrome with the same end result: the application consumes more and more memory over its
lifetime, until it eventually has to be restarted. The good news is that managed memory leaks
are usually easier to diagnose and prevent.
Managed memory leaks are caused by unused objects remaining alive by virtue of unused or
forgotten references. A common candidate is event handlers — these hold a reference to the
target object (unless the target is a static method). For instance, consider the following classes:

class Host
{
  public event EventHandler Click;
}

class Client
{
  Host _host;
  public Client (Host host)
  {
    _host = host;
    _host.Click += HostClicked;
  }

  void HostClicked (object sender, EventArgs e) { ... }
}

The following test class contains a method that instantiates 1,000 clients:

class Test
{
  static Host _host = new Host();

  public static void CreateClients()
  {
    Client[] clients = Enumerable.Range (0, 1000)
     .Select (i => new Client (_host))
     .ToArray();

    // Do something with clients ...
  }
}

You might expect that after CreateClients finishes executing, the 1,000 Client objects will
become eligible for collection. Unfortunately, each client has another referee: the _host object
whose Click event now references each Client instance. This may go unnoticed if the Click
event doesn’t fire — or if the HostClicked method doesn’t do anything to attract attention.
One way to solve this is to make Client implement IDisposable, and in the Dispose method,
unhook the event handler:



public void Dispose() { _host.Click -= HostClicked; }

Consumers of Client then dispose of the instances when they’re done with them:

Array.ForEach (clients, c => c.Dispose());

NOTE
In “Weak References”, we’ll describe another solution to this problem, which can be useful in
environments which tend not to use disposable objects (an example is WPF). In fact, the
WPF framework offers a class called WeakEventManager that leverages a pattern employing
weak references.
On the topic of WPF, data binding is another common cause for memory leaks: the issue is
described at http://support.microsoft.com/kb/938416.

Timers
Forgotten timers can also cause memory leaks (we discuss timers in Chapter 22). There are
two distinct scenarios, depending on the kind of timer. Let’s first look at the timer in the
System.Timers namespace. In the following example, the Foo class (when instantiated) calls
the tmr_Elapsed method once every second:

using System.Timers;

class Foo
{
  Timer _timer;
 
  Foo()
  {
    _timer = new System.Timers.Timer { Interval = 1000 };
    _timer.Elapsed += tmr_Elapsed;
    _timer.Start();
  }

  void tmr_Elapsed (object sender, ElapsedEventArgs e) { ... }
}

Unfortunately, instances of Foo can never be garbage-collected! The problem is the .NET
Framework itself holds references to active timers so that it can fire their Elapsed events.
Hence:

The .NET Framework will keep _timer alive.

_timer will keep the Foo instance alive, via the tmr_Elapsed event handler.

The solution is obvious when you realize that Timer implements IDisposable. Disposing of
the timer stops it and ensures that the .NET Framework no longer references the object:

class Foo : IDisposable
{
  ...
  public void Dispose() { _timer.Dispose(); }
}

http://support.microsoft.com/kb/938416


NOTE
A good guideline is to implement IDisposable yourself if any field in your class is assigned an
object that implements IDisposable.

The WPF and Windows Forms timers behave in exactly the same way, with respect to what’s
just been discussed.
The timer in the System.Threading namespace, however, is special. The .NET Framework
doesn’t hold references to active threading timers; it instead references the callback delegates
directly. This means that if you forget to dispose of a threading timer, a finalizer can fire, which
will automatically stop and dispose the timer. For example:

static void Main()
{
  var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000);
  GC.Collect();
  System.Threading.Thread.Sleep (10000);    // Wait 10 seconds
}

static void TimerTick (object notUsed) { Console.WriteLine ("tick"); }

If this example is compiled in “release” mode (debugging disabled and optimizations enabled),
the timer will be collected and finalized before it has a chance to fire even once! Again, we
can fix this by disposing of the timer when we’re done with it:

using (var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000))
{
  GC.Collect();
  System.Threading.Thread.Sleep (10000);    // Wait 10 seconds
}

The implicit call to tmr.Dispose at the end of the using block ensures that the tmr variable is
“used” and so not considered dead by the GC until the end of the block. Ironically, this call to
Dispose actually keeps the object alive longer!

Diagnosing Memory Leaks
The easiest way to avoid managed memory leaks is to proactively monitor memory
consumption as an application is written. You can obtain the current memory consumption of a
program’s objects as follows (the true argument tells the GC to perform a collection first):

long memoryUsed = GC.GetTotalMemory (true);

If you’re practicing test-driven development, one possibility is to use unit tests to assert that
memory is reclaimed as expected. If such an assertion fails, you then have to examine only the
changes that you’ve made recently.
If you already have a large application with a managed memory leak, the windbg.exe tool can
assist in finding it. There are also friendlier graphical tools such as Microsoft’s CLR Profiler,
SciTech’s Memory Profiler, and Red Gate’s ANTS Memory Profiler.
The CLR also exposes numerous Windows WMI counters to assist with resource gmonitoring.



Weak References
Occasionally, it’s useful to hold a reference to an object that’s “invisible” to the GC in terms of
keeping the object alive. This is called a weak reference, and is implemented by the
System.WeakReference class.
To use WeakReference, construct it with a target object as follows:

var sb = new StringBuilder ("this is a test");
var weak = new WeakReference (sb);
Console.WriteLine (weak.Target);     // This is a test

If a target is referenced only by one or more weak references, the GC will consider the target
eligible for collection. When the target gets collected, the Target property of the
WeakReference will be null:

var weak = new WeakReference (new StringBuilder ("weak"));
Console.WriteLine (weak.Target);   // weak
GC.Collect();
Console.WriteLine (weak.Target);   // (nothing)

To avoid the target being collected in between testing for it being null and consuming it, assign
the target to a local variable:

var weak = new WeakReference (new StringBuilder ("weak"));
var sb = (StringBuilder) weak.Target;
if (sb != null) { /* Do something with sb */ }

Once a target’s been assigned to a local variable, it has a strong root and so cannot be
collected while that variable’s in use.
The following class uses weak references to keep track of all Widget objects that have been
instantiated, without preventing those objects from being collected:

class Widget
{
  static List<WeakReference> _allWidgets = new List<WeakReference>();

  public readonly string Name;

  public Widget (string name)
  {
    Name = name;
    _allWidgets.Add (new WeakReference (this));
  }

  public static void ListAllWidgets()
  {
    foreach (WeakReference weak in _allWidgets)
    {
      Widget w = (Widget)weak.Target;
      if (w != null) Console.WriteLine (w.Name);
    }
  }
}

The only proviso with such a system is that the static list will grow over time, accumulating
weak references with null targets. So you need to implement some cleanup strategy.



Weak References and Caching
One use for WeakReference is to cache large object graphs. This allows memory-intensive
data to be cached briefly without causing excessive memory consumption:

_weakCache = new WeakReference (...);   // _weakCache is a field
...
var cache = _weakCache.Target;
if (cache == null) { /* Re-create cache & assign it to _weakCache */ }

This strategy may be only mildly effective in practice, because you have little control over
when the GC fires and what generation it chooses to collect. In particular, if your cache
remains in Gen0, it may be collected within microseconds (and remember that the GC doesn’t
collect only when memory is low — it collects regularly under normal memory conditions). So
at a minimum, you should employ a two-level cache whereby you start out by holding strong
references that you convert to weak references over time.

Weak References and Events
We saw earlier how events can cause managed memory leaks. The simplest solution is to either
avoid subscribing in such conditions, or implement a Dispose method to unsubscribe. Weak
references offer another solution.
Imagine a delegate that holds only weak references to its targets. Such a delegate would not
keep its targets alive — unless those targets had independent referees. Of course, this wouldn’t
prevent a firing delegate from hitting an unreferenced target — in the time between the target
being eligible for collection and the GC catching up with it. For such a solution to be effective,
your code must be robust in that scenario. Assuming that is the case, a weak delegate class can
be implemented as follows:

public class WeakDelegate<TDelegate> where TDelegate : class
{
  class MethodTarget
  {
    public readonly WeakReference Reference;
    public readonly MethodInfo Method;

    public MethodTarget (Delegate d)
    {
      // d.Target will be null for static method targets:
      if (d.Target != null) Reference = new WeakReference (d.Target);
      Method = d.Method;
    }
  }

  List<MethodTarget> _targets = new List<MethodTarget>();

  public WeakDelegate()
  {
    if (!typeof (TDelegate).IsSubclassOf (typeof (Delegate)))
      throw new InvalidOperationException
        ("TDelegate must be a delegate type");
  }

  public void Combine (TDelegate target)
  {
    if (target == null) return;

    foreach (Delegate d in (target as Delegate).GetInvocationList())
      _targets.Add (new MethodTarget (d));
  }



  public void Remove (TDelegate target)
  {
    if (target == null) return;
    foreach (Delegate d in (target as Delegate).GetInvocationList())
    {
      MethodTarget mt = _targets.Find (w =>
        Equals (d.Target, w.Reference?.Target) &&
        Equals (d.Method.MethodHandle, w.Method.MethodHandle));

      if (mt != null) _targets.Remove (mt);
    }
  }

  public TDelegate Target
  {
    get
    {
      Delegate combinedTarget = null;

      foreach (MethodTarget mt in _targets.ToArray())
      {
        WeakReference wr = mt.Reference;

        // Static target || alive instance target
        if (wr == null || wr.Target != null)
        {
          var newDelegate = Delegate.CreateDelegate (
            typeof(TDelegate), wr?.Target, mt.Method);
            combinedTarget = Delegate.Combine (combinedTarget, newDelegate);
        }
        else
          _targets.Remove (mt);
      }

      return combinedTarget as TDelegate;
    }
    set
    {
      _targets.Clear();
      Combine (value);
    }
  }
}

This code illustrates a number of interesting points in C# and the CLR. First, note that we check
that TDelegate is a delegate type in the constructor. This is because of a limitation in C# —
the following type constraint is illegal because C# considers System.Delegate a special type
for which constraints are not supported:

 ... where TDelegate : Delegate   // Compiler doesn't allow this

Instead, we must choose a class constraint, and perform a runtime check in the constructor.
In the Combine and Remove methods, we perform the reference conversion from target to
Delegate via the as operator rather than the more usual cast operator. This is because C#
disallows the cast operator with this type parameter — because of a potential ambiguity
between a custom conversion and a reference conversion.
We then call GetInvocationList because these methods might be called with multicast
delegates — delegates with more than one method recipient.
In the Target property, we build up a multicast delegate that combines all the delegates
referenced by weak references whose targets are alive, removing the remaining (dead)
references from the list to avoid the _targets list endlessly growing. (We could improve our



class by doing the same in the Combine method; yet another improvement would be to add
locks for thread safety [Chapter 22]). We also allow delegates without a weak reference at all;
these represent delegates whose target is a static method.
The following illustrates how to consume this delegate in implementing an event:

public class Foo
{
  WeakDelegate<EventHandler> _click = new WeakDelegate<EventHandler>();

  public event EventHandler Click
  {
    add { _click.Combine (value); } remove { _click.Remove (value); }
  }

  protected virtual void OnClick (EventArgs e)
    => _click.Target?.Invoke (this, e);
}

In “Interrupt and Abort” in Chapter 22, we describe how aborting a thread can violate the safety of
this pattern. This is rarely an issue in practice because aborting threads is widely discouraged for
precisely this (and other) reasons.

The same thing may occur occasionally in the generational heap due to pinning (see Chapter 4).

1

2



Chapter 13. Diagnostics

When things go wrong, it’s important that information is available to aid in diagnosing the
problem. An IDE or debugger can assist greatly to this effect — but it is usually available only
during development. Once an application ships, the application itself must gather and record
diagnostic information. To meet this requirement, the .NET Framework provides a set of
facilities to log diagnostic information, monitor application behavior, detect runtime errors,
and integrate with debugging tools if available.
The .NET Framework also allows you to enforce code contracts. Introduced at the time of
Framework 4.0, code contracts allow methods to interact through a set of mutual obligations,
and fail early if those obligations are violated.
We cover code contracts in a separate addendum, which you can download at
http://www.albahari.com/nutshell.

NOTE
The Code Contracts API was developed by Microsoft Research, and requires a separate
download. Despite early promise, the technology never fully caught on, and has seen minimal
updates over the past few years. Perhaps its primary drawback is lack of direct C# language
support. This results in a slower build-run cycle, because the output assembly must be “re-
written” after compilation.

The types in this chapter are defined primarily in the System.Diagnostics namespace.

Conditional Compilation
You can conditionally compile any section of code in C# with preprocessor directives.
Preprocessor directives are special instructions to the compiler that begin with the # symbol
(and, unlike other C# constructs, must appear on a line of their own). Logically, they execute
before the main compilation takes place (although in practice, the compiler processes them
during the lexical parsing phase). The preprocessor directives for conditional compilation are
#if, #else, #endif, and #elif.
The #if directive instructs the compiler to ignore a section of code unless a specified symbol
has been defined. You can define a symbol with either the #define directive or a compilation
switch. #define applies to a particular file; a compilation switch applies to a whole
assembly:

#define TESTMODE            // #define directives must be at top of file
                            // Symbol names are uppercase by convention.
using System;

class Program
{
  static void Main()
  {
#if TESTMODE
    Console.WriteLine ("in test mode!");     // OUTPUT: in test mode!
#endif

http://www.albahari.com/nutshell


  }
}

If we deleted the first line, the program would compile with the Console.WriteLine
statement completely eliminated from the executable, as though it was commented out.
The #else statement is analogous to C#’s else statement, and #elif is equivalent to #else
followed by #if. The ||, &&, and ! operators can be used to perform or, and, and not
operations:

#if TESTMODE && !PLAYMODE      // if TESTMODE and not PLAYMODE
  ...

Bear in mind, however, that you’re not building an ordinary C# expression, and the symbols
upon which you operate have absolutely no connection to variables — static or otherwise.
To define a symbol assembly-wide, specify the /define switch when compiling:

csc Program.cs /define:TESTMODE,PLAYMODE

Visual Studio provides an option to enter conditional compilation symbols under Project
Properties.
If you’ve defined a symbol at the assembly level and then want to “undefine” it for a particular
file, you can do so with the #undef directive.

Conditional Compilation Versus Static Variable Flags
The preceding example could instead be implemented with a simple static field:

static internal bool TestMode = true;

static void Main()
{
  if (TestMode) Console.WriteLine ("in test mode!");
}

This has the advantage of allowing runtime configuration. So, why choose conditional
compilation? The reason is that conditional compilation can take you places variable flags
cannot, such as:

Conditionally including an attribute

Changing the declared type of variable

Switching between different namespaces or type aliases in a using directive — for
example:

using TestType =
  #if V2
     MyCompany.Widgets.GadgetV2;
  #else
     MyCompany.Widgets.Gadget;
  #endif

You can even perform major refactoring under a conditional compilation directive, so you can
instantly switch between old and new versions, and write libraries that can compile against



multiple Framework versions, leveraging the latest Framework features where available.
Another advantage of conditional compilation is that debugging code can refer to types in
assemblies that are not included in deployment.

The Conditional Attribute
The Conditional attribute instructs the compiler to ignore any calls to a particular class or
method, if the specified symbol has not been defined.
To see how this is useful, suppose you write a method for logging status information as
follows:

static void LogStatus (string msg)
{
  string logFilePath = ...
  System.IO.File.AppendAllText (logFilePath, msg + "\r\n");
}

Now imagine you wanted this to execute only if the LOGGINGMODE symbol is defined. The first
solution is to wrap all calls to LogStatus around an #if directive:

#if LOGGINGMODE
LogStatus ("Message Headers: " + GetMsgHeaders());
#endif

This gives an ideal result, but it is tedious. The second solution is to put the #if directive
inside the LogStatus method. This, however, is problematic should LogStatus be called as
follows:

LogStatus ("Message Headers: " + GetComplexMessageHeaders());

GetComplexMessageHeaders would always get called — which might incur a performance
hit.
We can combine the functionality of the first solution with the convenience of the second by
attaching the Conditional attribute (defined in System.Diagnostics) to the LogStatus
method:

[Conditional ("LOGGINGMODE")]
static void LogStatus (string msg)
{
  ...
}

This instructs the compiler to treat calls to LogStatus as though they were wrapped in an #if
LOGGINGMODE directive. If the symbol is not defined, any calls to LogStatus get eliminated
entirely in compilation — including their argument evaluation expressions. (Hence any side-
effecting expressions will be bypassed.) This works even if LogStatus and the caller are in
different assemblies.

NOTE
Another benefit of [Conditional] is that the conditionality check is performed when the
caller is compiled, rather than when the called method is compiled. This is beneficial because



it allows you to write a library containing methods such as LogStatus — and build just one
version of that library.

The Conditional attribute is ignored at runtime — it’s purely an instruction to the compiler.

Alternatives to the Conditional attribute
The Conditional attribute is useless if you need to dynamically enable or disable
functionality at runtime: instead, you must use a variable-based approach. This leaves the
question of how to elegantly circumvent the evaluation of arguments when calling conditional
logging methods. A functional approach solves this:

using System;
using System.Linq;

class Program
{
  public static bool EnableLogging;

  static void LogStatus (Func<string> message)
  {
    string logFilePath = ...
    if (EnableLogging)
      System.IO.File.AppendAllText (logFilePath, message() + "\r\n");
  }
}

A lambda expression lets you call this method without syntax bloat:

LogStatus ( () => "Message Headers: " + GetComplexMessageHeaders() );

If EnableLogging is false, GetComplexMessageHeaders is never evaluated.

Debug and Trace Classes
Debug and Trace are static classes that provide basic logging and assertion capabilities. The
two classes are very similar; the main differentiator is their intended use. The Debug class is
intended for debug builds; the Trace class is intended for both debug and release builds. To
this effect:

All methods of the Debug class are defined with [Conditional("DEBUG")].

All methods of the Trace class are defined with [Conditional("TRACE")].

This means that all calls that you make to Debug or Trace are eliminated by the compiler
unless you define DEBUG or TRACE symbols. By default, Visual Studio defines both DEBUG and
TRACE symbols in a project’s debug configuration — and just the TRACE symbol in the release
configuration.
Both the Debug and Trace classes provide Write, WriteLine, and WriteIf methods. By
default, these send messages to the debugger’s output window:

Debug.Write     ("Data");
Debug.WriteLine (23 * 34);
int x = 5, y = 3;
Debug.WriteIf   (x > y, "x is greater than y");



The Trace class also provides the methods TraceInformation, TraceWarning, and
TraceError. The difference in behavior between these and the Write methods depends on the
active TraceListeners (we’ll cover this in “TraceListener”).

Fail and Assert
The Debug and Trace classes both provide Fail and Assert methods. Fail sends the message
to each TraceListener in the Debug or Trace class’s Listeners collection (see the
following section), which by default writes the message to the debug output as well as
displaying it in a dialog:

Debug.Fail ("File data.txt does not exist!");

The dialog that appears asks you whether to ignore, abort, or retry. The latter then lets you
attach a debugger, which is useful in instantly diagnosing the problem.
Assert simply calls Fail if the bool argument is false — this is called making an assertion
and indicates a bug in the code if violated. Specifying a failure message is optional:

Debug.Assert (File.Exists ("data.txt"), "File data.txt does not exist!");
var result = ...
Debug.Assert (result != null);

The Write, Fail, and Assert methods are also overloaded to accept a string category in
addition to the message, which can be useful in processing the output.
An alternative to assertion is to throw an exception if the opposite condition is true. This is a
common practice when validating method arguments:

public void ShowMessage (string message)
{
  if (message == null) throw new ArgumentNullException ("message");
  ...
}

Such “assertions” are compiled unconditionally and are less flexible in that you can’t control
the outcome of a failed assertion via TraceListeners. And technically, they’re not assertions.
An assertion is something that, if violated, indicates a bug in the current method’s code.
Throwing an exception based on argument validation indicates a bug in the caller’s code.

TraceListener
The Debug and Trace classes each have a Listeners property, comprising a static collection
of TraceListener instances. These are responsible for processing the content emitted by the
Write, Fail, and Trace methods.
By default, the Listeners collection of each includes a single listener
(DefaultTraceListener). The default listener has two key features:

When connected to a debugger such as Visual Studio, messages are written to the debug
output window; otherwise, message content is ignored.

When the Fail method is called (or an assertion fails), a dialog appears asking the user
whether to continue, abort, or retry (attach/debug) — regardless of whether a debugger is



attached.

You can change this behavior by (optionally) removing the default listener, and then adding one
or more of your own. You can write trace listeners from scratch (by subclassing
TraceListener) or use one of the predefined types:

TextWriterTraceListener writes to a Stream or TextWriter or appends to a file.

EventLogTraceListener writes to the Windows event log.

EventProviderTraceListener writes to the Event Tracing for Windows (ETW)
subsystem in Windows Vista and later.

WebPageTraceListener writes to an ASP.NET web page.

TextWriterTraceListener is further subclassed to ConsoleTraceListener,
DelimitedListTraceListener, XmlWriterTraceListener, and
EventSchemaTraceListener.

NOTE
None of these listeners display a dialog when Fail is called — only DefaultTraceListener
has this behavior.

The following example clears Trace’s default listener, then adds three listeners — one that
appends to a file, one that writes to the console, and one that writes to the Windows event log:

// Clear the default listener:
Trace.Listeners.Clear();

// Add a writer that appends to the trace.txt file:
Trace.Listeners.Add (new TextWriterTraceListener ("trace.txt"));

// Obtain the Console's output stream, then add that as a listener:
System.IO.TextWriter tw = Console.Out;
Trace.Listeners.Add (new TextWriterTraceListener (tw));

// Set up a Windows Event log source and then create/add listener.
// CreateEventSource requires administrative elevation, so this would
// typically be done in application setup.
if (!EventLog.SourceExists ("DemoApp"))
  EventLog.CreateEventSource ("DemoApp", "Application");

Trace.Listeners.Add (new EventLogTraceListener ("DemoApp"));

(It’s also possible to add listeners via the application configuration file; this is handy in
allowing testers to configure tracing after an application has been built — go to
http://albahari.com/traceconfig for the MSDN article.)
In the case of the Windows event log, messages that you write with the Write, Fail, or Assert
method always display as “Information” messages in the Windows event viewer. Messages that
you write via the TraceWarning and TraceError methods, however, show up as warnings or
errors.
TraceListener also has a Filter of type TraceFilter that you can set to control whether a

http://albahari.com/traceconfig


message gets written to that listener. To do this, you either instantiate one of the predefined
subclasses (EventTypeFilter or SourceFilter), or subclass TraceFilter and override the
ShouldTrace method. You could use this to filter by category, for instance.
TraceListener also defines IndentLevel and IndentSize properties for controlling
indentation, and the TraceOutputOptions property for writing extra data:

TextWriterTraceListener tl = new TextWriterTraceListener (Console.Out);
tl.TraceOutputOptions = TraceOptions.DateTime | TraceOptions.Callstack;

TraceOutputOptions are applied when using the Trace methods:

Trace.TraceWarning ("Orange alert");

DiagTest.vshost.exe Warning: 0 : Orange alert
     DateTime=2007-03-08T05:57:13.6250000Z
     Callstack=   at System.Environment.GetStackTrace(Exception e, Boolean
needFileInfo)
     at System.Environment.get_StackTrace()     at ...

Flushing and Closing Listeners
Some listeners, such as TextWriterTraceListener, ultimately write to a stream that is
subject to caching. This has two implications:

A message may not appear in the output stream or file immediately.

You must close — or at least flush — the listener before your application ends; otherwise,
you lose what’s in the cache (up to 4 KB, by default, if you’re writing to a file).

The Trace and Debug classes provide static Close and Flush methods that call Close or
Flush on all listeners (which in turn calls Close or Flush on any underlying writers and
streams). Close implicitly calls Flush, closes file handles, and prevents further data from
being written.
As a general rule, call Close before an application ends and call Flush anytime you want to
ensure that current message data is written. This applies if you’re using stream- or file-based
listeners.
Trace and Debug also provide an AutoFlush property, which, if true, forces a Flush after
every message.

WARNING
It’s a good policy to set AutoFlush to true on Debug and Trace if you’re using any file- or
stream-based listeners. Otherwise, if an unhandled exception or critical error occurs, the last 4
KB of diagnostic information may be lost.

Debugger Integration
Sometimes it’s useful for an application to interact with a debugger if one is available. During
development, the debugger is usually your IDE (e.g., Visual Studio); in deployment, the
debugger is more likely to be:



DbgCLR

One of the lower-level debugging tools, such as WinDbg, Cordbg, or Mdbg

DbgCLR is Visual Studio stripped of everything but the debugger, and it is a free download
with the .NET Framework SDK. It’s the easiest debugging option when an IDE is not available,
although it requires that you download the whole SDK.

Attaching and Breaking
The static Debugger class in System.Diagnostics provides basic functions for interacting
with a debugger — namely Break, Launch, Log, and IsAttached.
A debugger must first attach to an application in order to debug it. If you start an application
from within an IDE, this happens automatically, unless you request otherwise (by choosing
“Start without debugging”). Sometimes, though, it’s inconvenient or impossible to start an
application in debug mode within the IDE. An example is a Windows Service application or
(ironically) a Visual Studio designer. One solution is to start the application normally, and then
choose Debug Process in your IDE. This doesn’t allow you to set breakpoints early in the
program’s execution, however.
The workaround is to call Debugger.Break from within your application. This method
launches a debugger, attaches to it, and suspends execution at that point. (Launch does the
same, but without suspending execution.) Once attached, you can log messages directly to the
debugger’s output window with the Log method. You can tell whether you’re attached to a
debugger with the IsAttached property.

Debugger Attributes
The DebuggerStepThrough and DebuggerHidden attributes provide suggestions to the
debugger on how to handle single-stepping for a particular method, constructor, or class.
DebuggerStepThrough requests that the debugger step through a function without any user
interaction. This attribute is useful in automatically generated methods and in proxy methods
that forward the real work to a method somewhere else. In the latter case, the debugger will
still show the proxy method in the call stack if a breakpoint is set within the “real” method —
unless you also add the DebuggerHidden attribute. These two attributes can be combined on
proxies to help the user focus on debugging the application logic rather than the plumbing:

[DebuggerStepThrough, DebuggerHidden]
void DoWorkProxy()
{
  // setup...
  DoWork();
  // teardown...
}

void DoWork() {...}   // Real method...

Processes and Process Threads
We described in the last section of Chapter 6 how to launch a new process with
Process.Start. The Process class also allows you to query and interact with other
processes running on the same, or another, computer. The Process class is part of .NET



Standard 2.0, although its features are restricted for the UWP platform.

Examining Running Processes
The Process.GetProcessXXX methods retrieve a specific process by name or process ID, or
all processes running on the current or nominated computer. This includes both managed and
unmanaged processes. Each Process instance has a wealth of properties mapping statistics
such as name, ID, priority, memory and processor utilization, window handles, and so on. The
following sample enumerates all the running processes on the current computer:

foreach (Process p in Process.GetProcesses())
using (p)
{
  Console.WriteLine (p.ProcessName);
  Console.WriteLine ("   PID:      " + p.Id);
  Console.WriteLine ("   Memory:   " + p.WorkingSet64);
  Console.WriteLine ("   Threads:  " + p.Threads.Count);
}

Process.GetCurrentProcess returns the current process. If you’ve created additional
application domains, all will share the same process.
You can terminate a process by calling its Kill method.

Examining Threads in a Process
You can also enumerate over the threads of other processes, with the Process .Threads
property. The objects that you get, however, are not System.Threading.Thread objects, but
rather ProcessThread objects, and are intended for administrative rather than synchronization
tasks. A ProcessThread object provides diagnostic information about the underlying thread
and allows you to control some aspects of it such as its priority and processor affinity:

public void EnumerateThreads (Process p)
{
  foreach (ProcessThread pt in p.Threads)
  {
    Console.WriteLine (pt.Id);
    Console.WriteLine ("   State:    " + pt.ThreadState);
    Console.WriteLine ("   Priority: " + pt.PriorityLevel);
    Console.WriteLine ("   Started:  " + pt.StartTime);
    Console.WriteLine ("   CPU time: " + pt.TotalProcessorTime);
  }
}

StackTrace and StackFrame
The StackTrace and StackFrame classes provide a read-only view of an execution call stack
and are part of the standard desktop .NET Framework. You can obtain stack traces for the
current thread, another thread in the same process, or an Exception object. Such information is
useful mostly for diagnostic purposes, though it can also be used in programming (hacks).
StackTrace represents a complete call stack; StackFrame represents a single method call
within that stack.
If you instantiate a StackTrace object with no arguments — or with a bool argument — you
get a snapshot of the current thread’s call stack. The bool argument, if true, instructs
StackTrace to read the assembly .pdb (project debug) files if they are present, giving you



access to filename, line number, and column offset data. Project debug files are generated when
you compile with the /debug switch. (Visual Studio compiles with this switch unless you
request otherwise via Advanced Build Settings.)
Once you’ve obtained a StackTrace, you can examine a particular frame by calling GetFrame
— or obtain the whole lot with GetFrames:

static void Main() { A (); }
static void A()    { B (); }
static void B()    { C (); }
static void C()
{
  StackTrace s = new StackTrace (true);

  Console.WriteLine ("Total frames:   " + s.FrameCount);
  Console.WriteLine ("Current method: " + s.GetFrame(0).GetMethod().Name);
  Console.WriteLine ("Calling method: " + s.GetFrame(1).GetMethod().Name);
  Console.WriteLine ("Entry method:   " + s.GetFrame
                                       (s.FrameCount-1).GetMethod().Name);
  Console.WriteLine ("Call Stack:");
  foreach (StackFrame f in s.GetFrames())
    Console.WriteLine (
      "  File: "   + f.GetFileName() +
      "  Line: "   + f.GetFileLineNumber() +
      "  Col: "    + f.GetFileColumnNumber() +
      "  Offset: " + f.GetILOffset() +
      "  Method: " + f.GetMethod().Name);
}

Here’s the output:

Total frames:   4
Current method: C
Calling method: B
Entry method: Main
Call stack:
  File: C:\Test\Program.cs  Line: 15  Col: 4  Offset: 7  Method: C
  File: C:\Test\Program.cs  Line: 12  Col: 22  Offset: 6  Method: B
  File: C:\Test\Program.cs  Line: 11  Col: 22  Offset: 6  Method: A
  File: C:\Test\Program.cs  Line: 10  Col: 25  Offset: 6  Method: Main

NOTE
The IL offset indicates the offset of the instruction that will execute next — not the
instruction that’s currently executing. Peculiarly, though, the line and column number (if a
.pdb file is present) usually indicate the actual execution point.
This happens because the CLR does its best to infer the actual execution point when
calculating the line and column from the IL offset. The compiler emits IL in such a way as to
make this possible — including inserting nop (no-operation) instructions into the IL stream.
Compiling with optimizations enabled, however, disables the insertion of nop instructions and
so the stack trace may show the line and column number of the next statement to execute.
Obtaining a useful stack trace is further hampered by the fact that optimization can pull other
tricks, including collapsing entire methods.

A shortcut to obtaining the essential information for an entire StackTrace is to call ToString
on it. Here’s what the result looks like:

   at DebugTest.Program.C() in C:\Test\Program.cs:line 16



   at DebugTest.Program.B() in C:\Test\Program.cs:line 12
   at DebugTest.Program.A() in C:\Test\Program.cs:line 11
   at DebugTest.Program.Main() in C:\Test\Program.cs:line 10

To obtain the stack trace for another thread, pass the other Thread into StackTrace’s
constructor. This can be a useful strategy for profiling a program, although you must suspend
the thread while obtaining the stack trace. This is actually quite tricky to do without risking a
deadlock — we illustrate a reliable approach in “Suspend and Resume” in Chapter 22.
You can also obtain the stack trace for an Exception object (showing what led up to the
exception being thrown) by passing the Exception into StackTrace’s constructor.

NOTE
Exception already has a StackTrace property; however, this property returns a simple string
— not a StackTrace object. A StackTrace object is far more useful in logging exceptions that
occur after deployment — where no .pdb files are available — because you can log the IL
offset in lieu of line and column numbers. With an IL offset and ildasm, you can pinpoint
where within a method an error occurred.

Windows Event Logs
The Win32 platform provides a centralized logging mechanism, in the form of the Windows
event logs.
The Debug and Trace classes we used earlier write to a Windows event log if you register an
EventLogTraceListener. With the EventLog class, however, you can write directly to a
Windows event log without using Trace or Debug. You can also use this class to read and
monitor event data.

NOTE
Writing to the Windows event log makes sense in a Windows Service application, because if
something goes wrong, you can’t pop up a user interface directing the user to some special
file where diagnostic information has been written. Also, because it’s common practice for
services to write to the Windows event log, this is the first place an administrator is likely to
look if your service falls over.
The EventLog class is not part of .NET Standard, and is unavailable to UWP and .NET Core
apps.

There are three standard Windows event logs, identified by these names:
Application

System

Security

The Application log is where most applications normally write.



Writing to the Event Log
To write to a Windows event log:

1. Choose one of the three event logs (usually Application).

2. Decide on a source name and create it if necessary.

3. Call EventLog.WriteEntry with the log name, source name, and message data.

The source name is an easily identifiable name for your application. You must register a source
name before you use it — the CreateEventSource method performs this function. You can
then call WriteEntry:

const string SourceName = "MyCompany.WidgetServer";

// CreateEventSource requires administrative permissions, so this would
// typically be done in application setup.
if (!EventLog.SourceExists (SourceName))
  EventLog.CreateEventSource (SourceName, "Application");

EventLog.WriteEntry (SourceName,
  "Service started; using configuration file=...",
  EventLogEntryType.Information);

EventLogEntryType can be Information, Warning, Error, SuccessAudit, or
FailureAudit. Each displays with a different icon in the Windows event viewer. You can also
optionally specify a category and event ID (each is a number of your own choosing) and
provide optional binary data.
CreateEventSource also allows you to specify a machine name: this is to write to another
computer’s event log, if you have sufficient permissions.

Reading the Event Log
To read an event log, instantiate the EventLog class with the name of the log you wish to
access and optionally the name of another computer on which the log resides. Each log entry
can then be read via the Entries collection property:

EventLog log = new EventLog ("Application");

Console.WriteLine ("Total entries: " + log.Entries.Count);

EventLogEntry last = log.Entries [log.Entries.Count - 1];
Console.WriteLine ("Index:   " + last.Index);
Console.WriteLine ("Source:  " + last.Source);
Console.WriteLine ("Type:    " + last.EntryType);
Console.WriteLine ("Time:    " + last.TimeWritten);
Console.WriteLine ("Message: " + last.Message);

You can enumerate over all logs for the current (or another) computer with the static method
EventLog.GetEventLogs (this requires administrative privileges):

foreach (EventLog log in EventLog.GetEventLogs())
  Console.WriteLine (log.LogDisplayName);

This normally prints, at a minimum, Application, Security, and System.



Monitoring the Event Log
You can be alerted whenever an entry is written to a Windows event log, via the
EntryWritten event. This works for event logs on the local computer, and it fires regardless
of what application logged the event.
To enable log monitoring:

1. Instantiate an EventLog and set its EnableRaisingEvents property to true.

2. Handle the EntryWritten event.

For example:

static void Main()
{
  using (var log = new EventLog ("Application"))
  {
    log.EnableRaisingEvents = true;
    log.EntryWritten += DisplayEntry;
    Console.ReadLine();
  }
}

static void DisplayEntry (object sender, EntryWrittenEventArgs e)
{
  EventLogEntry entry = e.Entry;
  Console.WriteLine (entry.Message);
}

Performance Counters
The logging mechanisms we’ve discussed to date are useful for capturing information for future
analysis. However, to gain insight into the current state of an application (or the system as a
whole), a more real-time approach is needed. The Win32 solution to this need is the
performance-monitoring infrastructure, which consists of a set of performance counters that the
system and applications expose, and the Microsoft Management Console (MMC) snap-ins used
to monitor these counters in real time.
Performance counters are grouped into categories such as “System,” “Processor,” “.NET CLR
Memory,” and so on. These categories are sometimes also referred to as “performance
objects” by the GUI tools. Each category groups a related set of performance counters that
monitor one aspect of the system or application. Examples of performance counters in the
“.NET CLR Memory” category include “% Time in GC,” “# Bytes in All Heaps,” and
“Allocated bytes/sec.”
Each category may optionally have one or more instances that can be monitored independently.
For example, this is useful in the “% Processor Time” performance counter in the “Processor”
category, which allows one to monitor CPU utilization. On a multiprocessor machine, this
counter supports an instance for each CPU, allowing one to monitor the utilization of each CPU
independently.
The following sections illustrate how to perform commonly needed tasks, such as determining
which counters are exposed, monitoring a counter, and creating your own counters to expose
application status information.



WARNING
Reading performance counters or categories may require administrator privileges on the local
or target computer, depending on what is accessed.

Enumerating the Available Counters
The following example enumerates over all of the available performance counters on the
computer. For those that have instances, it enumerates the counters for each instance:

PerformanceCounterCategory[] cats =
  PerformanceCounterCategory.GetCategories();

foreach (PerformanceCounterCategory cat in cats)
{
  Console.WriteLine ("Category: " + cat.CategoryName);

  string[] instances = cat.GetInstanceNames();
  if (instances.Length == 0)
  {
    foreach (PerformanceCounter ctr in cat.GetCounters())
      Console.WriteLine ("  Counter: " + ctr.CounterName);
  }
  else   // Dump counters with instances
  {
    foreach (string instance in instances)
    {
      Console.WriteLine ("  Instance: " + instance);
      if (cat.InstanceExists (instance))
        foreach (PerformanceCounter ctr in cat.GetCounters (instance))
          Console.WriteLine ("    Counter: " + ctr.CounterName);
    }
  }
}

WARNING
The result is more than 10,000 lines long! It also takes a while to execute because
PerformanceCounterCategory.InstanceExists has an inefficient implementation. In a real
system, you’d want to retrieve the more detailed information only on demand.

The next example uses a LINQ query to retrieve just .NET performance counters, writing the
result to an XML file:

var x =
  new XElement ("counters",
    from PerformanceCounterCategory cat in
         PerformanceCounterCategory.GetCategories()
    where cat.CategoryName.StartsWith (".NET")
    let instances = cat.GetInstanceNames()
    select new XElement ("category",
      new XAttribute ("name", cat.CategoryName),
      instances.Length == 0
      ?
        from c in cat.GetCounters()
        select new XElement ("counter",
          new XAttribute ("name", c.CounterName))
      :
        from i in instances
        select new XElement ("instance", new XAttribute ("name", i),



          !cat.InstanceExists (i)
          ?
            null
          :
            from c in cat.GetCounters (i)
            select new XElement ("counter",
              new XAttribute ("name", c.CounterName))
        )
    )
  );
x.Save ("counters.xml");

Reading Performance Counter Data
To retrieve the value of a performance counter, instantiate a PerformanceCounter object and
then call the NextValue or NextSample method. NextValue returns a simple float value;
NextSample returns a CounterSample object that exposes a more advanced set of properties,
such as CounterFrequency, TimeStamp, BaseValue, and RawValue.
PerformanceCounter’s constructor takes a category name, counter name, and optional
instance. So, to display the current processor utilization for all CPUs, you would do the
following:

using (PerformanceCounter pc = new PerformanceCounter ("Processor",
                                                       "% Processor Time",
                                                       "_Total"))
  Console.WriteLine (pc.NextValue());

Or to display the “real” (i.e., private) memory consumption of the current process:

string procName = Process.GetCurrentProcess().ProcessName;
using (PerformanceCounter pc = new PerformanceCounter ("Process",
                                                       "Private Bytes",
                                                       procName))
  Console.WriteLine (pc.NextValue());

PerformanceCounter doesn’t expose a ValueChanged event, so if you want to monitor for
changes, you must poll. In the next example, we poll every 200 ms — until signaled to quit by
an EventWaitHandle:

// need to import System.Threading as well as System.Diagnostics

static void Monitor (string category, string counter, string instance,
                     EventWaitHandle stopper)
{
  if (!PerformanceCounterCategory.Exists (category))
    throw new InvalidOperationException ("Category does not exist");

  if (!PerformanceCounterCategory.CounterExists (counter, category))
    throw new InvalidOperationException ("Counter does not exist");

  if (instance == null) instance = "";   // "" == no instance (not null!)
  if (instance != "" &&
      !PerformanceCounterCategory.InstanceExists (instance, category))
    throw new InvalidOperationException ("Instance does not exist");

  float lastValue = 0f;
  using (PerformanceCounter pc = new PerformanceCounter (category,
                                                      counter, instance))
    while (!stopper.WaitOne (200, false))
    {
      float value = pc.NextValue();
      if (value != lastValue)         // Only write out the value



      {                               // if it has changed.
        Console.WriteLine (value);
        lastValue = value;
      }
    }
}

Here’s how we can use this method to simultaneously monitor processor and hard-disk
activity:

static void Main()
{
  EventWaitHandle stopper = new ManualResetEvent (false);

  new Thread (() =>
    Monitor ("Processor", "% Processor Time", "_Total", stopper)
  ).Start();

  new Thread (() =>
    Monitor ("LogicalDisk", "% Idle Time", "C:", stopper)
  ).Start();

  Console.WriteLine ("Monitoring - press any key to quit");
  Console.ReadKey();
  stopper.Set();
}

Creating Counters and Writing Performance Data
Before writing performance counter data, you need to create a performance category and
counter. You must create the performance category along with all the counters that belong to it
in one step, as follows:

string category = "Nutshell Monitoring";

// We'll create two counters in this category:
string eatenPerMin = "Macadamias eaten so far";
string tooHard = "Macadamias deemed too hard";

if (!PerformanceCounterCategory.Exists (category))
{
  CounterCreationDataCollection cd = new CounterCreationDataCollection();

  cd.Add (new CounterCreationData (eatenPerMin,
          "Number of macadamias consumed, including shelling time",
          PerformanceCounterType.NumberOfItems32));

  cd.Add (new CounterCreationData (tooHard,
          "Number of macadamias that will not crack, despite much effort",
          PerformanceCounterType.NumberOfItems32));

  PerformanceCounterCategory.Create (category, "Test Category",
    PerformanceCounterCategoryType.SingleInstance, cd);
}

The new counters then show up in the Windows performance-monitoring tool when you choose
Add Counters, as shown in Figure 13-1.



Figure 13-1. Custom performance counter

If you later want to define more counters in the same category, you must first delete the old
category by calling PerformanceCounterCategory.Delete.

NOTE
Creating and deleting performance counters requires administrative privileges. For this reason,
it’s usually done as part of the application setup.

Once a counter is created, you can update its value by instantiating a PerformanceCounter,
setting ReadOnly to false, and setting RawValue. You can also use the Increment and
IncrementBy methods to update the existing value:

string category = "Nutshell Monitoring";
string eatenPerMin = "Macadamias eaten so far";

using (PerformanceCounter pc = new PerformanceCounter (category,
                                                       eatenPerMin, ""))
{
  pc.ReadOnly = false;
  pc.RawValue = 1000;
  pc.Increment();
  pc.IncrementBy (10);
  Console.WriteLine (pc.NextValue());    // 1011
}

The Stopwatch Class
The Stopwatch class provides a convenient mechanism for measuring execution times.



Stopwatch uses the highest-resolution mechanism that the operating system and hardware
provide, which is typically less than a microsecond. (In contrast, DateTime.Now and
Environment.TickCount have a resolution of about 15ms.)
To use Stopwatch, call StartNew — this instantiates a Stopwatch and starts it ticking.
(Alternatively, you can instantiate it manually and then call Start.) The Elapsed property
returns the elapsed interval as a TimeSpan:

Stopwatch s = Stopwatch.StartNew();
System.IO.File.WriteAllText ("test.txt", new string ('*', 30000000));
Console.WriteLine (s.Elapsed);       // 00:00:01.4322661

Stopwatch also exposes an ElapsedTicks property, which returns the number of elapsed
“ticks” as a long. To convert from ticks to seconds, divide by StopWatch.Frequency. There’s
also an ElapsedMilliseconds property, which is often the most convenient.
Calling Stop freezes Elapsed and ElapsedTicks. There’s no background activity incurred by
a “running” Stopwatch, so calling Stop is optional.



Chapter 14. Concurrency and Asynchrony

Most applications need to deal with more than one thing happening at a time (concurrency). In
this chapter, we start with the essential prerequisites, namely the basics of threading and tasks,
and then describe the principles of asynchrony and C#’s asynchronous functions in detail.
In Chapter 22, we’ll revisit multithreading in greater detail, and in Chapter 23, we’ll cover the
related topic of parallel programming.

Introduction
The most common concurrency scenarios are:

Writing a responsive user interface
In WPF, mobile, and Windows Forms applications, you must run time-consuming tasks
concurrently with the code that runs your user interface to maintain responsiveness.

Allowing requests to process simultaneously
On a server, client requests can arrive concurrently and so must be handled in parallel to
maintain scalability. If you use ASP.NET, WCF, or Web Services, the .NET Framework
does this for you automatically. However, you still need to be aware of shared state (for
instance, the effect of using static variables for caching).

Parallel programming
Code that performs intensive calculations can execute faster on multicore/multiprocessor
computers if the workload is divided between cores (Chapter 23 is dedicated to this).

Speculative execution
On multicore machines, you can sometimes improve performance by predicting something
that might need to be done, and then doing it ahead of time. LINQPad uses this technique
to speed up the creation of new queries. A variation is to run a number of different
algorithms in parallel that all solve the same task. Whichever one finishes first “wins” —
this is effective when you can’t know ahead of time which algorithm will execute fastest.

The general mechanism by which a program can simultaneously execute code is called
multithreading. Multithreading is supported by both the CLR and operating system, and is a
fundamental concept in concurrency. Understanding the basics of threading, and in particular,
the effects of threads on shared state, is therefore essential.

Threading
A thread is an execution path that can proceed independently of others.
Each thread runs within an operating system process, which provides an isolated environment
in which a program runs. With a single-threaded program, just one thread runs in the process’s
isolated environment and so that thread has exclusive access to it. With a multithreaded
program, multiple threads run in a single process, sharing the same execution environment
(memory, in particular). This, in part, is why multithreading is useful: one thread can fetch data



in the background, for instance, while another thread displays the data as it arrives. This data is
referred to as shared state.

Creating a Thread

NOTE
In Windows Store apps, you cannot create and start threads directly; instead you must do this
via tasks (see “Tasks”). Tasks add a layer of indirection that complicates learning, so the best
way to start is with Console applications (or LINQPad) and create threads directly until
you’re comfortable with how they work.

A client program (Console, WPF, UWP, or Windows Forms) starts in a single thread that’s
created automatically by the operating system (the “main” thread). Here it lives out its life as a
single-threaded application, unless you do otherwise, by creating more threads (directly or
indirectly).1

You can create and start a new thread by instantiating a Thread object and calling its Start
method. The simplest constructor for Thread takes a ThreadStart delegate: a parameterless
method indicating where execution should begin. For example:

// NB: All samples in this chapter assume the following namespace imports:
using System;
using System.Threading;

class ThreadTest
{
  static void Main()
  {
    Thread t = new Thread (WriteY);          // Kick off a new thread
    t.Start();                               // running WriteY()

    // Simultaneously, do something on the main thread.
    for (int i = 0; i < 1000; i++) Console.Write ("x");
  }

  static void WriteY()
  {
    for (int i = 0; i < 1000; i++) Console.Write ("y");
  }
}

// Typical Output:
xxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
...

The main thread creates a new thread t on which it runs a method that repeatedly prints the
character y. Simultaneously, the main thread repeatedly prints the character x, as shown in
Figure 14-1. On a single-core computer, the operating system must allocate “slices” of time to
each thread (typically 20 ms in Windows) to simulate concurrency, resulting in repeated blocks
of x and y. On a multicore or multiprocessor machine, the two threads can genuinely execute in
parallel (subject to competition by other active processes on the computer), although you still
get repeated blocks of x and y in this example because of subtleties in the mechanism by which



Console handles concurrent requests.

Figure 14-1. Starting a new thread

NOTE
A thread is said to be preempted at the points where its execution is interspersed with the
execution of code on another thread. The term often crops up in explaining why something
has gone wrong!

Once started, a thread’s IsAlive property returns true, until the point where the thread ends.
A thread ends when the delegate passed to the Thread’s constructor finishes executing. Once
ended, a thread cannot restart.
Each thread has a Name property that you can set for the benefit of debugging. This is
particularly useful in Visual Studio, since the thread’s name is displayed in the Threads
Window and Debug Location toolbar. You can set a thread’s name just once; attempts to change
it later will throw an exception.
The static Thread.CurrentThread property gives you the currently executing thread:

Console.WriteLine (Thread.CurrentThread.Name);

Join and Sleep
You can wait for another thread to end by calling its Join method:

static void Main()
{
  Thread t = new Thread (Go);
  t.Start();
  t.Join();
  Console.WriteLine ("Thread t has ended!");
}
 
static void Go() { for (int i = 0; i < 1000; i++) Console.Write ("y"); }

This prints “y” 1,000 times, followed by “Thread t has ended!” immediately afterward. You
can include a timeout when calling Join, either in milliseconds or as a TimeSpan. It then
returns true if the thread ended or false if it timed out.



Thread.Sleep pauses the current thread for a specified period:

Thread.Sleep (TimeSpan.FromHours (1));  // Sleep for 1 hour
Thread.Sleep (500);                     // Sleep for 500 milliseconds

Thread.Sleep(0) relinquishes the thread’s current time slice immediately, voluntarily handing
over the CPU to other threads. Thread.Yield() does the same thing — except that it
relinquishes only to threads running on the same processor.

NOTE
Sleep(0) or Yield is occasionally useful in production code for advanced performance
tweaks. It’s also an excellent diagnostic tool for helping to uncover thread safety issues: if
inserting Thread.Yield() anywhere in your code breaks the program, you almost certainly
have a bug.

While waiting on a Sleep or Join, a thread is blocked.

Blocking
A thread is deemed blocked when its execution is paused for some reason, such as when
Sleeping or waiting for another to end via Join. A blocked thread immediately yields its
processor time slice, and from then on consumes no processor time until its blocking condition
is satisfied. You can test for a thread being blocked via its ThreadState property:

bool blocked = (someThread.ThreadState & ThreadState.WaitSleepJoin) != 0;

NOTE
ThreadState is a flags enum, combining three “layers” of data in a bitwise fashion. Most
values, however, are redundant, unused, or deprecated. The following extension method
strips a ThreadState to one of four useful values: Unstarted, Running, WaitSleepJoin, and
Stopped:

public static ThreadState Simplify (this ThreadState ts)
{
  return ts & (ThreadState.Unstarted |
               ThreadState.WaitSleepJoin |
               ThreadState.Stopped);
}

The ThreadState property is useful for diagnostic purposes, but unsuitable for
synchronization, because a thread’s state may change in between testing ThreadState and
acting on that information.

When a thread blocks or unblocks, the operating system performs a context switch. This incurs
a small overhead, typically one or two microseconds.

I/O-bound versus compute-bound
An operation that spends most of its time waiting for something to happen is called I/O-bound



— an example is downloading a web page or calling Console.ReadLine. (I/O-bound
operations typically involve input or output, but this is not a hard requirement: Thread.Sleep
is also deemed I/O-bound.) In contrast, an operation that spends most of its time performing
CPU-intensive work is called compute-bound.

Blocking versus spinning
An I/O-bound operation works in one of two ways: it either waits synchronously on the current
thread until the operation is complete (such as Console.ReadLine, Thread.Sleep, or
Thread.Join), or operates asynchronously, firing a callback when the operation finishes
some time later (more on this later).
I/O-bound operations that wait synchronously spend most of their time blocking a thread. They
may also “spin” in a loop periodically:

while (DateTime.Now < nextStartTime)
  Thread.Sleep (100);

Leaving aside that there are better ways to do this (such as timers or signaling constructs),
another option is that a thread may spin continuously:

while (DateTime.Now < nextStartTime);

In general, this is very wasteful on processor time: as far as the CLR and operating system are
concerned, the thread is performing an important calculation, and so gets allocated resources
accordingly. In effect, we’ve turned what should be an I/O-bound operation into a compute-
bound operation.

NOTE
There are a couple of nuances with regard spinning versus blocking. First, spinning very
briefly can be effective when you expect a condition to be satisfied soon (perhaps within a
few microseconds) because it avoids the overhead and latency of a context switch. The .NET
Framework provides special methods and classes to assist — see “SpinLock and SpinWait” in
http://albahari.com/threading/.
Second, blocking does not incur a zero cost. This is because each thread ties up around 1 MB
of memory for as long as it lives and causes an ongoing administrative overhead for the CLR
and operating system. For this reason, blocking can be troublesome in the context of heavily
I/O-bound programs that need to handle hundreds or thousands of concurrent operations.
Instead, such programs need to use a callback-based approach, rescinding their thread
entirely while waiting. This is (in part) the purpose of the asynchronous patterns that we’ll
discuss later.

Local Versus Shared State
The CLR assigns each thread its own memory stack so that local variables are kept separate. In
the next example, we define a method with a local variable, then call the method
simultaneously on the main thread and a newly created thread:

static void Main()
{
  new Thread (Go).Start();      // Call Go() on a new thread

http://albahari.com/threading/


  Go();                         // Call Go() on the main thread
}
 
static void Go()
{
  // Declare and use a local variable - 'cycles'
  for (int cycles = 0; cycles < 5; cycles++) Console.Write ('?');
}

A separate copy of the cycles variable is created on each thread’s memory stack, and so the
output is, predictably, ten question marks.
Threads share data if they have a common reference to the same object instance:

class ThreadTest
{
  bool _done;
 
  static void Main()
  {
    ThreadTest tt = new ThreadTest();   // Create a common instance
    new Thread (tt.Go).Start();
    tt.Go();
  }
 
  void Go()   // Note that this is an instance method
  {
     if (!_done) { _done = true; Console.WriteLine ("Done"); }
  }
}

Because both threads call Go() on the same ThreadTest instance, they share the _done field.
This results in “Done” being printed once instead of twice.
Local variables captured by a lambda expression or anonymous delegate are converted by the
compiler into fields, and so can also be shared:

class ThreadTest
{
  static void Main()
  {
    bool done = false;
    ThreadStart action = () =>
    {
      if (!done) { done = true; Console.WriteLine ("Done"); }
    };
    new Thread (action).Start();
    action();
  }
}

Static fields offer another way to share data between threads:

class ThreadTest
{
  static bool _done;    // Static fields are shared between all threads
                        // in the same application domain.
  static void Main()
  {
    new Thread (Go).Start();
    Go();
  }
 
  static void Go()
  {
    if (!_done) { _done = true; Console.WriteLine ("Done"); }



  }
}

All three examples illustrate another key concept: that of thread safety (or rather, lack of it!).
The output is actually indeterminate: it’s possible (though unlikely) that “Done” could be
printed twice. If, however, we swap the order of statements in the Go method, the odds of
“Done” being printed twice go up dramatically:

static void Go()
{
  if (!_done) { Console.WriteLine ("Done"); _done = true; }
}

The problem is that one thread can be evaluating the if statement right as the other thread is
executing the WriteLine statement — before it’s had a chance to set done to true.

NOTE
Our example illustrates one of many ways that shared writable state can introduce the kind
of intermittent errors for which multithreading is notorious. We’ll see next how to fix our
program with locking; however it’s better to avoid shared state altogether where possible.
We’ll see later how asynchronous programming patterns help with this.

Locking and Thread Safety

NOTE
Locking and thread safety are large topics. For a full discussion, see “Exclusive Locking” and
“Locking and Thread Safety” in Chapter 22.

We can fix the previous example by obtaining an exclusive lock while reading and writing to
the shared field. C# provides the lock statement for just this purpose:

class ThreadSafe
{
  static bool _done;
  static readonly object _locker = new object();
 
  static void Main()
  {
    new Thread (Go).Start();
    Go();
  }
 
  static void Go()
  {
    lock (_locker)
    {
      if (!_done) { Console.WriteLine ("Done"); _done = true; }
    }
  }
}

When two threads simultaneously contend a lock (which can be upon any reference-type object,



in this case, _locker), one thread waits, or blocks, until the lock becomes available. In this
case, it ensures only one thread can enter its code block at a time, and “Done” will be printed
just once. Code that’s protected in such a manner — from indeterminacy in a multithreaded
context — is called thread-safe.

NOTE
Even the act of autoincrementing a variable is not thread-safe: the expression x++ executes on
the underlying processor as distinct read-increment-write operations. So, if two threads
execute x++ at once outside a lock, the variable may end up getting incremented once rather
than twice (or worse, x could be torn, ending up with a bitwise-mixture of old and new
content, under certain conditions).

Locking is not a silver bullet for thread safety — it’s easy to forget to lock around accessing a
field, and locking can create problems of its own (such as deadlocking).
A good example of when you might use locking is around accessing a shared in-memory cache
for frequently accessed database objects in an ASP.NET application. This kind of application
is simple to get right, and there’s no chance of deadlocking. We give an example in “Thread
Safety in Application Servers” in Chapter 22.

Passing Data to a Thread
Sometimes you’ll want to pass arguments to the thread’s startup method. The easiest way to do
this is with a lambda expression that calls the method with the desired arguments:

static void Main()
{
  Thread t = new Thread ( () => Print ("Hello from t!") );
  t.Start();
}

static void Print (string message) { Console.WriteLine (message); }

With this approach, you can pass in any number of arguments to the method. You can even wrap
the entire implementation in a multistatement lambda:

new Thread (() =>
{
  Console.WriteLine ("I'm running on another thread!");
  Console.WriteLine ("This is so easy!");
}).Start();

Lambda expressions didn’t exist prior to C# 3.0. So you might also come across an old-school
technique, which is to pass an argument into Thread’s Start method:

static void Main()
{
  Thread t = new Thread (Print);
  t.Start ("Hello from t!");
}

static void Print (object messageObj)
{
  string message = (string) messageObj;   // We need to cast here



  Console.WriteLine (message);
}

This works because Thread’s constructor is overloaded to accept either of two delegates:

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart (object obj);

The limitation of ParameterizedThreadStart is that it accepts only one argument. And
because it’s of type object, it usually needs to be cast.

Lambda expressions and captured variables
As we saw, a lambda expression is the most convenient and powerful way to pass data to a
thread. However, you must be careful about accidentally modifying captured variables after
starting the thread. For instance, consider the following:

for (int i = 0; i < 10; i++)
  new Thread (() => Console.Write (i)).Start();

The output is nondeterministic! Here’s a typical result:

0223557799

The problem is that the i variable refers to the same memory location throughout the loop’s
lifetime. Therefore, each thread calls Console.Write on a variable whose value may change
as it is running! The solution is to use a temporary variable as follows:

for (int i = 0; i < 10; i++)
{
  int temp = i;
  new Thread (() => Console.Write (temp)).Start();
}

Each of the digits 0 to 9 is then written exactly once. (The ordering is still undefined because
threads may start at indeterminate times.)

NOTE
This is analogous to the problem we described in “Captured Variables” in Chapter 8. The
problem is just as much about C#’s rules for capturing variables in for loops as it is about
multithreading.
This problem also applies to foreach loops prior to C# 5.

Variable temp is now local to each loop iteration. Therefore, each thread captures a different
memory location and there’s no problem. We can illustrate the problem in the earlier code
more simply with the following example:

string text = "t1";
Thread t1 = new Thread ( () => Console.WriteLine (text) );

text = "t2";
Thread t2 = new Thread ( () => Console.WriteLine (text) );



t1.Start(); t2.Start();

Because both lambda expressions capture the same text variable, t2 is printed twice.

Exception Handling
Any try/catch/finally blocks in effect when a thread is created are of no relevance to the
thread when it starts executing. Consider the following program:

public static void Main()
{
  try
  {
    new Thread (Go).Start();
  }
  catch (Exception ex)
  {
    // We'll never get here!
    Console.WriteLine ("Exception!");
  }
}

static void Go() { throw null; }   // Throws a NullReferenceException

The try/catch statement in this example is ineffective, and the newly created thread will be
encumbered with an unhandled NullReferenceException. This behavior makes sense when
you consider that each thread has an independent execution path.
The remedy is to move the exception handler into the Go method:

public static void Main()
{
   new Thread (Go).Start();
}

static void Go()
{
  try
  {
    ...
    throw null;    // The NullReferenceException will get caught below
    ...
  }
  catch (Exception ex)
  {
    Typically log the exception, and/or signal another thread
    that we've come unstuck
    ...
  }
}

You need an exception handler on all thread entry methods in production applications — just as
you do (usually at a higher level, in the execution stack) on your main thread. An unhandled
exception causes the whole application to shut down. With an ugly dialog box!

NOTE
In writing such exception handling blocks, rarely would you ignore the error: typically, you’d
log the details of the exception, and then perhaps display a dialog box allowing the user to
automatically submit those details to your web server. You then might choose to restart the



application, because it’s possible that an unexpected exception might leave your program in
an invalid state.

Centralized exception handling
In WPF, UWP, and Windows Forms applications, you can subscribe to “global” exception
handling events, Application.DispatcherUnhandledException and
Application.ThreadException, respectively. These fire after an unhandled exception in any
part of your program that’s called via the message loop (this amounts to all code that runs on
the main thread while the Application is active). This is useful as a backstop for logging and
reporting bugs (although it won’t fire for unhandled exceptions on non-UI threads that you
create). Handling these events prevents the program from shutting down, although you may
choose to restart the application to avoid the potential corruption of state that can follow from
(or that led to) the unhandled exception.
AppDomain.CurrentDomain.UnhandledException fires on any unhandled exception on any
thread, but since CLR 2.0, the CLR forces application shutdown after your event handler
completes. However, you can prevent shutdown by adding the following to your application
configuration file:

<configuration>
  <runtime>
    <legacyUnhandledExceptionPolicy enabled="1" />
  </runtime>
</configuration>

This can be useful in programs that host multiple application domains (Chapter 24): if an
unhandled exception occurs in a nondefault application domain, you can destroy and re-create
the offending domain rather than restarting the whole application.

Foreground Versus Background Threads
By default, threads you create explicitly are foreground threads. Foreground threads keep the
application alive for as long as any one of them is running, whereas background threads do
not. Once all foreground threads finish, the application ends, and any background threads still
running abruptly terminate.

NOTE
A thread’s foreground/background status has no relation to its priority (allocation of
execution time).

You can query or change a thread’s background status using its IsBackground property:

static void Main (string[] args)
{
  Thread worker = new Thread ( () => Console.ReadLine() );
  if (args.Length > 0) worker.IsBackground = true;
  worker.Start();
}



If this program is called with no arguments, the worker thread assumes foreground status and
will wait on the ReadLine statement for the user to press Enter. Meanwhile, the main thread
exits, but the application keeps running because a foreground thread is still alive. On the other
hand, if an argument is passed to Main(), the worker is assigned background status, and the
program exits almost immediately as the main thread ends (terminating the ReadLine).
When a process terminates in this manner, any finally blocks in the execution stack of
background threads are circumvented. If your program employs finally (or using) blocks to
perform cleanup work such as deleting temporary files, you can avoid this by explicitly waiting
out such background threads upon exiting an application, either by joining the thread, or with a
signaling construct (see “Signaling”). In either case, you should specify a timeout, so you can
abandon a renegade thread should it refuse to finish, otherwise your application will fail to
close without the user having to enlist help from the Task Manager.
Foreground threads don’t require this treatment, but you must take care to avoid bugs that could
cause the thread not to end. A common cause for applications failing to exit properly is the
presence of active foreground threads.

Thread Priority
A thread’s Priority property determines how much execution time it gets relative to other
active threads in the operating system, on the following scale:

enum ThreadPriority { Lowest, BelowNormal, Normal, AboveNormal, Highest }

This becomes relevant when multiple threads are simultaneously active. Elevating a thread’s
priority should be done with care as it can starve other threads. If you want a thread to have
higher priority than threads in other processes, you must also elevate the process priority using
the Process class in System.Diagnostics:

using (Process p = Process.GetCurrentProcess())
  p.PriorityClass = ProcessPriorityClass.High;

This can work well for non-UI processes that do minimal work and need low latency (the
ability to respond very quickly) in the work they do. With compute-hungry applications
(particularly those with a user interface), elevating process priority can starve other processes,
slowing down the entire computer.

Signaling
Sometimes you need a thread to wait until receiving notification(s) from other thread(s). This is
called signaling. The simplest signaling construct is ManualReset Event. Calling WaitOne on
a ManualResetEvent blocks the current thread until another thread “opens” the signal by
calling Set. In the following example, we start up a thread that waits on a ManualResetEvent.
It remains blocked for two seconds until the main thread signals it:

var signal = new ManualResetEvent (false);

new Thread (() =>
{
  Console.WriteLine ("Waiting for signal...");
  signal.WaitOne();
  signal.Dispose();



  Console.WriteLine ("Got signal!");
}).Start();

Thread.Sleep(2000);
signal.Set();        // "Open" the signal

After calling Set, the signal remains open; it may be closed again by calling Reset.
ManualResetEvent is one of several signaling constructs provided by the CLR; we cover all
of them in detail in Chapter 22.

Threading in Rich-Client Applications
In WPF, UWP, and Windows Forms applications, executing long-running operations on the
main thread makes the application unresponsive, because the main thread also processes the
message loop that performs rendering and handles keyboard and mouse events.
A popular approach is to start up “worker” threads for time-consuming operations. The code
on a worker thread runs a time-consuming operation and then updates the UI when complete.
However, all rich-client applications have a threading model whereby UI elements and
controls can be accessed only from the thread that created them (typically the main UI thread).
Violating this causes either unpredictable behavior, or an exception to be thrown.
Hence when you want to update the UI from a worker thread, you must forward the request to
the UI thread (the technical term is marshal). The low-level way to do this is as follows (later,
we’ll discuss other solutions that build on these):

In WPF, call BeginInvoke or Invoke on the element’s Dispatcher object.

In UWP apps, call RunAsync or Invoke on the Dispatcher object.

In Windows Forms, call BeginInvoke or Invoke on the control.

All of these methods accept a delegate referencing the method you want to run.
BeginInvoke/RunAsync work by enqueuing the delegate to the UI thread’s message queue
(the same queue that handles keyboard, mouse, and timer events). Invoke does the same thing,
but then blocks until the message has been read and processed by the UI thread. Because of
this, Invoke lets you get a return value back from the method. If you don’t need a return value,
BeginInvoke/RunAsync are preferable in that they don’t block the caller and don’t introduce
the possibility of deadlock (see “Deadlocks” in Chapter 22).

NOTE
You can imagine, that when you call Application.Run, the following pseudocode executes:

while (!thisApplication.Ended)
{
  wait for something to appear in message queue
  Got something: what kind of message is it?
    Keyboard/mouse message -> fire an event handler
    User BeginInvoke message -> execute delegate
     User Invoke message -> execute delegate & post result
 }

It’s this kind of loop that enables a worker thread to marshal a delegate for execution onto the
UI thread.



To demonstrate, suppose that we have a WPF window that contains a text box called
txtMessage, whose content we wish a worker thread to update after performing a time-
consuming task (which we will simulate by calling Thread.Sleep). Here’s how we’d do it:

partial class MyWindow : Window
{
  public MyWindow()
  {
    InitializeComponent();
    new Thread (Work).Start();
  }

  void Work()
  {
    Thread.Sleep (5000);           // Simulate time-consuming task
    UpdateMessage ("The answer");
  }

  void UpdateMessage (string message)
  {
    Action action = () => txtMessage.Text = message;
    Dispatcher.BeginInvoke (action);
  }
}

Running this results in a responsive window appearing immediately. Five seconds later, it
updates the text box. The code is similar for Windows Forms, except that we call the (Form’s)
BeginInvoke method instead:

  void UpdateMessage (string message)
  {
    Action action = () => txtMessage.Text = message;
    this.BeginInvoke (action);
  }

MULTIPLE UI THREADS
It’s possible to have multiple UI threads if they each own different windows. The main scenario is
when you have an application with multiple top-level windows, often called a Single Document
Interface (SDI) application, such as Microsoft Word. Each SDI window typically shows itself as a
separate “application” on the taskbar and is mostly isolated, functionally, from other SDI windows.
By giving each such window its own UI thread, each window can be made more responsive with
respect to the others.

Synchronization Contexts
In the System.ComponentModel namespace, there’s an abstract class called
SynchronizationContext that enables the generalization of thread marshaling.
The rich-client APIs for mobile and desktop (UWP, WPF, and Windows Forms) each define
and instantiate SynchronizationContext subclasses, which you can obtain via the static
property SynchronizationContext.Current (while running on a UI thread). Capturing this
property lets you later “post” to UI controls from a worker thread:

partial class MyWindow : Window
{
  SynchronizationContext _uiSyncContext;

  public MyWindow()



  {
    InitializeComponent();
    // Capture the synchronization context for the current UI thread:
    _uiSyncContext = SynchronizationContext.Current;
    new Thread (Work).Start();
  }

  void Work()
  {
    Thread.Sleep (5000);           // Simulate time-consuming task
    UpdateMessage ("The answer");
  }

  void UpdateMessage (string message)
  {
    // Marshal the delegate to the UI thread:
    _uiSyncContext.Post (_ => txtMessage.Text = message, null);
  }
}

This is useful because the same technique works with all rich-client User Interface APIs
(SynchronizationContext also has an ASP.NET specialization where it serves a more
subtle role, ensuring that page processing events are processed sequentially following
asynchronous operations, and to preserve the HttpContext).
Calling Post is equivalent to calling BeginInvoke on a Dispatcher or Control; there’s also
a Send method, which is equivalent to Invoke.

NOTE
Framework 2.0 introduced the BackgroundWorker class, which used the
SynchronizationContext class to make the job of managing worker threads in rich-client
applications a little easier. BackgroundWorker has since been made redundant by the Tasks and
asynchronous functions, which as we’ll see, also leverage SynchronizationContext.

The Thread Pool
Whenever you start a thread, a few hundred microseconds are spent organizing such things as a
fresh local variable stack. The thread pool cuts this overhead by having a pool of pre-created
recyclable threads. Thread pooling is essential for efficient parallel programming and fine-
grained concurrency; it allows short operations to run without being overwhelmed with the
overhead of thread startup.
There are a few things to be wary of when using pooled threads:

You cannot set the Name of a pooled thread, making debugging more difficult (although you
can attach a description when debugging in Visual Studio’s Threads window).

Pooled threads are always background threads.

Blocking pooled threads can degrade performance (see “Hygiene in the thread pool”).

You are free to change the priority of a pooled thread — it will be restored to normal when
released back to the pool.
You can query if you’re currently executing on a pooled thread via the property
Thread.CurrentThread.IsThreadPoolThread.



Entering the thread pool
The easiest way to explicitly run something on a pooled thread is to use Task.Run (we’ll
cover this in more detail in the following section):

// Task is in System.Threading.Tasks
Task.Run (() => Console.WriteLine ("Hello from the thread pool"));

As tasks didn’t exist prior to Framework 4.0, a common alternative is to call
ThreadPool.QueueUserWorkItem:

ThreadPool.QueueUserWorkItem (notUsed => Console.WriteLine ("Hello"));

NOTE
The following use the thread pool implicitly:

WCF, Remoting, ASP.NET, and ASMX Web Services application servers

System.Timers.Timer and System.Threading.Timer

The parallel programming constructs that we describe in Chapter 23

The (now redundant) BackgroundWorker class

Asynchronous delegates (also now redundant)

Hygiene in the thread pool
The thread pool serves another function, which is to ensure that a temporary excess of
compute-bound work does not cause CPU oversubscription. Oversubscription is the condition
of there being more active threads than CPU cores, with the operating system having to time-
slice threads. Oversubscription hurts performance because time-slicing requires expensive
context switches and can invalidate the CPU caches that have become essential in delivering
performance to modern processors.
The CLR avoids oversubscription in the thread pool by queuing tasks and throttling their
startup. It begins by running as many concurrent tasks as there are hardware cores, and then
tunes the level of concurrency via a hill-climbing algorithm, continually adjusting the workload
in a particular direction. If throughput improves, it continues in the same direction (otherwise it
reverses). This ensures that it always tracks the optimal performance curve — even in the face
of competing process activity on the computer.
The CLR’s strategy works best if two conditions are met:

Work items are mostly short-running (<250ms, or ideally <100ms), so that the CLR has
plenty of opportunities to measure and adjust.

Jobs that spend most of their time blocked do not dominate the pool.

Blocking is troublesome because it gives the CLR the false idea that it’s loading up the CPU.
The CLR is smart enough to detect and compensate (by injecting more threads into the pool),
although this can make the pool vulnerable to subsequent oversubscription. It also may



introduce latency, as the CLR throttles the rate at which it injects new threads, particularly
early in an application’s life (more so on client operating systems where it favors lower
resource consumption).
Maintaining good hygiene in the thread pool is particularly relevant when you want to fully
utilize the CPU (e.g., via the parallel programming APIs in Chapter 23).

Tasks
A thread is a low-level tool for creating concurrency, and as such it has limitations. In
particular:

While it’s easy to pass data into a thread that you start, there’s no easy way to get a “return
value” back from a thread that you Join. You have to set up some kind of shared field. And
if the operation throws an exception, catching and propagating that exception is equally
painful.

You can’t tell a thread to start something else when it’s finished; instead you must Join it
(blocking your own thread in the process).

These limitations discourage fine-grained concurrency; in other words, they make it hard to
compose larger concurrent operations by combining smaller ones (something essential for the
asynchronous programming that we’ll look at in following sections). This in turn leads to
greater reliance on manual synchronization (locking, signaling, and so on) and the problems
that go with it.
The direct use of threads also has performance implications that we discussed in “The Thread
Pool”. And should you need to run hundreds or thousands of concurrent I/O-bound operations,
a thread-based approach consumes hundreds or thousands of MB of memory purely in thread
overhead.
The Task class helps with all of these problems. Compared to a thread, a Task is higher-level
abstraction — it represents a concurrent operation that may or may not be backed by a thread.
Tasks are compositional (you can chain them together through the use of continuations). They
can use the thread pool to lessen startup latency, and with a TaskCompletionSource, they can
leverage a callback approach that avoids threads altogether while waiting on I/O-bound
operations.
The Task types were introduced in Framework 4.0 as part of the parallel programming library.
However, they have since been enhanced (through the use of awaiters) to play equally well in
more general concurrency scenarios, and are backing types for C#’s asynchronous functions.

NOTE
In this section, we’ll ignore the features of tasks that are aimed specifically at parallel
programming and cover them instead in Chapter 23.

Starting a Task
From Framework 4.5, the easiest way to start a Task backed by a thread is with the static
method Task.Run (the Task class is in the System.Threading.Tasks namespace). Simply



pass in an Action delegate:

Task.Run (() => Console.WriteLine ("Foo"));

The Task.Run method was introduced in Framework 4.5. In Framework 4.0, you can
accomplish the same thing by calling Task.Factory.StartNew. (The former is mostly a
shortcut for the latter.)

NOTE
Tasks use pooled threads by default, which are background threads. This means that when
the main thread ends, so do any tasks that you create. Hence, to run these examples from a
Console application, you must block the main thread after starting the task (for instance, by
Waiting the task or by calling Console.ReadLine):

static void Main()
{
  Task.Run (() => Console.WriteLine ("Foo"));
  Console.ReadLine();
 }

In the book’s LINQPad companion samples, Console.ReadLine is omitted because the
LINQPad process keeps background threads alive.

Calling Task.Run in this manner is similar to starting a thread as follows (except for the thread
pooling implications that we’ll discuss shortly):

new Thread (() => Console.WriteLine ("Foo")).Start();

Task.Run returns a Task object that we can use to monitor its progress, rather like a Thread
object. (Notice, however, that we didn’t call Start after calling Task.Run because this
method creates “hot” tasks; you can instead use Task’s constructor to create “cold” tasks,
although this is rarely done in practice.)
You can track a task’s execution status via its Status property.

Wait
Calling Wait on a task blocks until it completes and is the equivalent of calling Join on a
thread:

Task task = Task.Run (() =>
{
  Thread.Sleep (2000);
  Console.WriteLine ("Foo");
});
Console.WriteLine (task.IsCompleted);  // False
task.Wait();  // Blocks until task is complete

Wait lets you optionally specify a timeout and a cancellation token to end the wait early (see
“Cancellation”).

Long-running tasks
By default, the CLR runs tasks on pooled threads, which is ideal for short-running compute-



bound work. For longer-running and blocking operations (such as our preceding example), you
can prevent use of a pooled thread as follows:

Task task = Task.Factory.StartNew (() => ...,
                                   TaskCreationOptions.LongRunning);

NOTE
Running one long-running task on a pooled thread won’t cause trouble; it’s when you run
multiple long-running tasks in parallel (particularly ones that block) that performance can
suffer. And in that case, there are usually better solutions than
TaskCreationOptions.LongRunning:

If the tasks are I/O-bound, TaskCompletionSource and asynchronous functions let you
implement concurrency with callbacks (continuations) instead of threads.

If the tasks are compute-bound, a producer/consumer queue lets you throttle the
concurrency for those tasks, avoiding starvation for other threads and processes (see
“Writing a Producer/Consumer Queue” in Chapter 23).

Returning Values
Task has a generic subclass called Task<TResult> that allows a task to emit a return value.
You can obtain a Task<TResult> by calling Task.Run with a Func<TResult> delegate (or a
compatible lambda expression) instead of an Action:

Task<int> task = Task.Run (() => { Console.WriteLine ("Foo"); return 3; });
// ...

You can obtain the result later by querying the Result property. If the task hasn’t yet finished,
accessing this property will block the current thread until the task finishes:

int result = task.Result;      // Blocks if not already finished
Console.WriteLine (result);    // 3

In the following example, we create a task that uses LINQ to count the number of prime
numbers in the first three million (+2) integers:

Task<int> primeNumberTask = Task.Run (() =>
  Enumerable.Range (2, 3000000).Count (n =>
    Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

Console.WriteLine ("Task running...");
Console.WriteLine ("The answer is " + primeNumberTask.Result);

This writes “Task running...”, and then a few seconds later, writes the answer of 216815.

NOTE
Task<TResult> can be thought of as a “future,” in that it encapsulates a Result that becomes
available later in time.
Interestingly, when Task and Task<TResult> first debuted in an early CTP, the latter was



actually called Future<TResult>.

Exceptions
Unlike with threads, tasks conveniently propagate exceptions. So, if the code in your task
throws an unhandled exception (in other words, if your task faults), that exception is
automatically re-thrown to whoever calls Wait() — or accesses the Result property of a
Task<TResult>:

// Start a Task that throws a NullReferenceException:
Task task = Task.Run (() => { throw null; });
try
{
  task.Wait();
}
catch (AggregateException aex)
{
  if (aex.InnerException is NullReferenceException)
    Console.WriteLine ("Null!");
  else
    throw;
}

(The CLR wraps the exception in an AggregateException in order to play well with parallel
programming scenarios; we discuss this in Chapter 23.)
You can test for a faulted task without re-throwing the exception via the IsFaulted and
IsCanceled properties of the Task. If both properties return false, no error occurred; if
IsCanceled is true, an OperationCanceledException was thrown for that task (see
“Cancellation”); if IsFaulted is true, another type of exception was thrown and the
Exception property will indicate the error.

Exceptions and autonomous tasks
With autonomous “set-and-forget” tasks (those for which you don’t rendezvous via Wait() or
Result, or a continuation that does the same), it’s good practice to explicitly exception-handle
the task code to avoid silent failure, just as you would with a thread.
Unhandled exceptions on autonomous tasks are called unobserved exceptions and in CLR 4.0,
they would actually terminate your program (the CLR would re-throw the exception on the
finalizer thread when the task dropped out of scope and was garbage collected). This was
helpful in indicating that a problem had occurred that you might not have been aware of;
however the timing of the error could be deceptive in that the garbage collector can lag
significantly behind the offending task. Hence, when it was discovered that this behavior
complicated certain patterns of asynchrony (see “Parallelism” and “WhenAll”), it was dropped
in CLR 4.5.

NOTE
Ignoring exceptions is fine when an exception solely indicates a failure to obtain a result that
you’re no longer interested in. For example, if a user cancels a request to download a web
page, we wouldn’t care if it turns out that the web page didn’t exist.
Ignoring exceptions is problematic when an exception indicates a bug in your program, for
two reasons:



The bug may have left your program in an invalid state.

More exceptions may occur later as a result of the bug, and failure to log the initial error
can make diagnosis difficult.

You can subscribe to unobserved exceptions at a global level via the static event
TaskScheduler.UnobservedTaskException; handling this event and logging the error can
make good sense.
There are a couple of interesting nuances on what counts as unobserved:

Tasks waited upon with a timeout will generate an unobserved exception if the faults occurs
after the timeout interval.

The act of checking a task’s Exception property after it has faulted makes the exception
“observed.”

Continuations
A continuation says to a task, “when you’ve finished, continue by doing something else.” A
continuation is usually implemented by a callback that executes once upon completion of an
operation. There are two ways to attach a continuation to a task. The first was introduced in
Framework 4.5 and is particularly significant because it’s used by C#’s asynchronous
functions, as we’ll see soon. We can demonstrate it with the prime number counting task that
we wrote a short while ago in “Returning Values”:

Task<int> primeNumberTask = Task.Run (() =>
  Enumerable.Range (2, 3000000).Count (n =>
    Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

var awaiter = primeNumberTask.GetAwaiter();
awaiter.OnCompleted (() =>
{
  int result = awaiter.GetResult();
  Console.WriteLine (result);       // Writes result
 });

Calling GetAwaiter on the task returns an awaiter object whose OnCompleted method tells
the antecedent task (primeNumberTask) to execute a delegate when it finishes (or faults). It’s
valid to attach a continuation to an already-completed task, in which case the continuation will
be scheduled to execute right away.

NOTE
An awaiter is any object that exposes the two methods that we’ve just seen (OnCompleted
and GetResult), and a Boolean property called IsCompleted. There’s no interface or base
class to unify all of these members (although OnCompleted is part of the interface
INotifyCompletion). We’ll explain the significance of the pattern in “Asynchronous Functions
in C#”.

If an antecedent task faults, the exception is re-thrown when the continuation code calls



awaiter.GetResult(). Rather than calling GetResult, we could simply access the Result
property of the antecedent. The benefit of calling GetResult is that if the antecedent faults, the
exception is thrown directly without being wrapped in AggregateException, allowing for
simpler and cleaner catch blocks.
For nongeneric tasks, GetResult() has a void return value. Its useful function is then solely to
rethrow exceptions.
If a synchronization context is present, OnCompleted automatically captures it and posts the
continuation to that context. This is very useful in rich-client applications, as it bounces the
continuation back to the UI thread. In writing libraries, however, it’s not usually desirable
because the relatively expensive UI-thread-bounce should occur just once upon leaving the
library, rather than between method calls. Hence you can defeat it the ConfigureAwait
method:

var awaiter = primeNumberTask.ConfigureAwait (false).GetAwaiter();

If no synchronization context is present — or you use ConfigureAwait(false) — the
continuation will (in general) execute on the same thread as the antecedent, avoiding
unnecessary overhead.
The other way to attach a continuation is by calling the task’s ContinueWith method:

primeNumberTask.ContinueWith (antecedent =>
{
  int result = antecedent.Result;
  Console.WriteLine (result);          // Writes 123
 });

ContinueWith itself returns a Task, which is useful if you want to attach further continuations.
However, you must deal directly with AggregateException if the task faults, and write extra
code to marshal the continuation in UI applications (see “Task Schedulers” in Chapter 23). And
in non-UI contexts, you must specify TaskContinuationOptions.ExecuteSynchronously if
you want the continuation to execute on the same thread; otherwise it will bounce to the thread
pool. ContinueWith is particularly useful in parallel programming scenarios; we cover it in
detail in “Continuations” in Chapter 23.

TaskCompletionSource
We’ve seen how Task.Run creates a task that runs a delegate on a pooled (or nonpooled)
thread. Another way to create a task is with TaskCompletionSource.
TaskCompletionSource lets you create a task out of any operation that starts and finishes
some time later. It works by giving you a “slave” task that you manually drive — by indicating
when the operation finishes or faults. This is ideal for I/O-bound work: you get all the benefits
of tasks (with their ability to propagate return values, exceptions, and continuations) without
blocking a thread for the duration of the operation.
To use TaskCompletionSource, you simply instantiate the class. It exposes a Task property
that returns a task upon which you can wait and attach continuations — just as with any other
task. The task, however, is controlled entirely by the TaskCompletionSource object via the
following methods:

public class TaskCompletionSource<TResult>



{
  public void SetResult (TResult result);
  public void SetException (Exception exception);
  public void SetCanceled();

  public bool TrySetResult (TResult result);
  public bool TrySetException (Exception exception);
  public bool TrySetCanceled();
  public bool TrySetCanceled (CancellationToken cancellationToken);
  ...
}

Calling any of these methods signals the task, putting it into a completed, faulted, or canceled
state (we’ll cover the latter in the section “Cancellation”). You’re supposed to call one of these
methods exactly once: if called again, SetResult, SetException, or SetCanceled will
throw an exception, whereas the Try* methods return false.
The following example prints 42 after waiting for five seconds:

var tcs = new TaskCompletionSource<int>();

new Thread (() => { Thread.Sleep (5000); tcs.SetResult (42); })
  { IsBackground = true }
  .Start();

Task<int> task = tcs.Task;         // Our "slave" task.
Console.WriteLine (task.Result);   // 42

With TaskCompletionSource, we can write our own Run method:

Task<TResult> Run<TResult> (Func<TResult> function)
{
  var tcs = new TaskCompletionSource<TResult>();
  new Thread (() =>
  {
    try { tcs.SetResult (function()); }
    catch (Exception ex) { tcs.SetException (ex); }
  }).Start();
  return tcs.Task;
}
...
Task<int> task = Run (() => { Thread.Sleep (5000); return 42; });

Calling this method is equivalent to calling Task.Factory.StartNew with the
TaskCreationOptions.LongRunning option to request a nonpooled thread.
The real power of TaskCompletionSource is in creating tasks that don’t tie up threads. For
instance, consider a task that waits for five seconds and then returns the number 42. We can
write this without a thread by using the Timer class, which with the help of the CLR (and in
turn, the operating system) fires an event in x milliseconds (we revisit timers in Chapter 22):

Task<int> GetAnswerToLife()
{
  var tcs = new TaskCompletionSource<int>();
  // Create a timer that fires once in 5000 ms:
  var timer = new System.Timers.Timer (5000) { AutoReset = false };
  timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (42); };
  timer.Start();
  return tcs.Task;
}

Hence our method returns a task that completes five seconds later, with a result of 42. By



attaching a continuation to the task, we can write its result without blocking any thread:

var awaiter = GetAnswerToLife().GetAwaiter();
awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult()));

We could make this more useful and turn it into a general-purpose Delay method by
parameterizing the delay time and getting rid of the return value. This means having it return a
Task instead of a Task<int>. However, there’s no nongeneric version of
TaskCompletionSource, which means we can’t directly create a nongeneric Task. The
workaround is simple: since Task<TResult> derives from Task, we create a
TaskCompletionSource<anything> and then implicitly convert the Task<anything> that it
gives you into a Task, like this:

var tcs = new TaskCompletionSource<object>();
Task task = tcs.Task;

Now we can write our general-purpose Delay method:

Task Delay (int milliseconds)
{
  var tcs = new TaskCompletionSource<object>();
  var timer = new System.Timers.Timer (milliseconds) { AutoReset = false };
  timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (null); };
  timer.Start();
  return tcs.Task;
}

Here’s how we can use it to write “42” after five seconds:

Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

Our use of TaskCompletionSource without a thread means that a thread is engaged only when
the continuation starts, five seconds later. We can demonstrate this by starting 10,000 of these
operations at once without error or excessive resource consumption:

for (int i = 0; i < 10000; i++)
  Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

NOTE
Timers fire their callbacks on pooled threads, so after five seconds, the thread pool will
receive 10,000 requests to call SetResult(null) on a TaskCompletionSource. If the requests
arrive faster than they can be processed, the thread pool will respond by enqueuing and then
processing them at the optimum level of parallelism for the CPU. This is ideal if the thread-
bound jobs are short-running, which is true in this case: the thread-bound job is merely the
call to SetResult plus either the action of posting the continuation to the synchronization
context (in a UI application) or otherwise the continuation itself (Console.WriteLine(42)).

Task.Delay
The Delay method that we just wrote is sufficiently useful that it’s available as a static method
on the Task class:



Task.Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

or:

Task.Delay (5000).ContinueWith (ant => Console.WriteLine (42));

Task.Delay is the asynchronous equivalent of Thread.Sleep.

Principles of Asynchrony
In demonstrating TaskCompletionSource, we ended up writing asynchronous methods. In this
section, we’ll define exactly what asynchronous operations are, and explain how this leads to
asynchronous programming.

Synchronous Versus Asynchronous Operations
A synchronous operation does its work before returning to the caller.
An asynchronous operation does (most or all of) its work after returning to the caller.
The majority of methods that you write and call are synchronous. An example is List<T>.Add,
or Console.WriteLine, or Thread.Sleep. Asynchronous methods are less common, and
initiate concurrency, because work continues in parallel to the caller. Asynchronous methods
typically return quickly (or immediately) to the caller; hence they are also called nonblocking
methods.
Most of the asynchronous methods that we’ve seen so far can be described as general-purpose
methods:

Thread.Start

Task.Run

Methods that attach continuations to tasks

In addition, some of the methods that we discussed in “Synchronization Contexts”
(Dispatcher.BeginInvoke, Control.BeginInvoke and SynchronizationContext.Post)
are asynchronous, as are the methods that we wrote in the section “TaskCompletionSource”,
including Delay.

What Is Asynchronous Programming?
The principle of asynchronous programming is that you write long-running (or potentially long-
running) functions asynchronously. This is in contrast to the conventional approach of writing
long-running functions synchronously, and then calling those functions from a new thread or
task to introduce concurrency as required.
The difference with the asynchronous approach is that concurrency is initiated inside the long-
running function, rather than from outside the function. This has two benefits:

I/O-bound concurrency can be implemented without tying up threads (as we demonstrated in
“TaskCompletionSource”), improving scalability and efficiency.

Rich-client applications end up with less code on worker threads, simplifying thread safety.



This, in turn, leads to two distinct uses for asynchronous programming. The first is writing
(typically server-side) applications that deal efficiently with a lot of concurrent I/O. The
challenge here is not thread safety (as there’s usually minimal shared state) but thread
efficiency; in particular, not consuming a thread per network request. Hence in this context, it’s
only I/O-bound operations that benefit from asynchrony.
The second use is to simplify thread safety in rich-client applications. This is particularly
relevant as a program grows in size, because to deal with complexity, we typically refactor
larger methods into smaller ones, resulting in chains of methods that call one another (call
graphs).
With a traditional synchronous call graph, if any operation within the graph is long-running, we
must run the entire call graph on a worker thread to maintain a responsive UI. Hence, we end
up with a single concurrent operation that spans many methods (coarse-grained concurrency),
and this requires considering thread safety for every method in the graph.
With an asynchronous call graph, we need not start a thread until it’s actually needed, typically
low in the graph (or not at all in the case of I/O-bound operations). All other methods can run
entirely on the UI thread, with much-simplified thread safety. This results in fine-grained
concurrency — a sequence of small concurrent operations, in between which execution
bounces to the UI thread.

NOTE
To benefit from this, both I/O- and compute-bound operations need to be written
asynchronously; a good rule of thumb is to include anything that might take longer than
50ms.
(On the flipside, excessively fine-grained asynchrony can hurt performance, because
asynchronous operations incur an overhead — see “Optimizations”.)

In this chapter, we’ll focus mostly on the rich-client scenario which is the more complex of the
two. In Chapter 16, we give two examples that illustrate the I/O-bound scenario (see
“Concurrency with TCP” and “Writing an HTTP Server”).

NOTE
The UWP (and Silverlight) frameworks encourage asynchronous programming to the point
where synchronous versions of some long-running methods are either not exposed, or throw
exceptions. Instead, you must call asynchronous methods that return tasks (or objects that
can be converted into tasks via the AsTask extension method).

Asynchronous Programming and Continuations
Tasks are ideally suited to asynchronous programming, because they support continuations that
are essential for asynchrony (consider the Delay method that we wrote previously in
“TaskCompletionSource”). In writing Delay, we used TaskCompletionSource, which is a
standard way to implement “bottom-level” I/O-bound asynchronous methods.
For compute-bound methods, we use Task.Run to initiate thread-bound concurrency. Simply



by returning the task to the caller, we create an asynchronous method. What distinguishes
asynchronous programming is that we aim to do so lower in the call graph, so that in rich-client
applications, higher-level methods can remain on the UI thread and access controls and shared
state without thread-safety issues. To illustrate, consider the following method, which computes
and counts prime numbers, using all available cores (we discuss ParallelEnumerable in
Chapter 23):

int GetPrimesCount (int start, int count)
{
   return
    ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0));
}

The details of how this works are unimportant; what matters is that it can take a while to run.
We can demonstrate this by writing another method to call it:

void DisplayPrimeCounts()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (GetPrimesCount (i*1000000 + 2, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
  Console.WriteLine ("Done!");
}

with the following output:

78498 primes between 0 and 999999
70435 primes between 1000000 and 1999999
67883 primes between 2000000 and 2999999
66330 primes between 3000000 and 3999999
65367 primes between 4000000 and 4999999
64336 primes between 5000000 and 5999999
63799 primes between 6000000 and 6999999
63129 primes between 7000000 and 7999999
62712 primes between 8000000 and 8999999
62090 primes between 9000000 and 9999999

Now we have a call graph, with DisplayPrimeCounts calling GetPrimesCount. The former
uses Console.WriteLine for simplicity, although in reality it would more likely be updating
UI controls in a rich-client application, as we’ll demonstrate later. We can initiate coarse-
grained concurrency for this call graph as follows:

Task.Run (() => DisplayPrimeCounts());

With a fine-grained asynchronous approach, we instead start by writing an asynchronous
version of GetPrimesCount:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
     ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

Why Language Support Is Important
Now we must modify DisplayPrimeCounts so that it calls GetPrimesCountAsync. This is



where C#’s new await and async keywords come into play, because to do so otherwise is
trickier than it sounds. If we simply modify the loop as follows:

for (int i = 0; i < 10; i++)
{
  var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>
    Console.WriteLine (awaiter.GetResult() + " primes between... "));
}
Console.WriteLine ("Done");

then the loop will rapidly spin through ten iterations (the methods being nonblocking) and all
ten operations will execute in parallel (followed by a premature “Done”).

NOTE
Executing these tasks in parallel is undesirable in this case because their internal
implementations are already parallelized; it will only make us wait longer to see the first
results (and muck up the ordering).
There is a much more common reason, however, for needing to serialize the execution of
tasks, which is that Task B depends on the result of Task A. For example, in fetching a web
page, a DNS lookup must precede the HTTP request.

To get them running sequentially, we must trigger the next loop iteration from the continuation
itself. This means eliminating the for loop and resorting to a recursive call in the continuation:

void DisplayPrimeCounts()
{
  DisplayPrimeCountsFrom (0);
}

void DisplayPrimeCountsFrom (int i)
{
  var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>
  {
    Console.WriteLine (awaiter.GetResult() + " primes between...");
    if (++i < 10) DisplayPrimeCountsFrom (i);
    else Console.WriteLine ("Done");
  });
}

It gets even worse if we want to make DisplayPrimesCount itself asynchronous, returning a
task that it signals upon completion. To accomplish this requires creating a
TaskCompletionSource:

Task DisplayPrimeCountsAsync()
{
  var machine = new PrimesStateMachine();
  machine.DisplayPrimeCountsFrom (0);
  return machine.Task;
}

class PrimesStateMachine
{
  TaskCompletionSource<object> _tcs = new TaskCompletionSource<object>();
  public Task Task { get { return _tcs.Task; } }

  public void DisplayPrimeCountsFrom (int i)



  {
    var awaiter = GetPrimesCountAsync (i*1000000+2, 1000000).GetAwaiter();
    awaiter.OnCompleted (() =>
    {
      Console.WriteLine (awaiter.GetResult());
      if (++i < 10) DisplayPrimeCountsFrom (i);
      else { Console.WriteLine ("Done"); _tcs.SetResult (null); }
    });
  }
}

Fortunately, C#’s asynchronous functions do all of this work for us. With the async and await
keywords, we need only write this:

async Task DisplayPrimeCountsAsync()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (await GetPrimesCountAsync (i*1000000 + 2, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
  Console.WriteLine ("Done!");
}

Hence async and await are essential for implementing asynchrony without excessive
complexity. Let’s now see how these keywords work.

NOTE
Another way of looking at the problem is that imperative looping constructs (for, foreach and
so on), do not mix well with continuations, because they rely on the current local state of the
method (“how many more times is this loop going to run?”).
While the async and await keywords offer one solution, it’s sometimes possible to solve it in
another way by replacing the imperative looping constructs with the functional equivalent (in
other words, LINQ queries). This is the basis of Reactive Framework (Rx) and can be a
good option when you want to execute query operators over the result — or combine
multiple sequences. The price to pay is that to avoid blocking, Rx operates over push-based
sequences, which can be conceptually tricky.

Asynchronous Functions in C#
C# 5.0 introduced the async and await keywords. These keywords let you write asynchronous
code that has the same structure and simplicity as synchronous code, as well as eliminating the
“plumbing” of asynchronous programming.

Awaiting
The await keyword simplifies the attaching of continuations. Starting with a basic scenario,
the compiler expands:

var result = await expression;
statement(s);

into something functionally similar to:

var awaiter = expression.GetAwaiter();
awaiter.OnCompleted (() =>     



{
  var result = awaiter.GetResult();
  statement(s);
});

NOTE
The compiler also emits code to short-circuit the continuation in case of synchronous
completion (see “Optimizations”) and to handle various nuances that we’ll pick up in later
sections.

To demonstrate, let’s revisit the asynchronous method that we wrote previously that computes
and counts prime numbers:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
     ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));
}

With the await keyword, we can call it as follows:

int result = await GetPrimesCountAsync (2, 1000000);
Console.WriteLine (result);

In order to compile, we need to add the async modifier to the containing method:

async void DisplayPrimesCount()
{
  int result = await GetPrimesCountAsync (2, 1000000);
  Console.WriteLine (result);
}

The async modifier tells the compiler to treat await as a keyword rather than an identifier
should an ambiguity arise within that method (this ensures that code written prior to C# 5 that
might use await as an identifier will still compile without error). The async modifier can be
applied only to methods (and lambda expressions) that return void or (as we’ll see later) a
Task or Task<TResult>.

NOTE
The async modifier is similar to the unsafe modifier in that it has no effect on a method’s
signature or public metadata; it affects only what happens inside the method. For this reason,
it makes no sense to use async in an interface. However it is legal, for instance, to introduce
async when overriding a non-async virtual method, as long as you keep the signature the
same.

Methods with the async modifier are called asynchronous functions, because they themselves
are typically asynchronous. To see why, let’s look at how execution proceeds through an
asynchronous function.



Upon encountering an await expression, execution (normally) returns to the caller — rather
like with yield return in an iterator. But before returning, the runtime attaches a continuation
to the awaited task, ensuring that when the task completes, execution jumps back into the
method and continues where it left off. If the task faults, its exception is re-thrown, otherwise
its return value is assigned to the await expression. We can summarize everything we just said
by looking at the logical expansion of the preceding asynchronous method:

void DisplayPrimesCount()
{
  var awaiter = GetPrimesCountAsync (2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>   
  {
    int result = awaiter.GetResult();
    Console.WriteLine (result);
  });
}

The expression upon which you await is typically a task; however, any object with a
GetAwaiter method that returns an awaitable object (implementing
INotifyCompletion.OnCompleted and with an appropriately typed GetResult method and a
bool IsCompleted property) will satisfy the compiler.
Notice that our await expression evaluates to an int type; this is because the expression that
we awaited was a Task<int> (whose GetAwaiter().GetResult() method returns an int).
Awaiting a nongeneric task is legal and generates a void expression:

await Task.Delay (5000);
Console.WriteLine ("Five seconds passed!");

Capturing local state
The real power of await expressions is that they can appear almost anywhere in code.
Specifically, an await expression can appear in place of any expression (within an
asynchronous function) except for inside a lock expression, unsafe context, or an executable’s
entry point (main method).
In the following example, we await inside a loop:

async void DisplayPrimeCounts()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (await GetPrimesCountAsync (i*1000000+2, 1000000));
}

Upon first executing GetPrimesCountAsync, execution returns to the caller by virtue of the
await expression. When the method completes (or faults), execution resumes where it left off,
with the values of local variables and loop counters preserved.
Without the await keyword, the simplest equivalent might be the example we wrote in “Why
Language Support Is Important”. The compiler, however, takes the more general strategy of
refactoring such methods into state machines (rather like it does with iterators).
The compiler relies on continuations (via the awaiter pattern) to resume execution after an
await expression. This means that if running on the UI thread of a rich-client application, the
synchronization context ensures execution resumes on the same thread. Otherwise, execution
resumes on whatever thread the task finished on. The change-of-thread does not affect the order



of execution and is of little consequence unless you’re somehow relying on thread affinity,
perhaps through the use of thread-local storage (see “Thread-Local Storage” in Chapter 22).
It’s rather like touring a city and hailing taxis to get from one destination to another. With a
synchronization context, you’ll always get the same taxi; with no synchronization context, you’ll
usually get a different taxi each time. In either case, though, the journey is the same.

Awaiting in a UI
We can demonstrate asynchronous functions in a more practical context by writing a simple UI
that remains responsive while calling a compute-bound method. Let’s start with a synchronous
solution:

class TestUI : Window
{
  Button _button = new Button { Content = "Go" };
  TextBlock _results = new TextBlock();
   
  public TestUI()
  {
    var panel = new StackPanel();
    panel.Children.Add (_button);
    panel.Children.Add (_results);
    Content = panel;
    _button.Click += (sender, args) => Go();
  }
   
  void Go()
  {
    for (int i = 1; i < 5; i++)
      _results.Text += GetPrimesCount (i * 1000000, 1000000) +
        " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
        Environment.NewLine;
  }
   
  int GetPrimesCount (int start, int count)
  {
    return ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0));
  }
}

Upon pressing the “Go” button, the application becomes unresponsive for the time it takes to
execute the compute-bound code. There are two steps in asynchronizing this; the first is to
switch to the asynchronous version of GetPrimesCount that we used in previous examples:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
    ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

The second step is to modify Go to call GetPrimesCountAsync:

async void Go()
{
  _button.IsEnabled = false;
  for (int i = 1; i < 5; i++)
    _results.Text += await GetPrimesCountAsync (i * 1000000, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
      Environment.NewLine;
  _button.IsEnabled = true;
}



This illustrates the simplicity of programming with asynchronous functions: you program as you
would synchronously, but call asynchronous functions instead of blocking functions and await
them. Only the code within GetPrimesCountAsync runs on a worker thread; the code in Go
“leases” time on the UI thread. We could say that Go executes pseudoconcurrently to the
message loop (in that its execution is interspersed with other events that the UI thread
processes). With this pseudoconcurrency, the only point at which preemption can occur is
during an await. This simplifies thread-safety: in our case, the only problem that this could
cause is reentrancy (clicking the button again while it’s running, which we avoid by disabling
the button). True concurrency occurs lower in the call stack, inside code called by Task.Run.
To benefit from this model, truly concurrent code avoids accessing shared state or UI controls.
To give another example, suppose that instead of calculating prime numbers, we want to
download several web pages and sum their lengths. Framework 4.5 (and later) exposes
numerous task-returning asynchronous methods, one of which is the WebClient class in
System.Net. The DownloadDataTaskAsync method asynchronously downloads a URI to a
byte array, returning a Task<byte[]>, so by awaiting it, we get a byte[]. Let’s now rewrite
our Go method:

async void Go()
{
  _button.IsEnabled = false;
  string[] urls = "www.albahari.com www.oreilly.com www.linqpad.net".Split();
  int totalLength = 0;
  try
  {
    foreach (string url in urls)
    {
      var uri = new Uri ("http://" + url);
      byte[] data = await new WebClient().DownloadDataTaskAsync (uri);
      _results.Text += "Length of " + url + " is " + data.Length +
                       Environment.NewLine;
      totalLength += data.Length;
    }
    _results.Text += "Total length: " + totalLength;
  }
  catch (WebException ex)
  {
    _results.Text += "Error: " + ex.Message;
  }
  finally { _button.IsEnabled = true; }
}

Again, this mirrors how we’d write it synchronously — including the use of catch and
finally blocks. Even though execution returns to the caller after the first await, the finally
block does not execute until the method has logically completed (by virtue of all its code
executing — or an early return or unhandled exception).
It can be helpful to consider exactly what’s happening underneath. First, we need to revisit the
pseudocode that runs the message loop on the UI thread:

Set synchronization context for this thread to WPF sync context
while (!thisApplication.Ended)
{
  wait for something to appear in message queue
  Got something: what kind of message is it?
    Keyboard/mouse message -> fire an event handler
    User BeginInvoke/Invoke message -> execute delegate
}

Event handlers that we attach to UI elements execute via this message loop. When our Go



method runs, execution proceeds as far as the await expression, and then returns to the
message loop (freeing the UI to respond to further events). The compiler’s expansion of await
ensures that before returning, however, a continuation is set up such that execution resumes
where it left off upon completion of the task. And because we awaited on a UI thread, the
continuation posts to the synchronization context that executes it via the message loop, keeping
our entire Go method executing pseudoconcurrently on the UI thread. True (I/O-bound)
concurrency occurs within the implementation of DownloadDataTaskAsync.

Comparison to coarse-grained concurrency
Asynchronous programming was difficult prior to C# 5, not only because there was no
language support, but because the .NET Framework exposed asynchronous functionality
through clumsy patterns called the EAP and the APM (see “Obsolete Patterns”), rather than
task-returning methods.
The popular workaround was coarse-grained concurrency (in fact, there was even a type called
BackgroundWorker to help with that). Returning to our original synchronous example with
GetPrimesCount, we can demonstrate coarse-grained asynchrony by modifying the button’s
event handler as follows:

  ...
  _button.Click += (sender, args) =>
  {
    _button.IsEnabled = false;
    Task.Run (() => Go());
  };

(We’ve chosen to use Task.Run rather than BackgroundWorker because the latter would do
nothing to simplify our particular example.) In either case, the end result is that our entire
synchronous call graph (Go plus GetPrimesCount) runs on a worker thread. And because Go
updates UI elements, we must now litter our code with Dispatcher.BeginInvoke:

void Go()
{
  for (int i = 1; i < 5; i++)
  {
    int result = GetPrimesCount (i * 1000000, 1000000);
    Dispatcher.BeginInvoke (new Action (() =>
      _results.Text += result + " primes between " + (i*1000000) +
      " and " + ((i+1)*1000000-1) + Environment.NewLine));
  }
  Dispatcher.BeginInvoke (new Action (() => _button.IsEnabled = true));
}

Unlike with the asynchronous version, the loop itself runs on a worker thread. This might seem
innocuous, and yet, even in this simple case, our use of multithreading has introduced a race
condition. (Can you spot it? If not, try running the program: it will almost certainly become
apparent.)
Implementing cancellation and progress reporting creates more possibilities for thread-safety
errors, as does any additional code in the method. For instance, suppose the upper limit for the
loop is not hardcoded, but comes from a method call:

  for (int i = 1; i < GetUpperBound(); i++)

Now suppose GetUpperBound() reads the value from a lazily loaded configuration file, which



loads from disk upon first call. All of this code now runs on your worker thread, code that’s
most likely not thread-safe. This is the danger of starting worker threads high in the call graph.

Writing Asynchronous Functions
With any asynchronous function, you can replace the void return type with a Task to make the
method itself usefully asynchronous (and awaitable). No further changes are required:

async Task PrintAnswerToLife()   // We can return Task instead of void
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  Console.WriteLine (answer); 
}

Notice that we don’t explicitly return a task in the method body. The compiler manufactures the
task, which it signals upon completion of the method (or upon an unhandled exception). This
makes it easy to create asynchronous call chains:

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}

And because we’ve declared Go with a Task return type, Go itself is awaitable.
The compiler expands asynchronous functions that return tasks into code that leverages
TaskCompletionSource to create a task that it then signals or faults.

NOTE
The compiler actually calls TaskCompletionSource indirectly, via types named
Async*MethodBuilder in the System.CompilerServices namespace. These types handle edge
cases such as putting the task into a canceled state upon an OperationCanceledException, and
implementing the nuances we describe in “Asynchrony and Synchronization Contexts”.

Nuances aside, we can expand PrintAnswerToLife into the following functional equivalent:

Task PrintAnswerToLife()
{
  var tcs = new TaskCompletionSource<object>();
  var awaiter = Task.Delay (5000).GetAwaiter();
  awaiter.OnCompleted (() =>
  {
    try
    {
      awaiter.GetResult();    // Re-throw any exceptions
      int answer = 21 * 2;
      Console.WriteLine (answer);
      tcs.SetResult (null);
    }
    catch (Exception ex) { tcs.SetException (ex); }
  });
  return tcs.Task;
}



Hence, whenever a task-returning asynchronous method finishes, execution jumps back to
whoever awaited it (by virtue of a continuation).

NOTE
In a rich-client scenario, execution bounces at this point back to the UI thread (if it’s not
already on the UI thread). Otherwise, it continues on whatever thread the continuation came
back on. This means that there’s no latency cost in bubbling up asynchronous call graphs,
other than the first “bounce” if it was UI-thread-initiated.

Returning Task<TResult>
You can return a Task<TResult> if the method body returns TResult:

async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  return answer;    // Method has return type Task<int> we return int
}

Internally, this results in the TaskCompletionSource being signaled with a value rather than
null. We can demonstrate GetAnswerToLife by calling it from PrintAnswerToLife (which is,
in turn, called from Go):

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
  int answer = await GetAnswerToLife();
  Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  return answer;
}

In effect, we’ve refactored our original PrintAnswerToLife into two methods — with the
same ease as if we were programming synchronously. The similarity to synchronous
programming is intentional; here’s the synchronous equivalent of our call graph, for which
calling Go() gives the same result after blocking for five seconds:

void Go()
{
  PrintAnswerToLife();
  Console.WriteLine ("Done");
 }

void PrintAnswerToLife()
{
  int answer = GetAnswerToLife();
  Console.WriteLine (answer);



}

int GetAnswerToLife()
{
  Thread.Sleep (5000);
  int answer = 21 * 2;
  return answer;
}

NOTE
This also illustrates the basic principle of how to design with asynchronous functions in C#:

1. Write your methods synchronously.

2. Replace synchronous method calls with asynchronous method calls, and await them.

3. Except for “top-level” methods (typically event handlers for UI controls), upgrade your
asynchronous methods’ return types to Task or Task<TResult> so that they’re
awaitable.

The compiler’s ability to manufacture tasks for asynchronous functions means that for the most
part, you need to explicitly instantiate a TaskCompletionSource only in bottom-level methods
that initiate I/O-bound concurrency. (And for methods that initiate compute-bound currency, you
create the task with Task.Run.)

Asynchronous call graph execution
To see exactly how this executes, it’s helpful to rearrange our code as follows:

async Task Go()
{
  var task = PrintAnswerToLife();
  await task; Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
  var task = GetAnswerToLife();
  int answer = await task; Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
  var task = Task.Delay (5000);
  await task; int answer = 21 * 2; return answer;
}

Go calls PrintAnswerToLife, which calls GetAnswerToLife, which calls Delay and then
awaits. The await causes execution to return to PrintAnswerToLife which itself awaits,
returning to Go, which also awaits and returns to the caller. All of this happens synchronously,
on the thread that called Go; this is the brief synchronous phase of execution.
Five seconds later, the continuation on Delay fires and execution returns to GetAnswerToLife
on a pooled thread. (If we started on a UI thread, execution now bounces to that thread). The
remaining statements in GetAnswerToLife then run, after which the method’s Task<int>
completes with a result of 42 and executes the continuation in PrintAnswerToLife, which
executes the remaining statements in that method. The process continues until Go’s task is



signaled as complete.
Execution flow matches the synchronous call graph that we showed earlier because we’re
following a pattern whereby we await every asynchronous method right after calling it. This
creates a sequential flow with no parallelism or overlapping execution within the call graph.
Each await expression creates a “gap” in execution, after which the program resumes where it
left off.

Parallelism
Calling an asynchronous method without awaiting it allows the code that follows to execute in
parallel. You might have noticed in earlier examples that we had a button whose event handler
called Go as follows:

_button.Click += (sender, args) => Go();

Despite Go being an asynchronous method, we didn’t await it, and this is indeed what
facilitates the concurrency needed to maintain a responsive UI.
We can use this same principle to run two asynchronous operations in parallel:

var task1 = PrintAnswerToLife();
var task2 = PrintAnswerToLife();
await task1; await task2;

(By awaiting both operations afterward, we “end” the parallelism at that point. Later, we’ll
describe how the WhenAll task combinator helps with this pattern.)
Concurrency created in this manner occurs whether or not the operations are initiated on a UI
thread, although there’s a difference in how it occurs. In both cases, we get the same “true”
concurrency occurring in the bottom-level operations that initiate it (such as Task.Delay, or
code farmed to Task.Run). Methods above this in the call stack will be subject to true
concurrency only if the operation was initiated without a synchronization context present;
otherwise they will be subject to the pseudoconcurrency (and simplified thread safety) that we
talked about earlier, whereby the only places at which we can be preempted is at an await
statement. This lets us, for instance, define a shared field, _x, and increment it in
GetAnswerToLife without locking:

async Task<int> GetAnswerToLife()
{
  _x++;
  await Task.Delay (5000);
  return 21 * 2;
}

(We would, though, be unable to assume that _x had the same value before and after the
await.)

Asynchronous Lambda Expressions
Just as ordinary named methods can be asynchronous:

async Task NamedMethod()
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");



}

so can unnamed methods (lambda expressions and anonymous methods), if preceded by the
async keyword:

Func<Task> unnamed = async () =>
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");
};

We can call and await these in the same way:

await NamedMethod();
await unnamed();

Asynchronous lambda expressions can be used when attaching event handlers:

myButton.Click += async (sender, args) =>
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

This is more succinct than the following, which has the same effect:

myButton.Click += ButtonHandler;
...
async void ButtonHander (object sender, EventArgs args)
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

Asynchronous lambda expressions can also return Task<TResult>:

Func<Task<int>> unnamed = async () =>
{
  await Task.Delay (1000);
  return 123;
};
int answer = await unnamed();

Asynchronous Methods in WinRT
In WinRT, the equivalent of Task is IAsyncAction and the equivalent of Task<TResult> is
IAsyncOperation<TResult> (defined in the Windows.Foundation namespace).
You can convert from either into a Task or Task<TResult> via the AsTask extension method
in the System.Runtime.WindowsRuntime.dll assembly. This assembly also defines a
GetAwaiter method that operates on IAsyncAction and IAsyncOperation<TResult> types
which allows you to await them directly. For instance:

Task<StorageFile> fileTask = KnownFolders.DocumentsLibrary.CreateFileAsync
                             ("test.txt").AsTask();

or:



StorageFile file = await KnownFolders.DocumentsLibrary.CreateFileAsync
                         ("test.txt");

NOTE
Due to limitations in the COM type system, IAsyncOperation<TResult> is not based on
IAsyncAction as you might expect. Instead, both inherit from a common base type called
IAsyncInfo.

The AsTask method is also overloaded to accept a cancellation token (see “Cancellation”) and
an IProgress<T> object (see “Progress Reporting”).

Asynchrony and Synchronization Contexts
We’ve already seen how the presence of a synchronization context is significant in terms of
posting continuations. There are a couple of other more subtle ways in which synchronization
contexts come into play with void-returning asynchronous functions. These are not a direct
result of C# compiler expansions, but a function of the Async*MethodBuilder types in the
System.CompilerServices namespace that the compiler uses in expanding asynchronous
functions.

Exception posting
It’s common practice in rich-client applications to rely on the central exception-handling event
(Application.DispatcherUnhandledException in WPF) to process unhandled exceptions
thrown on the UI thread. And in ASP.NET applications, the Application_Error in
global.asax does a similar job. Internally, they work by invoking UI events (or in ASP.NET, the
pipeline of page processing methods) in their own try/catch block.
Top-level asynchronous functions complicate this. Consider the following event handler for a
button click:

async void ButtonClick (object sender, RoutedEventArgs args)
{
  await Task.Delay(1000);
  throw new Exception ("Will this be ignored?");
}

When the button is clicked and the event handler runs, execution returns normally to the
message loop after the await statement, and the exception that’s thrown a second later cannot
be caught by the catch block in the message loop.
To mitigate this problem, AsyncVoidMethodBuilder catches unhandled exceptions (in void-
returning asynchronous functions), and posts them to the synchronization context if present,
ensuring that global exception-handling events still fire.

NOTE
The compiler applies this logic only to void-returning asynchronous functions. So if we
changed ButtonClick to return a Task instead of void, the unhandled exception would fault
the resultant Task, which would then have nowhere to go (resulting in an unobserved
exception).



An interesting nuance is that it makes no difference whether you throw before or after an
await. So in the following example, the exception is posted to the synchronization context (if
present) and never to the caller:

async void Foo() { throw null; await Task.Delay(1000); }

If no synchronization context is present, the exception will go unobserved. It might seem odd
that the exception isn’t thrown right back to the caller, although it’s not entirely different to
what happens with iterators:

IEnumerable<int> Foo() { throw null; yield return 123; }

In this example, an exception is never thrown straight back to the caller: not until the sequence
is enumerated is the exception thrown.

OperationStarted and OperationCompleted
If a synchronization context is present, void-returning asynchronous functions also call its
OperationStarted method upon entering the function, and its OperationCompleted method
when the function finishes. These methods are leveraged by ASP.NET’s synchronization
context to ensure sequential execution in the page-processing pipeline.
Overriding these methods is useful if writing a custom synchronization context for unit testing
void-returning asynchronous methods. This is discussed on Microsoft’s Parallel Programming
blog at http://blogs.msdn.com/b/pfxteam.

Optimizations

Completing synchronously
An asynchronous function may return before awaiting. Consider the following method that
caches the downloading of web pages:

static Dictionary<string,string> _cache = new Dictionary<string,string>();

async Task<string> GetWebPageAsync (string uri)
{
  string html;
  if (_cache.TryGetValue (uri, out html)) return html;
  return _cache [uri] =
    await new WebClient().DownloadStringTaskAsync (uri);
}

Should a URI already exist in the cache, execution returns to the caller with no awaiting having
occurred, and the method returns an already-signaled task. This is referred to as synchronous
completion.
When you await a synchronously completed task, execution does not return to the caller and
bounce back via a continuation — instead, it proceeds immediately to the next statement. The
compiler implements this optimization by checking the IsCompleted property on the awaiter;
in other words, whenever you await:

Console.WriteLine (await GetWebPageAsync ("http://oreilly.com"));

http://blogs.msdn.com/b/pfxteam


the compiler emits code to short-circuit the continuation in case of synchronization completion:

var awaiter = GetWebPageAsync().GetAwaiter();
if (awaiter.IsCompleted)
  Console.WriteLine (awaiter.GetResult());
else
  awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult());

NOTE
Awaiting an asynchronous function that returns synchronously still incurs a small overhead —
maybe 50–100 nanoseconds on a 2015-era PC.
In contrast, bouncing to the thread pool introduces the cost of a context switch — perhaps
one or two microseconds, and bouncing to a UI message loop, at least ten times that (much
longer if the UI thread is busy).

It’s even legal to write asynchronous methods that never await, although the compiler will
generate a warning:

async Task<string> Foo() { return "abc"; }

Such methods can be useful when overriding virtual/abstract methods, if your implementation
doesn’t happen to need asynchrony. (An example is MemoryStream’s ReadAsync/WriteAsync
methods — see Chapter 15.) Another way to achieve the same result is to use
Task.FromResult, which returns an already-signaled task:

Task<string> Foo() { return Task.FromResult ("abc"); }

Our GetWebPageAsync method is implicitly thread-safe if called from a UI thread, in that you
could invoke it several times in succession (thereby initiating multiple concurrent downloads),
and no locking is required to protect the cache. If the series of calls were to the same URI,
though, we’d end up initiating multiple redundant downloads, all of which would eventually
update the same cache entry (the last one winning). While not erroneous, it would be more
efficient if subsequent calls to the same URI could instead (asynchronously) wait upon the
result of the in-progress request.
There’s an easy way to accomplish this — without resorting to locks or signaling constructs.
Instead of a cache of strings, we create a cache of “futures” (Task<string>):

static Dictionary<string,Task<string>> _cache =
   new Dictionary<string,Task<string>>();

Task<string> GetWebPageAsync (string uri)
{
  Task<string> downloadTask;
  if (_cache.TryGetValue (uri, out downloadTask)) return downloadTask;
  return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

(Notice that we don’t mark the method as async, because we’re directly returning the task we
obtain from calling WebClient’s method.)
If we call GetWebPageAsync repeatedly with the same URI, we’re now guaranteed to get the



same Task<string> object back. (This has the additional benefit of minimizing GC load.) And
if the task is complete, awaiting it is cheap, thanks to the compiler optimization that we just
discussed.
We could further extend our example to make it thread-safe without the protection of a
synchronization context, by locking around the entire method body:

lock (_cache)
{
  Task<string> downloadTask;
  if (_cache.TryGetValue (uri, out downloadTask)) return downloadTask;
  return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

This works because we’re not locking for the duration of downloading a page (which would
hurt concurrency); we’re locking for the small duration of checking the cache, starting a new
task if necessary, and updating the cache with that task.

Avoiding excessive bouncing
For methods that are called many times in a loop, you can avoid the cost of repeatedly
bouncing to a UI message loop by calling ConfigureAwait. This forces a task not to bounce
continuations to the synchronization context, cutting the overhead closer to the cost of a context
switch (or much less if the method that you’re awaiting completes synchronously):

async void A() { ... await B(); ... }

async Task B()
{
  for (int i = 0; i < 1000; i++)
    await C().ConfigureAwait (false);
}

async Task C() { ... }

This means that for the B and C methods, we rescind the simple thread-safety model in UI apps
whereby code runs on the UI thread and can be preempted only during an await statement.
Method A, however, is unaffected and will remain on a UI thread if it started on one.
This optimization is particularly relevant when writing libraries: you don’t need the benefit of
simplified thread safety because your code typically does not share state with the caller — and
does not access UI controls. (It would also make sense, in our example, for method C to
complete synchronously if it knew the operation was likely to be short-running.)

Asynchronous Patterns

Cancellation
It’s often important to be able to cancel a concurrent operation after it’s started, perhaps in
response to a user request. A simple way to implement this is with a cancellation flag, which
we could encapsulate by writing a class like this:

class CancellationToken
{
  public bool IsCancellationRequested { get; private set; }
  public void Cancel() { IsCancellationRequested = true; }



  public void ThrowIfCancellationRequested()
  {
    if (IsCancellationRequested)
      throw new OperationCanceledException();
  }
}

We could then write a cancellable asynchronous method as follows:

async Task Foo (CancellationToken cancellationToken)
{
  for (int i = 0; i < 10; i++)
  {
    Console.WriteLine (i);
    await Task.Delay (1000);
    cancellationToken.ThrowIfCancellationRequested();
  }
}

When the caller wants to cancel, it calls Cancel on the cancellation token that it passed into
Foo. This sets IsCancellationRequested to true, which causes Foo to fault a short time later
with an OperationCanceledException (a predefined exception in the System namespace
designed for this purpose).
Thread safety aside (we should be locking around reading/writing
IsCancellationRequested), this pattern is effective and the CLR provides a type called
CancellationToken which is very similar to what we’ve just shown. However, it lacks a
Cancel method; this method is instead exposed on another type called
CancellationTokenSource. This separation provides some security: a method that has
access only to a CancellationToken object can check for but not initiate cancellation.
To get a cancellation token, we first instantiate a CancellationTokenSource:

var cancelSource = new CancellationTokenSource();

This exposes a Token property which returns a CancellationToken. Hence, we could call
our Foo method as follows:

var cancelSource = new CancellationTokenSource();
Task foo = Foo (cancelSource.Token);
...
... (some time later)
cancelSource.Cancel();

Most asynchronous methods in the CLR support cancellation tokens, including Delay. If we
modify Foo such that it passes its token into the Delay method, the task will end immediately
upon request (rather than up to a second later):

async Task Foo (CancellationToken cancellationToken)
{
  for (int i = 0; i < 10; i++)
  {
    Console.WriteLine (i);
    await Task.Delay (1000, cancellationToken);
  }
 }

Notice that we no longer need to call ThrowIfCancellationRequested because Task.Delay
is doing that for us. Cancellation tokens propagate nicely down the call stack (just as



cancellation requests cascade up the call stack, by virtue of being exceptions).

NOTE
Asynchronous methods in WinRT follow an inferior protocol for cancellation whereby instead
of accepting a CancellationToken, the IAsyncInfo type exposes a Cancel method. The AsTask
extension method is overloaded to accept a cancellation token, however, bridging the gap.

Synchronous methods can support cancellation, too (such as Task’s Wait method). In such
cases, the instruction to cancel will have to come asynchronously (e.g., from another task). For
example:

var cancelSource = new CancellationTokenSource();
Task.Delay (5000).ContinueWith (ant => cancelSource.Cancel());
...

In fact, from Framework 4.5, you can specify a time interval when constructing
CancellationTokenSource to initiate cancellation after a set period of time (just as we
demonstrated). It’s useful for implementing timeouts, whether synchronous or asynchronous:

var cancelSource = new CancellationTokenSource (5000);
try { await Foo (cancelSource.Token); }
catch (OperationCanceledException ex) { Console.WriteLine ("Cancelled"); }

The CancellationToken struct provides a Register method which lets you register a
callback delegate that will be fired upon cancellation; it returns an object that can be disposed
to undo the registration.
Tasks generated by the compiler’s asynchronous functions automatically enter a “Canceled”
state upon an unhandled OperationCanceledException (IsCanceled returns true and
IsFaulted returns false). The same goes for tasks created with Task.Run for which you pass
the (same) CancellationToken to the constructor. The distinction between a faulted and a
canceled task is unimportant in asynchronous scenarios, in that both throw an
OperationCanceledException when awaited; it matters in advanced parallel programming
scenarios (specifically conditional continuations). We pick up this topic in “Canceling Tasks”
in Chapter 23.

Progress Reporting
Sometimes you’ll want an asynchronous operation to report back progress as it’s running. A
simple solution is to pass an Action delegate to the asynchronous method, which the method
fires whenever progress changes:

Task Foo (Action<int> onProgressPercentChanged)
{
  return Task.Run (() =>
  {
    for (int i = 0; i < 1000; i++)
    {
      if (i % 10 == 0) onProgressPercentChanged (i / 10);
      // Do something compute-bound...
    }
  });
}



Here’s how we could call it:

Action<int> progress = i => Console.WriteLine (i + " %");
await Foo (progress);

While this works well in a Console application, it’s not ideal in rich-client scenarios because
it reports progress from a worker thread, causing potential thread-safety issues for the
consumer. (In effect, we’ve allowed a side effect of concurrency to “leak” to the outside world,
which is unfortunate as the method is otherwise isolated if called from a UI thread.)

IProgress<T> and Progress<T>
The CLR provides a pair of types to solve this problem: an interface called IProgress<T> and
a class that implements this interface called Progress<T>. Their purpose, in effect, is to
“wrap” a delegate, so that UI applications can report progress safely through the
synchronization context.
The interface defines just one method:

public interface IProgress<in T>
{
  void Report (T value);
}

Using IProgress<T> is easy; our method hardly changes:

Task Foo (IProgress<int> onProgressPercentChanged)
{
  return Task.Run (() =>
  {
    for (int i = 0; i < 1000; i++)
    {
      if (i % 10 == 0) onProgressPercentChanged.Report (i / 10);
      // Do something compute-bound...
    }
  });
}

The Progress<T> class has a constructor that accepts a delegate of type Action<T> that it
wraps:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
await Foo (progress);

(Progress<T> also has a ProgressChanged event that you can subscribe to instead of [or in
addition to] passing an action delegate to the constructor.) Upon instantiating Progress<int>,
the class captures the synchronization context, if present. When Foo then calls Report, the
delegate is invoked through that context.
Asynchronous methods can implement more elaborate progress reporting by replacing int with
a custom type that exposes a range of properties.

NOTE
If you’re familiar with Reactive Framework, you’ll notice that IProgress<T> together with the



task returned by the asynchronous function provide a feature set similar to IObserver<T>.
The difference is that a task can expose a “final” return value in addition to (and differently
typed to) the values emitted by IProgress<T>.
Values emitted by IProgress<T> are typically “throwaway” values (e.g., percent complete or
bytes downloaded so far) whereas values pushed by IObserver<T>’s OnNext typically
comprise the result itself and are the very reason for calling it.

Asynchronous methods in WinRT also offer progress reporting, although the protocol is
complicated by COM’s (relatively) retarded type system. Instead of accepting an
IProgress<T> object, asynchronous WinRT methods that report progress return one of the
following interfaces, in place of IAsyncAction and IAsyncOperation<TResult>:

IAsyncActionWithProgress<TProgress>
IAsyncOperationWithProgress<TResult, TProgress>

Interestingly, both are based on IAsyncInfo (and not IAsyncAction and
IAsyncOperation<TResult>).
The good news is that the AsTask extension method is also overloaded to accept
IProgress<T> for the preceding interfaces, so as a .NET consumer, you can ignore the COM
interfaces and do this:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
CancellationToken cancelToken = ...
var task = someWinRTobject.FooAsync().AsTask (cancelToken, progress);

The Task-based Asynchronous Pattern (TAP)
Framework 4.5 and later exposes hundreds of task-returning asynchronous methods that you can
await (mainly related to I/O). Most of these methods (at least partly) follow a pattern called
the Task-based Asynchronous Pattern (TAP), which is a sensible formalization of what we
have described to date. A TAP method:

Returns a “hot” (running) Task or Task<TResult>

Has an “Async” suffix (except for special cases such as task combinators)

Is overloaded to accept a cancellation token and/or IProgress<T> if it supports
cancellation and/or progress reporting

Returns quickly to the caller (has only a small initial synchronous phase)

Does not tie up a thread if I/O-bound

As we’ve seen, TAP methods are easy to write with C#’s asynchronous functions.

Task Combinators
A nice consequence of there being a consistent protocol for asynchronous functions (whereby
they consistently return tasks) is that it’s possible to use and write task combinators —
functions that usefully combine tasks, without regard for what those specific tasks do.



The CLR includes two task combinators: Task.WhenAny and Task.WhenAll. In describing
them, we’ll assume the following methods are defined:

async Task<int> Delay1() { await Task.Delay (1000); return 1; }
async Task<int> Delay2() { await Task.Delay (2000); return 2; }
async Task<int> Delay3() { await Task.Delay (3000); return 3; }

WhenAny
Task.WhenAny returns a task that completes when any one of a set of tasks complete. The
following completes in one second:

Task<int> winningTask = await Task.WhenAny (Delay1(), Delay2(), Delay3());
Console.WriteLine ("Done");
Console.WriteLine (winningTask.Result);   // 1

Because Task.WhenAny itself returns a task, we await it, which returns the task that finished
first. Our example is entirely nonblocking — including the last line when we access the
Result property (because winningTask will already have finished). Nonetheless, it’s usually
better to await the winningTask:

Console.WriteLine (await winningTask);   // 1

because any exceptions are then re-thrown without an AggregateException wrapping. In fact,
we can perform both awaits in one step:

int answer = await await Task.WhenAny (Delay1(), Delay2(), Delay3());

If a nonwinning task subsequently faults, the exception will go unobserved unless you
subsequently await the task (or query its Exception property).
WhenAny is useful for applying timeouts or cancellation to operations that don’t otherwise
support it:

Task<string> task = SomeAsyncFunc();
Task winner = await (Task.WhenAny (task, Task.Delay(5000)));
if (winner != task) throw new TimeoutException();
string result = await task;   // Unwrap result/re-throw

Notice that because in this case we’re calling WhenAny with differently typed tasks, the winner
is reported as a plain Task (rather than a Task<string>).

WhenAll
Task.WhenAll returns a task that completes when all of the tasks that you pass to it complete.
The following completes after three seconds (and demonstrates the fork/join pattern):

await Task.WhenAll (Delay1(), Delay2(), Delay3());

We could get a similar result by awaiting task1, task2 and task3 in turn rather than using
WhenAll:

Task task1 = Delay1(), task2 = Delay2(), task3 = Delay3();
await task1; await task2; await task3;



The difference (apart from it being less efficient by virtue of requiring three awaits rather than
one), is that should task1 fault, we’ll never get to await task2/task3, and any of their
exceptions will go unobserved. In fact, this is why they relaxed the unobserved task exception
behavior from CLR 4.5: it would be confusing if, despite an exception handling block around
the entire preceding code block, an exception from task2 or task3 could crash your
application sometime later when garbage collected.
In contrast, Task.WhenAll doesn’t complete until all tasks have completed — even when
there’s a fault. And if there are multiple faults, their exceptions are combined into the task’s
AggregateException (this is when AggregateException actually becomes useful — should
you be interested in all the exceptions, that is). Awaiting the combined task, however, throws
only the first exception, so to see all the exceptions you need to do this:

Task task1 = Task.Run (() => { throw null; } );
Task task2 = Task.Run (() => { throw null; } );
Task all = Task.WhenAll (task1, task2);
try { await all; }
catch
{
  Console.WriteLine (all.Exception.InnerExceptions.Count);   // 2
}

Calling WhenAll with tasks of type Task<TResult> returns a Task<TResult[]>, giving the
combined results of all the tasks. This reduces to a TResult[] when awaited:

Task<int> task1 = Task.Run (() => 1);
Task<int> task2 = Task.Run (() => 2);
int[] results = await Task.WhenAll (task1, task2);   // { 1, 2 }

To give a practical example, the following downloads URIs in parallel and sums their total
length:

async Task<int> GetTotalSize (string[] uris)
{
  IEnumerable<Task<byte[]>> downloadTasks = uris.Select (uri =>
    new WebClient().DownloadDataTaskAsync (uri));
       
  byte[][] contents = await Task.WhenAll (downloadTasks);
  return contents.Sum (c => c.Length);
}

There’s a slight inefficiency here, though, in that we’re unnecessarily hanging onto the byte
arrays that we download until every task is complete. It would be more efficient if we
collapsed byte arrays into their lengths right after downloading them. This is where an
asynchronous lambda comes in handy, because we need to feed an await expression into
LINQ’s Select query operator:

async Task<int> GetTotalSize (string[] uris)
{
  IEnumerable<Task<int>> downloadTasks = uris.Select (async uri =>
    (await new WebClient().DownloadDataTaskAsync (uri)).Length);

  int[] contentLengths = await Task.WhenAll (downloadTasks);
  return contentLengths.Sum();
}

Custom combinators



It can be useful to write your own task combinators. The simplest “combinator” accepts a
single task, such as the following, which lets you await any task with a timeout:

async static Task<TResult> WithTimeout<TResult> (this Task<TResult> task,
                                                 TimeSpan timeout)
{
  Task winner = await (Task.WhenAny (task, Task.Delay (timeout)));
  if (winner != task) throw new TimeoutException();
  return await task;   // Unwrap result/re-throw
}

The following lets you “abandon” a task via a CancellationToken:

static Task<TResult> WithCancellation<TResult> (this Task<TResult> task,
                                          CancellationToken cancelToken)
{
  var tcs = new TaskCompletionSource<TResult>();
  var reg = cancelToken.Register (() => tcs.TrySetCanceled ());
  task.ContinueWith (ant =>
  {
    reg.Dispose();       
    if (ant.IsCanceled)
      tcs.TrySetCanceled();
    else if (ant.IsFaulted)
      tcs.TrySetException (ant.Exception.InnerException);
    else
      tcs.TrySetResult (ant.Result);
  });
  return tcs.Task;  
}

Task combinators can be complex to write, sometimes requiring the use of signaling constructs
that we cover in Chapter 22. This is actually a good thing, because it keeps concurrency-
related complexity out of your business logic and into reusable methods that can be tested in
isolation.
The next combinator works like WhenAll, except that if any of the tasks fault, the resultant task
faults immediately:

async Task<TResult[]> WhenAllOrError<TResult>
  (params Task<TResult>[] tasks)
{
  var killJoy = new TaskCompletionSource<TResult[]>();
  foreach (var task in tasks)
    task.ContinueWith (ant =>
    {
      if (ant.IsCanceled)
        killJoy.TrySetCanceled();
      else if (ant.IsFaulted)
        killJoy.TrySetException (ant.Exception.InnerException);
    });
  return await await Task.WhenAny (killJoy.Task, Task.WhenAll (tasks));            
}

We start by creating a TaskCompletionSource whose sole job is to end the party if a task
faults. Hence, we never call its SetResult method; only its TrySetCanceled and
TrySetException methods. In this case, ContinueWith is more convenient than
GetAwaiter().OnCompleted because we’re not accessing the tasks’ results and wouldn’t
want to bounce to a UI thread at that point.



Obsolete Patterns
The Framework employs other patterns for asynchrony that precede tasks and asynchronous
functions. These are now rarely required, since task-based asynchrony has become the
dominant pattern as of Framework 4.5.

Asynchronous Programming Model (APM)
The oldest pattern is called the Asynchronous Programming Model (APM) and uses a pair of
methods starting in “Begin” and “End,” and an interface called IAsyncResult. To illustrate,
we’ll take the Stream class in System.IO, and look at its Read method. First, the synchronous
version:

public int Read (byte[] buffer, int offset, int size);

You can probably predict what the task-based asynchronous version looks like:

public Task<int> ReadAsync (byte[] buffer, int offset, int size);

Now let’s examine the APM version:

public IAsyncResult BeginRead (byte[] buffer, int offset, int size,
                               AsyncCallback callback, object state);
public int EndRead (IAsyncResult asyncResult);

Calling the Begin* method initiates the operation, returning an IAsyncResult object that acts
as a token for the asynchronous operation. When the operation completes (or faults), the
AsyncCallback delegate fires:

public delegate void AsyncCallback (IAsyncResult ar);

Whoever handles this delegate then calls the End* method, which provides the operation’s
return value, as well as re-throwing an exception if the operation faulted.
The APM is not only awkward to use, but surprisingly difficult to implement correctly. The
easiest way to deal with APM methods is to call the Task.Factory.FromAsync adapter
method, which converts an APM method pair into a Task. Internally, it uses a
TaskCompletionSource to give you a task that’s signaled when an APM operation completes
or faults.
The FromAsync method requires the following parameters:

A delegate specifying a BeginXXX method

A delegate specifying a EndXXX method

Additional arguments that will get passed to these methods

FromAsync is overloaded to accept delegate types and arguments that match nearly all the
asynchronous method signatures found in the .NET Framework. For instance, assuming stream
is a Stream and buffer is a byte[], we could do this:

Task<int> readChunk = Task<int>.Factory.FromAsync (
  stream.BeginRead, stream.EndRead, buffer, 0, 1000, null);



Asynchronous delegates
The CLR still supports asynchronous delegates, a feature whereby you can call any delegate
asynchronously using APM-style BeginInvoke/EndInvoke methods:

Func<string> foo = () => { Thread.Sleep(1000); return "foo"; };
foo.BeginInvoke (asyncResult =>
  Console.WriteLine (foo.EndInvoke (asyncResult)), null);

Asynchronous delegates incur a surprising overhead — and are painfully redundant with tasks:

Func<string> foo = () => { Thread.Sleep(1000); return "foo"; };
Task.Run (foo).ContinueWith (ant => Console.WriteLine (ant.Result));

Event-Based Asynchronous Pattern (EAP)
The Event-based Asynchronous Pattern (EAP) was introduced in Framework 2.0 to provide a
simpler alternative to the APM, particularly in UI scenarios. It was implemented in only a
handful of types, however, most notably WebClient in System.Net. The EAP is just a pattern;
no types are provided to assist. Essentially the pattern is this: a class offers a family of
members that internally manage concurrency, similar to the following.

// These members are from the WebClient class:

public byte[] DownloadData (Uri address);    // Synchronous version
public void DownloadDataAsync (Uri address);
public void DownloadDataAsync (Uri address, object userToken);
public event DownloadDataCompletedEventHandler DownloadDataCompleted;

public void CancelAsync (object userState);  // Cancels an operation
public bool IsBusy { get; }                  // Indicates if still running

The *Async methods initiate an operation asynchronously. When the operation completes, the
*Completed event fires (automatically posting to the captured synchronization context if
present). This event passes back an event arguments object that contains:

A flag indicating whether the operation was canceled (by the consumer calling
CancelAsync)

An Error object indicating an exception that was thrown (if any)

The userToken object if supplied when calling the Async method

EAP types may also expose a progress reporting event, which fires whenever progress changes
(also posted through the synchronization context):

public event DownloadProgressChangedEventHandler DownloadProgressChanged;

Implementing the EAP requires a large amount of boilerplate code, making the pattern poorly
compositional.

BackgroundWorker
BackgroundWorker in System.ComponentModel is a general-purpose implementation of the
EAP. It allows rich-client apps to start a worker thread and report completion and percentage-



based progress without needing to explicitly capture synchronization context. For instance:

var worker = new BackgroundWorker { WorkerSupportsCancellation = true };
worker.DoWork += (sender, args) =>
{                                      // This runs on a worker thread
  if (args.Cancel) return;
  Thread.Sleep(1000);
  args.Result = 123;
};
worker.RunWorkerCompleted += (sender, args) =>   
{                                                  // Runs on UI thread
  // We can safely update UI controls here...
  if (args.Cancelled)
    Console.WriteLine ("Cancelled");
  else if (args.Error != null)
    Console.WriteLine ("Error: " + args.Error.Message);
  else
    Console.WriteLine ("Result is: " + args.Result);
};
worker.RunWorkerAsync();   // Captures sync context and starts operation

RunWorkerAsync starts the operation, firing the DoWork event on a pooled worker thread. It
also captures the synchronization context, and when the operation completes (or faults), the
RunWorkerCompleted event is invoked through that synchronization context (like a
continuation).
BackgroundWorker creates coarse-grained concurrency, in that the DoWork event runs entirely
on a worker thread. If you need to update UI controls in that event handler (other than posting a
percentage-complete message), you must use Dispatcher.BeginInvoke or similar).
We describe BackgroundWorker in more detail at http://albahari.com/threading.

The CLR creates other threads behind the scenes for garbage collection and finalization.1

http://albahari.com/threading


Chapter 15. Streams and I/O

This chapter describes the fundamental types for input and output in .NET, with emphasis on the
following topics:

The .NET stream architecture and how it provides a consistent programming interface for
reading and writing across a variety of I/O types

Classes for manipulating files and directories on disk

Specialized streams for compression, named pipes and memory-mapped files

This chapter concentrates on the types in the System.IO namespace, the home of lower-level
I/O functionality. The .NET Framework also provides higher-level I/O functionality in the form
of SQL connections and commands, LINQ to SQL and LINQ to XML, Windows
Communication Foundation, Web Services, and Remoting.

Stream Architecture
The .NET stream architecture centers on three concepts: backing stores, decorators, and
adapters, as shown in Figure 15-1.
A backing store is the endpoint that makes input and output useful, such as a file or network
connection. Precisely, it is either or both of the following:

A source from which bytes can be sequentially read

A destination to which bytes can be sequentially written

A backing store is of no use, though, unless exposed to the programmer. A Stream is the
standard .NET class for this purpose; it exposes a standard set of methods for reading, writing,
and positioning. Unlike an array, where all the backing data exists in memory at once, a stream
deals with data serially — either one byte at a time or in blocks of a manageable size. Hence, a
stream can use a small fixed amount of memory regardless of the size of its backing store.



Figure 15-1. Stream architecture

Streams fall into two categories:

Backing store streams
These are hard-wired to a particular type of backing store, such as FileStream or
NetworkStream

Decorator streams
These feed off another stream, transforming the data in some way, such as
DeflateStream or CryptoStream

Decorator streams have the following architectural benefits:
They liberate backing store streams from needing to implement such features as
compression and encryption themselves.

Streams don’t suffer a change of interface when decorated.

You connect decorators at runtime.

You can chain decorators together (e.g., a compressor followed by an encryptor).

Both backing store and decorator streams deal exclusively in bytes. Although this is flexible
and efficient, applications often work at higher levels such as text or XML. Adapters bridge
this gap by wrapping a stream in a class with specialized methods typed to a particular format.
For example, a text reader exposes a ReadLine method; an XML writer exposes a
WriteAttributes method.



NOTE
An adapter wraps a stream, just like a decorator. Unlike a decorator, however, an adapter is
not itself a stream; it typically hides the byte-oriented methods completely.

To summarize, backing store streams provide the raw data; decorator streams provide
transparent binary transformations such as encryption; adapters offer typed methods for dealing
in higher-level types such as strings and XML. Figure 15-1 illustrates their associations. To
compose a chain, you simply pass one object into another’s constructor.

Using Streams
The abstract Stream class is the base for all streams. It defines methods and properties for
three fundamental operations: reading, writing, and seeking, as well as for administrative
tasks such as closing, flushing, and configuring timeouts (see Table 15-1).

Table 15-1. Stream class members

Category Members

Reading public abstract bool CanRead { get; }

 public abstract int Read (byte[] buffer, int offset, int count)

 public virtual int ReadByte();

Writing public abstract bool CanWrite { get; }

 public abstract void Write (byte[] buffer, int offset, int count);

 public virtual void WriteByte (byte value);

Seeking public abstract bool CanSeek { get; }

 public abstract long Position { get; set; }

 public abstract void SetLength (long value);

 public abstract long Length { get; }

 public abstract long Seek (long offset, SeekOrigin origin);

Closing/flushing public virtual void Close();

 public void Dispose();

 public abstract void Flush();

Timeouts public virtual bool CanTimeout { get; }

 public virtual int ReadTimeout { get; set; }

 public virtual int WriteTimeout { get; set; }

Other public static readonly Stream Null; // "Null" stream

 public static Stream Synchronized (Stream stream);

From Framework 4.5, there are also asynchronous versions of the Read and Write methods,
both of which return Tasks and optionally accept a cancellation token.
In the following example, we use a file stream to read, write, and seek:

using System;
using System.IO;



class Program
{
  static void Main()
  {
    // Create a file called test.txt in the current directory:
    using (Stream s = new FileStream ("test.txt", FileMode.Create))
    {
      Console.WriteLine (s.CanRead);       // True
      Console.WriteLine (s.CanWrite);      // True
      Console.WriteLine (s.CanSeek);       // True

      s.WriteByte (101);
      s.WriteByte (102);
      byte[] block = { 1, 2, 3, 4, 5 };
      s.Write (block, 0, block.Length);     // Write block of 5 bytes

      Console.WriteLine (s.Length);         // 7
      Console.WriteLine (s.Position);       // 7
      s.Position = 0;                       // Move back to the start

      Console.WriteLine (s.ReadByte());     // 101
      Console.WriteLine (s.ReadByte());     // 102

      // Read from the stream back into the block array:
      Console.WriteLine (s.Read (block, 0, block.Length));   // 5

      // Assuming the last Read returned 5, we'll be at
      // the end of the file, so Read will now return 0:
      Console.WriteLine (s.Read (block, 0, block.Length));   // 0
    }
  }
}

Reading or writing asynchronously is simply a question of calling ReadAsync/WriteAsync
instead of Read/Write, and awaiting the expression. (We must also add the async keyword to
the calling method, as we described in Chapter 14.)

async static void AsyncDemo()
{
  using (Stream s = new FileStream ("test.txt", FileMode.Create))
  {
    byte[] block = { 1, 2, 3, 4, 5 };
    await s.WriteAsync (block, 0, block.Length);    // Write asychronously

    s.Position = 0;                       // Move back to the start

    // Read from the stream back into the block array:
    Console.WriteLine (await s.ReadAsync (block, 0, block.Length));   // 5
  }
}

The asynchronous methods make it easy to write responsive and scalable applications that
work with potentially slow streams (particularly network streams), without tying up a thread.

NOTE
For the sake of brevity, we’ll continue to use synchronous methods for most of the examples
in this chapter; however, we recommend the asynchronous Read/Write operations as
preferable in most scenarios involving network I/O.

Reading and Writing



A stream may support reading, writing, or both. If CanWrite returns false, the stream is read-
only; if CanRead returns false, the stream is write-only.
Read receives a block of data from the stream into an array. It returns the number of bytes
received, which is always either less than or equal to the count argument. If it’s less than
count, it means either that the end of the stream has been reached or the stream is giving you
the data in smaller chunks (as is often the case with network streams). In either case, the
balance of bytes in the array will remain unwritten, their previous values preserved.

WARNING
With Read, you can be certain you’ve reached the end of the stream only when the method
returns 0. So, if you have a 1,000-byte stream, the following code may fail to read it all into
memory:

// Assuming s is a stream:
byte[] data = new byte [1000];
s.Read (data, 0, data.Length);

The Read method could read anywhere from 1 to 1,000 bytes, leaving the balance of the
stream unread.

Here’s the correct way to read a 1,000-byte stream:

byte[] data = new byte [1000];

// bytesRead will always end up at 1000, unless the stream is
// itself smaller in length:

int bytesRead = 0;
int chunkSize = 1;
while (bytesRead < data.Length && chunkSize > 0)
  bytesRead +=
    chunkSize = s.Read (data, bytesRead, data.Length - bytesRead);

NOTE
Fortunately, the BinaryReader type provides a simpler way to achieve the same result:

byte[] data = new BinaryReader (s).ReadBytes (1000);

If the stream is less than 1,000 bytes long, the byte array returned reflects the actual stream
size. If the stream is seekable, you can read its entire contents by replacing 1000 with
(int)s.Length.
We describe the BinaryReader type further in the section “Stream Adapters”, later in this
chapter.

The ReadByte method is simpler: it reads just a single byte, returning –1 to indicate the end of
the stream. ReadByte actually returns an int rather than a byte, as the latter cannot return –1.
The Write and WriteByte methods send data to the stream. If they are unable to send the
specified bytes, an exception is thrown.



WARNING
In the Read and Write methods, the offset argument refers to the index in the buffer array at
which reading or writing begins, not the position within the stream.

Seeking
A stream is seekable if CanSeek returns true. With a seekable stream (such as a file stream),
you can query or modify its Length (by calling SetLength), and at any time change the
Position at which you’re reading or writing. The Position property is relative to the
beginning of the stream; the Seek method, however, allows you to move relative to the current
position or the end of the stream.

NOTE
Changing the Position on a FileStream typically takes a few microseconds. If you’re doing
this millions of times in a loop, the MemoryMappedFile class may be a better choice than a
FileStream (see “Memory-Mapped Files”, later in this chapter).

With a nonseekable stream (such as an encryption stream), the only way to determine its length
is to read it right through. Furthermore, if you need to reread a previous section, you must close
the stream and start afresh with a new one.

Closing and Flushing
Streams must be disposed after use to release underlying resources such as file and socket
handles. A simple way to guarantee this is by instantiating streams within using blocks. In
general, streams follow standard disposal semantics:

Dispose and Close are identical in function.

Disposing or closing a stream repeatedly causes no error.

Closing a decorator stream closes both the decorator and its backing store stream. With a chain
of decorators, closing the outermost decorator (at the head of the chain) closes the whole lot.
Some streams internally buffer data to and from the backing store to lessen round-tripping and
so improve performance (file streams are a good example of this). This means data you write
to a stream may not hit the backing store immediately; it can be delayed as the buffer fills up.
The Flush method forces any internally buffered data to be written immediately. Flush is
called automatically when a stream is closed, so you never need to do the following:

s.Flush(); s.Close();

Timeouts
A stream supports read and write timeouts if CanTimeout returns true. Network streams
support timeouts; file and memory streams do not. For streams that support timeouts, the
ReadTimeout and WriteTimeout properties determine the desired timeout in milliseconds,



where 0 means no timeout. The Read and Write methods indicate that a timeout has occurred
by throwing an exception.

Thread Safety
As a rule, streams are not thread-safe, meaning that two threads cannot concurrently read or
write to the same stream without possible error. The Stream class offers a simple workaround
via the static Synchronized method. This method accepts a stream of any type and returns a
thread-safe wrapper. The wrapper works by obtaining an exclusive lock around each read,
write, or seek, ensuring that only one thread can perform such an operation at a time. In
practice, this allows multiple threads to simultaneously append data to the same stream —
other kinds of activities (such as concurrent reading) require additional locking to ensure that
each thread accesses the desired portion of the stream. We discuss thread safety fully in
Chapter 22.

Backing Store Streams
Figure 15-2 shows the key backing store streams provided by the .NET Framework. A “null
stream” is also available, via the Stream’s static Null field. Null streams can be useful when
writing unit tests.
In the following sections, we describe FileStream and MemoryStream; in the final section in
this chapter, we describe IsolatedStorageStream. In Chapter 16, we cover
NetworkStream.

Figure 15-2. Backing store streams

FileStream
Earlier in this section, we demonstrated the basic use of a FileStream to read and write bytes
of data. We’ll now examine the special features of this class.

NOTE
If you’re using UWP, file I/O is best done with the Windows Runtime types in
Windows.Storage (see “File I/O in UWP”).



Constructing a FileStream
The simplest way to instantiate a FileStream is to use one of the following static façade
methods on the File class:

FileStream fs1 = File.OpenRead  ("readme.bin");            // Read-only
FileStream fs2 = File.OpenWrite (@"c:\temp\writeme.tmp");  // Write-only
FileStream fs3 = File.Create    (@"c:\temp\writeme.tmp");  // Read/write

OpenWrite and Create differ in behavior if the file already exists. Create truncates any
existing content; OpenWrite leaves existing content intact with the stream positioned at zero. If
you write fewer bytes than were previously in the file, OpenWrite leaves you with a mixture of
old and new content.
You can also instantiate a FileStream directly. Its constructors provide access to every
feature, allowing you to specify a filename or low-level file handle, file creation and access
modes, and options for sharing, buffering, and security. The following opens an existing file for
read/write access without overwriting it:

var fs = new FileStream ("readwrite.tmp", FileMode.Open);  // Read/write

More on FileMode shortly.

SHORTCUT METHODS ON THE FILE CLASS
The following static methods read an entire file into memory in one step:

File.ReadAllText (returns a string)

File.ReadAllLines (returns an array of strings)

File.ReadAllBytes (returns a byte array)

The following static methods write an entire file in one step:
File.WriteAllText

File.WriteAllLines

File.WriteAllBytes

File.AppendAllText (great for appending to a log file)

There’s also a static method called File.ReadLines: this is like ReadAllLines except that it returns a
lazily-evaluated IEnumerable<string>. This is more efficient because it doesn’t load the entire file
into memory at once. LINQ is ideal for consuming the results; the following calculates the number
of lines greater than 80 characters in length:

int longLines = File.ReadLines ("filePath")
                    .Count (l => l.Length > 80);

Specifying a filename
A filename can be either absolute (e.g., c:\temp\test.txt) or relative to the current directory



(e.g., test.txt or temp\test.txt). You can access or change the current directory via the static
Environment.CurrentDirectory property.

WARNING
When a program starts, the current directory may or may not coincide with that of the
program’s executable. For this reason, you should never rely on the current directory for
locating additional runtime files packaged along with your executable.

AppDomain.CurrentDomain.BaseDirectory returns the application base directory, which
in normal cases is the folder containing the program’s executable. To specify a filename
relative to this directory, you can call Path.Combine:

string baseFolder = AppDomain.CurrentDomain.BaseDirectory;
string logoPath = Path.Combine (baseFolder, "logo.jpg");
Console.WriteLine (File.Exists (logoPath));

You can read and write across a network via a UNC path, such as \\JoesPC\PicShare\pic.jpg
or \\10.1.1.2\PicShare\pic.jpg.

Specifying a FileMode
All of FileStream’s constructors that accept a filename also require a FileMode enum
argument. Figure 15-3 shows how to choose a FileMode, and the choices yield results akin to
calling a static method on the File class.



Figure 15-3. Choosing a FileMode

WARNING
File.Create and FileMode.Create will throw an exception if used on hidden files. To
overwrite a hidden file, you must delete and re-create it:

if (File.Exists ("hidden.txt")) File.Delete ("hidden.txt");

Constructing a FileStream with just a filename and FileMode gives you (with just one
exception) a readable writable stream. You can request a downgrade if you also supply a
FileAccess argument:

[Flags]
public enum FileAccess { Read = 1, Write = 2, ReadWrite = 3 }

The following returns a read-only stream, equivalent to calling File.OpenRead:

using (var fs = new FileStream ("x.bin", FileMode.Open, FileAccess.Read))
  ...

FileMode.Append is the odd one out: with this mode, you get a write-only stream. To append
with read-write support, you must instead use FileMode.Open or FileMode.OpenOrCreate,
and then seek the end of the stream:

using (var fs = new FileStream ("myFile.bin", FileMode.Open))
{
  fs.Seek (0, SeekOrigin.End);
  ...

Advanced FileStream features
Here are other optional arguments you can include when constructing a FileStream:

A FileShare enum describing how much access to grant other processes wanting to dip
into the same file before you’ve finished (None, Read [default], ReadWrite, or Write).

The size, in bytes, of the internal buffer (default is currently 4 KB).

A flag indicating whether to defer to the operating system for asynchronous I/O.

A FileSecurity object describing what user and role permissions to assign a new file.

A FileOptions flags enum for requesting operating system encryption (Encrypted),
automatic deletion upon closure for temporary files (DeleteOnClose), and optimization
hints (RandomAccess and SequentialScan). There is also a WriteThrough flag that
requests that the operating system disable write-behind caching; this is for transactional
files or logs.

Opening a file with FileShare.ReadWrite allows other processes or users to simultaneously



read and write to the same file. To avoid chaos, you can all agree to lock specified portions of
the file before reading or writing, using these methods:

// Defined on the FileStream class:
public virtual void Lock   (long position, long length);
public virtual void Unlock (long position, long length);

Lock throws an exception if part or all of the requested file section has already been locked.

MemoryStream
Susing15 uses an array as a backing store. This partly defeats the purpose of having a stream,
because the entire backing store must reside in memory at once. MemoryStream is still useful
when you need random access to a nonseekable stream. If you know the source stream will be
of a manageable size, you can copy it into a MemoryStream as follows:

var ms = new MemoryStream();
sourceStream.CopyTo (ms);

You can convert a MemoryStream to a byte array by calling ToArray. The GetBuffer method
does the same job more efficiently by returning a direct reference to the underlying storage
array; unfortunately, this array is usually longer than the stream’s real length.

NOTE
Closing and flushing a MemoryStream is optional. If you close a MemoryStream, you can no
longer read or write to it, but you are still permitted to call ToArray to obtain the underlying
data. Flush does absolutely nothing on a memory stream.

You can find further MemoryStream examples in the section “Compression Streams” later in
this chapter, and in the section “Cryptography Overview”.

PipeStream
PipeStream was introduced in Framework 3.5. It provides a simple means by which one
process can communicate with another through the Windows pipes protocol. There are two
kinds of pipe:

Anonymous pipe (faster)
Allows one-way communication between a parent and child process on the same
computer.

Named pipe (more flexible)
Allows two-way communication between arbitrary processes on the same computer — or
different computers across a Windows network.

A pipe is good for interprocess communication (IPC) on a single computer: it doesn’t rely on a
network transport, which means no network protocol overhead, and it has no issues with
firewalls.



NOTE
Pipes are stream-based, so one process waits to receive a series of bytes while another
process sends them. An alternative is for processes to communicate via a block of shared
memory — we describe how to do this later, in the section “Memory-Mapped Files”.

PipeStream is an abstract class with four concrete subtypes. Two are used for anonymous
pipes and the other two for named pipes:

Anonymous pipes
AnonymousPipeServerStream and AnonymousPipeClientStream

Named pipes
NamedPipeServerStream and NamedPipeClientStream

Named pipes are simpler to use, so we’ll describe them first.

NOTE
A pipe is a low-level construct that allows just the sending and receiving of bytes (or
messages, which are groups of bytes). The WCF and Remoting APIs offer higher-level
messaging frameworks with the option of using an IPC channel for communication.

Named pipes
With named pipes, the parties communicate through a pipe of the same name. The protocol
defines two distinct roles: the client and server. Communication happens between the client
and server as follows:

The server instantiates a NamedPipeServerStream and then calls WaitForConnection.

The client instantiates a NamedPipeClientStream and then calls Connect (with an
optional timeout).

The two parties then read and write the streams to communicate.
The following example demonstrates a server that sends a single byte (100), and then waits to
receive a single byte:

using (var s = new NamedPipeServerStream ("pipedream"))
{
  s.WaitForConnection();
  s.WriteByte (100);                // Send the value 100.
  Console.WriteLine (s.ReadByte());
}

Here’s the corresponding client code:

using (var s = new NamedPipeClientStream ("pipedream"))
{
  s.Connect();
  Console.WriteLine (s.ReadByte());
  s.WriteByte (200);                 // Send the value 200 back.
}



Named pipe streams are bidirectional by default, so either party can read or write their stream.
This means the client and server must agree on some protocol to coordinate their actions, so
both parties don’t end up sending or receiving at once.
There also needs to be agreement on the length of each transmission. Our example was trivial
in this regard, because we bounced just a single byte in each direction. To help with messages
longer than one byte, pipes provide a message transmission mode. If this is enabled, a party
calling Read can know when a message is complete by checking the IsMessageComplete
property. To demonstrate, we’ll start by writing a helper method that reads a whole message
from a message-enabled PipeStream — in other words, reads until IsMessageComplete is
true:

static byte[] ReadMessage (PipeStream s)
{
  MemoryStream ms = new MemoryStream();
  byte[] buffer = new byte [0x1000];      // Read in 4 KB blocks

  do    { ms.Write (buffer, 0, s.Read (buffer, 0, buffer.Length)); }
  while (!s.IsMessageComplete);

  return ms.ToArray();
}

(To make this asynchronous, replace “s.Read” with “await s.ReadAsync”.)

WARNING
You cannot determine whether a PipeStream has finished reading a message simply by
waiting for Read to return 0. This is because, unlike most other stream types, pipe streams
and network streams have no definite end. Instead, they temporarily “dry up” between
message transmissions.

Now we can activate message transmission mode. On the server, this is done by specifying
PipeTransmissionMode.Message when constructing the stream:

using (var s = new NamedPipeServerStream ("pipedream", PipeDirection.InOut,
                                          1, PipeTransmissionMode.Message))
{
  s.WaitForConnection();

  byte[] msg = Encoding.UTF8.GetBytes ("Hello");
  s.Write (msg, 0, msg.Length);

  Console.WriteLine (Encoding.UTF8.GetString (ReadMessage (s)));
}

On the client, we activate message transmission mode by setting ReadMode after calling
Connect:

using (var s = new NamedPipeClientStream ("pipedream"))
{
  s.Connect();
  s.ReadMode = PipeTransmissionMode.Message;

  Console.WriteLine (Encoding.UTF8.GetString (ReadMessage (s)));

  byte[] msg = Encoding.UTF8.GetBytes ("Hello right back!");



  s.Write (msg, 0, msg.Length);
}

Anonymous pipes
An anonymous pipe provides a one-way communication stream between a parent and child
process. Instead of using a system-wide name, anonymous pipes tune in through a private
handle.
As with named pipes, there are distinct client and server roles. The system of communication is
a little different, however, and proceeds as follows:

1. The server instantiates an AnonymousPipeServerStream, committing to a
PipeDirection of In or Out.

2. The server calls GetClientHandleAsString to obtain an identifier for the pipe, which
it then passes to the client (typically as an argument when starting the child process).

3. The child process instantiates an AnonymousPipeClientStream, specifying the opposite
PipeDirection.

4. The server releases the local handle that was generated in Step 2, by calling
DisposeLocalCopyOfClientHandle.

5. The parent and child processes communicate by reading/writing the stream.

Because anonymous pipes are unidirectional, a server must create two pipes for bidirectional
communication. The following demonstrates a server that sends a single byte to the child
process, and then receives a single byte back from that process:

string clientExe = @"d:\PipeDemo\ClientDemo.exe";

HandleInheritability inherit = HandleInheritability.Inheritable;

using (var tx = new AnonymousPipeServerStream (PipeDirection.Out, inherit))
using (var rx = new AnonymousPipeServerStream (PipeDirection.In, inherit))
{
  string txID = tx.GetClientHandleAsString();
  string rxID = rx.GetClientHandleAsString();

  var startInfo = new ProcessStartInfo (clientExe, txID + " " + rxID);
  startInfo.UseShellExecute = false;      // Required for child process
  Process p = Process.Start (startInfo);

  tx.DisposeLocalCopyOfClientHandle();    // Release unmanaged
  rx.DisposeLocalCopyOfClientHandle();    // handle resources.

  tx.WriteByte (100);
  Console.WriteLine ("Server received: " + rx.ReadByte());

  p.WaitForExit();
}

Here’s the corresponding client code that would be compiled to
d:\PipeDemo\ClientDemo.exe:

string rxID = args[0];    // Note we're reversing the
string txID = args[1];    // receive and transmit roles.

using (var rx = new AnonymousPipeClientStream (PipeDirection.In, rxID))



using (var tx = new AnonymousPipeClientStream (PipeDirection.Out, txID))
{
  Console.WriteLine ("Client received: " + rx.ReadByte());
  tx.WriteByte (200);
}

As with named pipes, the client and server must coordinate their sending and receiving and
agree on the length of each transmission. Anonymous pipes don’t, unfortunately, support
message mode, so you must implement your own protocol for message length agreement. One
solution is to send, in the first 4 bytes of each transmission, an integer value defining the length
of the message to follow. The BitConverter class provides methods for converting between
an integer and an array of 4 bytes.

BufferedStream
BufferedStream decorates, or wraps, another stream with buffering capability, and it is one
of a number of decorator stream types in the core .NET Framework, all of which are illustrated
in Figure 15-4.

Figure 15-4. Decorator streams

Buffering improves performance by reducing round trips to the backing store. Here’s how we
wrap a FileStream in a 20 KB BufferedStream:

// Write 100K to a file:
File.WriteAllBytes ("myFile.bin", new byte [100000]);

using (FileStream fs = File.OpenRead ("myFile.bin"))
using (BufferedStream bs = new BufferedStream (fs, 20000))  //20K buffer
{
  bs.ReadByte();
  Console.WriteLine (fs.Position);         // 20000
}

In this example, the underlying stream advances 20,000 bytes after reading just 1 byte, thanks to
the read-ahead buffering. We could call ReadByte another 19,999 times before the
FileStream would be hit again.
Coupling a BufferedStream to a FileStream, as in this example, is of limited value because
FileStream already has built-in buffering. Its only use might be in enlarging the buffer on an



already constructed FileStream.
Closing a BufferedStream automatically closes the underlying backing store stream.

Stream Adapters
A Stream deals only in bytes; to read or write data types such as strings, integers, or XML
elements, you must plug in an adapter. Here’s what the Framework provides:

Text adapters (for string and character data)
TextReader, TextWriter
StreamReader, StreamWriter
StringReader, StringWriter

Binary adapters (for primitive types such as int, bool, string, and float)
BinaryReader, BinaryWriter

XML adapters (covered in Chapter 11)
XmlReader, XmlWriter

The relationships between these types are illustrated in Figure 15-5.

Figure 15-5. Readers and writers

Text Adapters
TextReader and TextWriter are the abstract base classes for adapters that deal exclusively
with characters and strings. Each has two general-purpose implementations in the framework:

StreamReader/StreamWriter
Uses a Stream for its raw data store, translating the stream’s bytes into characters or
strings



StringReader/StringWriter
Implements TextReader/TextWriter using in-memory strings

Table 15-2 lists TextReader’s members by category. Peek returns the next character in the
stream without advancing the position. Both Peek and the zero-argument version of Read return
–1 if at the end of the stream; otherwise, they return an integer that can be cast directly to a
char. The overload of Read that accepts a char[] buffer is identical in functionality to the
ReadBlock method. ReadLine reads until reaching either a CR (character 13) or LF (character
10), or a CR+LF pair in sequence. It then returns a string, discarding the CR/LF characters.

Table 15-2. TextReader members

Category Members

Reading one char public virtual int Peek(); // Cast the result to a char

 public virtual int Read(); // Cast the result to a char

Reading many chars public virtual int Read (char[] buffer, int index, int count);

 public virtual int ReadBlock (char[] buffer, int index, int count);

 public virtual string ReadLine();

 public virtual string ReadToEnd();

Closing public virtual void Close();

 public void Dispose(); // Same as Close

Other public static readonly TextReader Null;

 public static TextReader Synchronized (TextReader reader);

NOTE
The new line sequence in Windows is loosely modeled on a mechanical typewriter: a carriage
return (character 13) followed by a line feed (character 10). The C# string is "\r\n" (think
“ReturN”). Reverse the order and you’ll get either two new lines or none!

TextWriter has analogous methods for writing, as shown in Table 15-3. The Write and
WriteLine methods are additionally overloaded to accept every primitive type, plus the
object type. These methods simply call the ToString method on whatever is passed in
(optionally through an IFormatProvider specified either when calling the method or when
constructing the TextWriter).

Table 15-3. TextWriter members

Category Members

Writing one char public virtual void Write (char value);

Writing many chars public virtual void Write (string value);

 public virtual void Write (char[] buffer, int index, int count);

 
public virtual void Write (string format, params object[] arg);

 public virtual void WriteLine (string value);

Closing and flushing public virtual void Close();



 public void Dispose(); // Same as Close

 public virtual void Flush();

Formatting and encoding public virtual IFormatProvider FormatProvider { get; }

 public virtual string NewLine { get; set; }

 public abstract Encoding Encoding { get; }

Other public static readonly TextWriter Null;

 public static TextWriter Synchronized (TextWriter writer);

WriteLine simply appends the given text with CR+LF. You can change this via the NewLine
property (this can be useful for interoperability with Unix file formats).

NOTE
As with Stream, TextReader and TextWriter offer task-based asynchronous versions of their
read/write methods.

StreamReader and StreamWriter
In the following example, a StreamWriter writes two lines of text to a file, and then a
StreamReader reads the file back:

using (FileStream fs = File.Create ("test.txt"))
using (TextWriter writer = new StreamWriter (fs))
{
  writer.WriteLine ("Line1");
  writer.WriteLine ("Line2");
}

using (FileStream fs = File.OpenRead ("test.txt"))
using (TextReader reader = new StreamReader (fs))
{
  Console.WriteLine (reader.ReadLine());       // Line1
  Console.WriteLine (reader.ReadLine());       // Line2
}

Because text adapters are so often coupled with files, the File class provides the static
methods CreateText, AppendText, and OpenText to shortcut the process:

using (TextWriter writer = File.CreateText ("test.txt"))
{
  writer.WriteLine ("Line1");
  writer.WriteLine ("Line2");
}

using (TextWriter writer = File.AppendText ("test.txt"))
  writer.WriteLine ("Line3");

using (TextReader reader = File.OpenText ("test.txt"))
  while (reader.Peek() > -1)
    Console.WriteLine (reader.ReadLine());     // Line1
                                               // Line2
                                               // Line3

This also illustrates how to test for the end of a file (viz. reader.Peek()). Another option is
to read until reader.ReadLine returns null.



You can also read and write other types such as integers, but because TextWriter invokes
ToString on your type, you must parse a string when reading it back:

using (TextWriter w = File.CreateText ("data.txt"))
{
  w.WriteLine (123);          // Writes "123"
  w.WriteLine (true);         // Writes the word "true"
}

using (TextReader r = File.OpenText ("data.txt"))
{
  int myInt = int.Parse (r.ReadLine());     // myInt == 123
  bool yes = bool.Parse (r.ReadLine());     // yes == true
}

Character encodings
TextReader and TextWriter are by themselves just abstract classes with no connection to a
stream or backing store. The StreamReader and StreamWriter types, however, are connected
to an underlying byte-oriented stream, so they must convert between characters and bytes. They
do so through an Encoding class from the System.Text namespace, which you choose when
constructing the StreamReader or StreamWriter. If you choose none, the default UTF-8
encoding is used.

WARNING
If you explicitly specify an encoding, StreamWriter will, by default, write a prefix to the start
of the stream to identify the encoding. This is usually undesirable and you can prevent it by
constructing the encoding as follows:

var encoding = new UTF8Encoding (
  encoderShouldEmitUTF8Identifier:false,
  throwOnInvalidBytes:true);

The second argument tells the StreamWriter (or StreamReader) to throw an exception if it
encounters bytes that do not have a valid string translation for their encoding, which matches
its default behavior if you do not specify an encoding.

The simplest of the encodings is ASCII, because each character is represented by one byte. The
ASCII encoding maps the first 127 characters of the Unicode set into its single byte, covering
what you see on a US-style keyboard. Most other characters, including specialized symbols
and non-English characters, cannot be represented and are converted to the □ character. The
default UTF-8 encoding can map all allocated Unicode characters, but it is more complex. The
first 127 characters encode to a single byte, for ASCII compatibility; the remaining characters
encode to a variable number of bytes (most commonly two or three). Consider this:

using (TextWriter w = File.CreateText ("but.txt"))    // Use default UTF-8
  w.WriteLine ("but-");                               // encoding.

using (Stream s = File.OpenRead ("but.txt"))
  for (int b; (b = s.ReadByte()) > -1;)
    Console.WriteLine (b);

The word “but” is followed not by a stock-standard hyphen, but by the longer em dash ( — )
character, U+2014. This is the one that won’t get you into trouble with your book editor! Let’s



examine the output:

98     // b
117    // u
116    // t
226    // em dash byte 1       Note that the byte values
128    // em dash byte 2       are >= 128 for each part
148    // em dash byte 3       of the multibyte sequence.
13     // <CR>
10     // <LF>

Because the em dash is outside the first 127 characters of the Unicode set, it requires more than
a single byte to encode in UTF-8 (in this case, three). UTF-8 is efficient with the Western
alphabet as most popular characters consume just one byte. It also downgrades easily to ASCII
simply by ignoring all bytes above 127. Its disadvantage is that seeking within a stream is
troublesome, since a character’s position does not correspond to its byte position in the stream.
An alternative is UTF-16 (labeled just “Unicode” in the Encoding class). Here’s how we
write the same string with UTF-16:

using (Stream s = File.Create ("but.txt"))
using (TextWriter w = new StreamWriter (s, Encoding.Unicode))
  w.WriteLine ("but-");

foreach (byte b in File.ReadAllBytes ("but.txt"))
  Console.WriteLine (b);

The output is then:

255    // Byte-order mark 1
254    // Byte-order mark 2
98     // 'b' byte 1
0      // 'b' byte 2
117    // 'u' byte 1
0      // 'u' byte 2
116    // 't' byte 1
0      // 't' byte 2
20     // '--' byte 1
32     // '--' byte 2
13     // <CR> byte 1
0      // <CR> byte 2
10     // <LF> byte 1
0      // <LF> byte 2

Technically, UTF-16 uses either 2 or 4 bytes per character (there are close to a million
Unicode characters allocated or reserved, so 2 bytes is not always enough). However, because
the C# char type is itself only 16 bits wide, a UTF-16 encoding will always use exactly 2
bytes per .NET char. This makes it easy to jump to a particular character index within a
stream.
UTF-16 uses a 2-byte prefix to identify whether the byte pairs are written in a “little-endian”
or “big-endian” order (the least significant byte first or the most significant byte first). The
default little-endian order is standard for Windows-based systems.

StringReader and StringWriter
The StringReader and StringWriter adapters don’t wrap a stream at all; instead, they use a
string or StringBuilder as the underlying data source. This means no byte translation is
required — in fact, the classes do nothing you couldn’t easily achieve with a string or
StringBuilder coupled with an index variable. Their advantage, though, is that they share a



base class with StreamReader/StreamWriter. For instance, suppose we have a string
containing XML and want to parse it with an XmlReader. The XmlReader.Create method
accepts one of the following:

A URI

A Stream

A TextReader

So, how do we XML-parse our string? Because StringReader is a subclass of Text Reader,
we’re in luck. We can instantiate and pass in a StringReader as follows:

XmlReader r = XmlReader.Create (new StringReader (myString));

Binary Adapters
BinaryReader and BinaryWriter read and write native data types: bool, byte, char,
decimal, float, double, short, int, long, sbyte, ushort, uint, and ulong, as well as
strings and arrays of the primitive data types.
Unlike StreamReader and StreamWriter, binary adapters store primitive data types
efficiently, as they are represented in memory. So, an int uses 4 bytes; a double 8 bytes.
Strings are written through a text encoding (as with StreamReader and StreamWriter) but are
length-prefixed, in order to make it possible to read back a series of strings without needing
special delimiters.
Imagine we have a simple type, defined as follows:

public class Person
{
  public string Name;
  public int    Age;
  public double Height;
}

We can add the following methods to Person to save/load its data to/from a stream using
binary adapters:

public void SaveData (Stream s)
{
  var w = new BinaryWriter (s);
  w.Write (Name);
  w.Write (Age);
  w.Write (Height);
  w.Flush();         // Ensure the BinaryWriter buffer is cleared.
                     // We won't dispose/close it, so more data
}                    // can be written to the stream.

public void LoadData (Stream s)
{
  var r = new BinaryReader (s);
  Name   = r.ReadString();
  Age    = r.ReadInt32();
  Height = r.ReadDouble();
}

BinaryReader can also read into byte arrays. The following reads the entire contents of a
seekable stream:



byte[] data = new BinaryReader (s).ReadBytes ((int) s.Length);

This is more convenient than reading directly from a stream, because it doesn’t require a loop
to ensure that all data has been read.

Closing and Disposing Stream Adapters
You have four choices in tearing down stream adapters:

1. Close the adapter only.

2. Close the adapter, and then close the stream.

3. (For writers) Flush the adapter, and then close the stream.

4. (For readers) Close just the stream.

NOTE
Close and Dispose are synonymous with adapters, just as they are with streams.

Options 1 and 2 are semantically identical, because closing an adapter automatically closes the
underlying stream. Whenever you nest using statements, you’re implicitly taking option 2:

using (FileStream fs = File.Create ("test.txt"))
using (TextWriter writer = new StreamWriter (fs))
  writer.WriteLine ("Line");

Because the nest disposes from the inside out, the adapter is first closed, and then the stream.
Furthermore, if an exception is thrown within the adapter’s constructor, the stream still closes.
It’s hard to go wrong with nested using statements!

WARNING
Never close a stream before closing or flushing its writer — you’ll amputate any data that’s
buffered in the adapter.

Options 3 and 4 work because adapters are in the unusual category of optionally disposable
objects. An example of when you might choose not to dispose an adapter is when you’ve
finished with the adapter, but you want to leave the underlying stream open for subsequent use:

using (FileStream fs = new FileStream ("test.txt", FileMode.Create))
{
  StreamWriter writer = new StreamWriter (fs);
  writer.WriteLine ("Hello");
  writer.Flush();

  fs.Position = 0;
  Console.WriteLine (fs.ReadByte());
}



Here we write to a file, reposition the stream, and then read the first byte before closing the
stream. If we disposed the StreamWriter, it would also close the underlying FileStream,
causing the subsequent read to fail. The proviso is that we call Flush to ensure that the
StreamWriter’s buffer is written to the underlying stream.

NOTE
Stream adapters — with their optional disposal semantics — do not implement the extended
disposal pattern where the finalizer calls Dispose. This allows an abandoned adapter to evade
automatic disposal when the garbage collector catches up with it.

From Framework 4.5, there’s a new constructor on StreamReader/StreamWriter that
instructs it to keep the stream open after disposal. Hence we can rewrite the preceding example
as follows:

using (var fs = new FileStream ("test.txt", FileMode.Create))
{
  using (var writer = new StreamWriter (fs, new UTF8Encoding (false, true),
                                       0x400, true))
    writer.WriteLine ("Hello");

  fs.Position = 0;
  Console.WriteLine (fs.ReadByte());
  Console.WriteLine (fs.Length);
}

Compression Streams
Two general-purpose compression streams are provided in the System.IO.Compression
namespace: DeflateStream and GZipStream. Both use a popular compression algorithm
similar to that of the ZIP format. They differ in that GZipStream writes an additional protocol
at the start and end — including a CRC to detect errors. GZipStream also conforms to a
standard recognized by other software.
Both streams allow reading and writing, with the following provisos:

You always write to the stream when compressing.

You always read from the stream when decompressing.

DeflateStream and GZipStream are decorators; they compress or decompress data from
another stream that you supply in construction. In the following example, we compress and
decompress a series of bytes, using a FileStream as the backing store:

using (Stream s = File.Create ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Compress))
  for (byte i = 0; i < 100; i++)
    ds.WriteByte (i);

using (Stream s = File.OpenRead ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Decompress))
  for (byte i = 0; i < 100; i++)
    Console.WriteLine (ds.ReadByte());     // Writes 0 to 99

Even with the smaller of the two algorithms, the compressed file is 241 bytes long: more than



double the original! Compression works poorly with “dense,” nonrepetitive binary data (and
worst of all with encrypted data, which lacks regularity by design). It works well with most
text files; in the next example, we compress and decompress a text stream composed of 1,000
words chosen randomly from a small sentence. This also demonstrates chaining a backing store
stream, a decorator stream, and an adapter (as depicted at the start of the chapter in Figure 15-
1), and the use of asynchronous methods:

string[] words = "The quick brown fox jumps over the lazy dog".Split();
Random rand = new Random();

using (Stream s = File.Create ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Compress))
using (TextWriter w = new StreamWriter (ds))
  for (int i = 0; i < 1000; i++)
    await w.WriteAsync (words [rand.Next (words.Length)] + " ");

Console.WriteLine (new FileInfo ("compressed.bin").Length);      // 1073

using (Stream s = File.OpenRead ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Decompress))
using (TextReader r = new StreamReader (ds))
  Console.Write (await r.ReadToEndAsync());  // Output below:

lazy lazy the fox the quick The brown fox jumps over fox over fox The
brown brown brown over brown quick fox brown dog dog lazy fox dog brown
over fox jumps lazy lazy quick The jumps fox jumps The over jumps dog...

In this case, DeflateStream compresses efficiently to 1,073 bytes — slightly more than 1 byte
per word.

Compressing in Memory
Sometimes you need to compress entirely in memory. Here’s how to use a MemoryStream for
this purpose:

byte[] data = new byte[1000];          // We can expect a good compression
                                       // ratio from an empty array!
var ms = new MemoryStream();
using (Stream ds = new DeflateStream (ms, CompressionMode.Compress))
  ds.Write (data, 0, data.Length);

byte[] compressed = ms.ToArray();
Console.WriteLine (compressed.Length);       // 11

// Decompress back to the data array:
ms = new MemoryStream (compressed);
using (Stream ds = new DeflateStream (ms, CompressionMode.Decompress))
  for (int i = 0; i < 1000; i += ds.Read (data, i, 1000 - i));

The using statement around the DeflateStream closes it in a textbook fashion, flushing any
unwritten buffers in the process. This also closes the MemoryStream it wraps — meaning we
must then call ToArray to extract its data.
Here’s an alternative that avoids closing the MemoryStream, and uses the asynchronous read
and write methods:

byte[] data = new byte[1000];

MemoryStream ms = new MemoryStream();
using (Stream ds = new DeflateStream (ms, CompressionMode.Compress, true))
  await ds.WriteAsync (data, 0, data.Length);



Console.WriteLine (ms.Length);             // 113
ms.Position = 0;
using (Stream ds = new DeflateStream (ms, CompressionMode.Decompress))
  for (int i = 0; i < 1000; i += await ds.ReadAsync (data, i, 1000 - i));

The additional flag sent to DeflateStream’s constructor tells it not to follow the usual
protocol of taking the underlying stream with it in disposal. In other words, the MemoryStream
is left open, allowing us to position it back to zero and reread it.

Working with ZIP Files
Support for the popular ZIP-file compression format was introduced in Framework 4.5, via the
new ZipArchive and ZipFile classes in System.IO.Compression (in an assembly called
System.IO.Compression.FileSystem.dll). The advantage of this format over DeflateStream
and GZipStream is that it acts as a container for multiple files, and is compatible with ZIP files
created with Windows Explorer or other compression utilities.
ZipArchive works with streams, whereas ZipFile addresses the more common scenario of
working with files. (ZipFile is a static helper class for ZipArchive.)
ZipFile’s CreateFromDirectory method adds all the files in a specified directory into a ZIP
file:

ZipFile.CreateFromDirectory (@"d:\MyFolder", @"d:\compressed.zip");

whereas ExtractToDirectory does the opposite and extracts a ZIP file to a directory:

ZipFile.ExtractToDirectory (@"d:\compressed.zip", @"d:\MyFolder");

When compressing, you can specify whether to optimize for file size or speed, and whether to
include the name of the source directory in the archive. Enabling the latter option in our
example would create a subdirectory in the archive called MyFolder into which the
compressed files would go.
ZipFile has an Open method for reading/writing individual entries. This returns a
ZipArchive object (which you can also obtain by instantiating ZipArchive with a Stream
object). When calling Open, you must specify a filename and indicate whether you want to
Read, Create or Update the archive. You can then enumerate existing entries via the Entries
property, or find a particular file with GetEntry:

using (ZipArchive zip = ZipFile.Open (@"d:\zz.zip", ZipArchiveMode.Read))
  foreach (ZipArchiveEntry entry in zip.Entries)
    Console.WriteLine (entry.FullName + " " + entry.Length);

ZipArchiveEntry also has a Delete method, an ExtractToFile method (this is actually an
extension method in the ZipFileExtensions class), and an Open method that returns a
readable/writable Stream. You can create new entries by calling CreateEntry (or the
CreateEntryFromFile extension method) on the ZipArchive. The following creates the
archive d:\zz.zip, to which it adds foo.dll, under a directory structure within the archive called
bin\X86:

byte[] data = File.ReadAllBytes (@"d:\foo.dll");



using (ZipArchive zip = ZipFile.Open (@"d:\zz.zip", ZipArchiveMode.Update))
  zip.CreateEntry (@"bin\X64\foo.dll").Open().Write (data, 0, data.Length);

You could do the same thing entirely in memory by constructing ZipArchive with a
MemoryStream.

File and Directory Operations
The System.IO namespace provides a set of types for performing “utility” file and directory
operations, such as copying and moving, creating directories, and setting file attributes and
permissions. For most features, you can choose between either of two classes, one offering
static methods and the other instance methods:

Static classes
File and Directory

Instance method classes (constructed with a file or directory name)
FileInfo and DirectoryInfo

Additionally, there’s a static class called Path. This does nothing to files or directories;
instead, it provides string manipulation methods for filenames and directory paths. Path also
assists with temporary files.
For UWP applications, also see “File I/O in UWP”.

The File Class
File is a static class whose methods all accept a filename. The filename can be either relative
to the current directory or fully qualified with a directory. Here are its methods (all public
and static):

bool Exists (string path);      // Returns true if the file is present

void Delete  (string path);
void Copy    (string sourceFileName, string destFileName);
void Move    (string sourceFileName, string destFileName);
void Replace (string sourceFileName, string destinationFileName,
                                     string destinationBackupFileName);

FileAttributes GetAttributes (string path);
void SetAttributes           (string path, FileAttributes fileAttributes);

void Decrypt (string path);
void Encrypt (string path);

DateTime GetCreationTime   (string path);      // UTC versions are
DateTime GetLastAccessTime (string path);      // also provided.
DateTime GetLastWriteTime  (string path);

void SetCreationTime   (string path, DateTime creationTime);
void SetLastAccessTime (string path, DateTime lastAccessTime);
void SetLastWriteTime  (string path, DateTime lastWriteTime);

FileSecurity GetAccessControl (string path);
FileSecurity GetAccessControl (string path,
                               AccessControlSections includeSections);
void SetAccessControl (string path, FileSecurity fileSecurity);

Move throws an exception if the destination file already exists; Replace does not. Both



methods allow the file to be renamed as well as moved to another directory.
Delete throws an UnauthorizedAccessException if the file is marked read-only; you can
tell this in advance by calling GetAttributes. Here are all the members of the
FileAttribute enum that GetAttributes returns:

Archive, Compressed, Device, Directory, Encrypted,
Hidden, Normal, NotContentIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, Temporary

Members in this enum are combinable. Here’s how to toggle a single file attribute without
upsetting the rest:

string filePath = @"c:\temp\test.txt";

FileAttributes fa = File.GetAttributes (filePath);
if ((fa & FileAttributes.ReadOnly) != 0)
{
    // Use the exclusive-or operator (^) to toggle the ReadOnly flag
    fa ^= FileAttributes.ReadOnly;
    File.SetAttributes (filePath, fa);
}

// Now we can delete the file, for instance:
File.Delete (filePath);

NOTE
FileInfo offers an easier way to change a file’s read-only flag:

new FileInfo (@"c:\temp\test.txt").IsReadOnly = false;

Compression and encryption attributes
The Compressed and Encrypted file attributes correspond to the compression and encryption
checkboxes on a file or directory’s properties dialog box in Windows Explorer. This type of
compression and encryption is transparent in that the operating system does all the work
behind the scenes, allowing you to read and write plain data.
You cannot use SetAttributes to change a file’s Compressed or Encrypted attributes — it
fails silently if you try! The workaround is simple in the latter case: you instead call the
Encrypt() and Decrypt() methods in the File class. With compression, it’s more
complicated; one solution is to use the Windows Management Instrumentation (WMI) API in
System.Management. The following method compresses a directory, returning 0 if successful
(or a WMI error code if not):

static uint CompressFolder (string folder, bool recursive)
{
  string path = "Win32_Directory.Name='" + folder + "'";
  using (ManagementObject dir = new ManagementObject (path))
  using (ManagementBaseObject p = dir.GetMethodParameters ("CompressEx"))
  {
    p ["Recursive"] = recursive;
    using (ManagementBaseObject result = dir.InvokeMethod ("CompressEx",
                                                             p, null))
      return (uint) result.Properties ["ReturnValue"].Value;
  }



}

To uncompress, replace CompressEx with UncompressEx.
Transparent encryption relies on a key seeded from the logged-in user’s password. The system
is robust to password changes performed by the authenticated user, but if a password is reset
via an administrator, data in encrypted files is unrecoverable.

NOTE
Transparent encryption and compression require special filesystem support. NTFS (used
most commonly on hard drives) supports these features; CDFS (on CD-ROMs) and FAT (on
removable media cards) do not.

You can determine whether a volume supports compression and encryption with Win32
interop:

using System;
using System.IO;
using System.Text;
using System.ComponentModel;
using System.Runtime.InteropServices;

class SupportsCompressionEncryption
{
  const int SupportsCompression = 0×10;
  const int SupportsEncryption = 0×20000;

  [DllImport ("Kernel32.dll", SetLastError = true)]
  extern static bool GetVolumeInformation (string vol, StringBuilder name,
    int nameSize, out uint serialNum, out uint maxNameLen, out uint flags,
    StringBuilder fileSysName, int fileSysNameSize);

  static void Main()
  {
    uint serialNum, maxNameLen, flags;
    bool ok = GetVolumeInformation (@"C:\", null, 0, out serialNum,
                                    out maxNameLen, out flags, null, 0);
    if (!ok)
      throw new Win32Exception();

    bool canCompress = (flags & SupportsCompression) != 0;
    bool canEncrypt = (flags & SupportsEncryption) != 0;
  }
}

File security
The GetAccessControl and SetAccessControl methods allow you to query and change the
operating system permissions assigned to users and roles via a File Security object
(namespace System.Security.AccessControl). You can also pass a FileSecurity object
to a FileStream’s constructor to specify permissions when creating a new file.
In this example, we list a file’s existing permissions, and then assign execution permission to
the “Users” group:

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;



...

FileSecurity sec = File.GetAccessControl (@"d:\test.txt");
AuthorizationRuleCollection rules = sec.GetAccessRules (true, true,
                                                     typeof (NTAccount));
foreach (FileSystemAccessRule rule in rules)
{
  Console.WriteLine (rule.AccessControlType);         // Allow or Deny
  Console.WriteLine (rule.FileSystemRights);          // e.g., FullControl
  Console.WriteLine (rule.IdentityReference.Value);   // e.g., MyDomain/Joe
}

var sid = new SecurityIdentifier (WellKnownSidType.BuiltinUsersSid, null);
string usersAccount = sid.Translate (typeof (NTAccount)).ToString();

FileSystemAccessRule newRule = new FileSystemAccessRule
  (usersAccount, FileSystemRights.ExecuteFile, AccessControlType.Allow);

sec.AddAccessRule (newRule);
File.SetAccessControl (@"d:\test.txt", sec);

We give another example, later, in “Special Folders”.

The Directory Class
The static Directory class provides a set of methods analogous to those in the File class —
for checking whether a directory exists (Exists), moving a directory (Move), deleting a
directory (Delete), getting/setting times of creation or last access, and getting/setting security
permissions. Furthermore, Directory exposes the following static methods:

string GetCurrentDirectory ();
void   SetCurrentDirectory (string path);

DirectoryInfo CreateDirectory  (string path);
DirectoryInfo GetParent        (string path);
string        GetDirectoryRoot (string path);

string[] GetLogicalDrives();

// The following methods all return full paths:

string[] GetFiles             (string path);
string[] GetDirectories       (string path);
string[] GetFileSystemEntries (string path);

IEnumerable<string> EnumerateFiles             (string path);
IEnumerable<string> EnumerateDirectories       (string path);
IEnumerable<string> EnumerateFileSystemEntries (string path);

NOTE
The last three methods were added in Framework 4.0. They’re potentially more efficient
than the Get* variants, because they’re lazily evaluated — fetching data from the filesystem
as you enumerate the sequence. They’re particularly well-suited to LINQ queries.

The Enumerate* and Get* methods are overloaded to also accept searchPattern (string)
and searchOption (enum) parameters. If you specify SearchOption 
.SearchAllSubDirectories, a recursive subdirectory search is performed. The
*FileSystemEntries methods combine the results of *Files with *Directories.



Here’s how to create a directory if it doesn’t already exist:

if (!Directory.Exists (@"d:\test"))
  Directory.CreateDirectory (@"d:\test");

FileInfo and DirectoryInfo
The static methods on File and Directory are convenient for executing a single file or
directory operation. If you need to call a series of methods in a row, the FileInfo and
DirectoryInfo classes provide an object model that makes the job easier.
FileInfo offers most of the File’s static methods in instance form — with some additional
properties such as Extension, Length, IsReadOnly, and Directory — for returning a
DirectoryInfo object. For example:

FileInfo fi = new FileInfo (@"c:\temp\FileInfo.txt");
Console.WriteLine (fi.Exists);         // false

using (TextWriter w = fi.CreateText())
  w.Write ("Some text");

Console.WriteLine (fi.Exists);         // false (still)
fi.Refresh();
Console.WriteLine (fi.Exists);         // true

Console.WriteLine (fi.Name);           // FileInfo.txt
Console.WriteLine (fi.FullName);       // c:\temp\FileInfo.txt
Console.WriteLine (fi.DirectoryName);  // c:\temp
Console.WriteLine (fi.Directory.Name); // temp
Console.WriteLine (fi.Extension);      // .txt
Console.WriteLine (fi.Length);         // 9

fi.Encrypt();
fi.Attributes ^= FileAttributes.Hidden;   // (Toggle hidden flag)
fi.IsReadOnly = true;

Console.WriteLine (fi.Attributes);    // ReadOnly,Archive,Hidden,Encrypted
Console.WriteLine (fi.CreationTime);  // 3/09/2015 1:24:05 PM

fi.MoveTo (@"c:\temp\FileInfoX.txt");

DirectoryInfo di = fi.Directory;
Console.WriteLine (di.Name);             // temp
Console.WriteLine (di.FullName);         // c:\temp
Console.WriteLine (di.Parent.FullName);  // c:\
di.CreateSubdirectory ("SubFolder");

Here’s how to use DirectoryInfo to enumerate files and subdirectories:

DirectoryInfo di = new DirectoryInfo (@"e:\photos");

foreach (FileInfo fi in di.GetFiles ("*.jpg"))
  Console.WriteLine (fi.Name);

foreach (DirectoryInfo subDir in di.GetDirectories())
  Console.WriteLine (subDir.FullName);

Path
The static Path class defines methods and fields for working with paths and filenames.
Assuming this setup code:



string dir  = @"c:\mydir";
string file = "myfile.txt";
string path = @"c:\mydir\myfile.txt";

Directory.SetCurrentDirectory (@"k:\demo");

we can demonstrate Path’s methods and fields with the following expressions:

Expression Result
Directory.GetCurrentDirectory() k:\demo\

Path.IsPathRooted (file) False

Path.IsPathRooted (path) True

Path.GetPathRoot (path) c:\

Path.GetDirectoryName (path) c:\mydir

Path.GetFileName (path) myfile.txt

Path.GetFullPath (file) k:\demo\myfile.txt

Path.Combine (dir, file) c:\mydir\myfile.txt

File extensions:  

Path.HasExtension (file) True

Path.GetExtension (file) .txt

Path.GetFileNameWithoutExtension (file) myfile

Path.ChangeExtension (file, ".log") myfile.log

Separators and characters:  

Path.AltDirectorySeparatorChar /

Path.PathSeparator ;

Path.VolumeSeparatorChar :

Path.GetInvalidPathChars() chars 0 to 31 and "<>|

Path.GetInvalidFileNameChars() chars 0 to 31 and "<>|:*?\/

Temporary files:  

Path.GetTempPath() <local user folder>\Temp

Path.GetRandomFileName() d2dwuzjf.dnp

Path.GetTempFileName() <local user folder>\Temp\tmp14B.tmp

Combine is particularly useful: it allows you to combine a directory and filename — or two
directories — without first having to check whether a trailing backslash is present.
GetFullPath converts a path relative to the current directory to an absolute path. It accepts
values such as ..\..\file.txt.
GetRandomFileName returns a genuinely unique 8.3 character filename, without actually
creating any file. GetTempFileName generates a temporary filename using an auto-
incrementing counter that repeats every 65,000 files. It then creates a zero-byte file of this name
in the local temporary directory.

WARNING
You must delete the file generated by GetTempFileName when you’re done; otherwise, it will
eventually throw an exception (after your 65,000th call to GetTempFileName). If this is a
problem, you can instead Combine GetTempPath with GetRandomFileName. Just be careful not
to fill up the user’s hard drive!



Special Folders
One thing missing from Path and Directory is a means to locate folders such as My
Documents, Program Files, Application Data, and so on. This is provided instead by the
GetFolderPath method in the System.Environment class:

string myDocPath = Environment.GetFolderPath
  (Environment.SpecialFolder.MyDocuments);

Environment.SpecialFolder is an enum whose values encompass all special directories in
Windows:

AdminTools CommonVideos Personal

ApplicationData Cookies PrinterShortcuts

CDBurning Desktop ProgramFiles

CommonAdminTools DesktopDirectory ProgramFilesX86

CommonApplicationData Favorites Programs

CommonDesktopDirectory Fonts Recent

CommonDocuments History Resources

CommonMusic InternetCache SendTo

CommonOemLinks LocalApplicationData StartMenu

CommonPictures LocalizedResources Startup

CommonProgramFiles MyComputer System

CommonProgramFilesX86 MyDocuments SystemX86

CommonPrograms MyMusic Templates

CommonStartMenu MyPictures UserProfile

CommonStartup MyVideos Windows

CommonTemplates NetworkShortcuts  

NOTE
Everything is covered here, except the .NET Framework directory which you can obtain as
follows:

System.Runtime.InteropServices.
  RuntimeEnvironment.GetRuntimeDirectory()

Of particular value is ApplicationData: this is where you can store settings that travel with a
user across a network (if roaming profiles are enabled on the network domain) and
LocalApplicationData, which is for nonroaming data (specific to the logged-in user) and
CommonApplicationData, which is shared by every user of the computer. Writing application
data to these folders is considered preferable to using the Windows Registry. The standard
protocol for storing data in these folders is to create a subdirectory with the name of your
application:

string localAppDataPath = Path.Combine (
  Environment.GetFolderPath (Environment.SpecialFolder.ApplicationData),
  "MyCoolApplication");

if (!Directory.Exists (localAppDataPath))
  Directory.CreateDirectory (localAppDataPath);



There’s a trap when using CommonApplicationData: if a user starts your program with
administrative elevation and your program then creates folders and files in
CommonApplicationData, that user might lack permissions to replace those files later, when
run under a restricted Windows login. (A similar problem exists when switching between
restricted-permission accounts.) You can work around it by creating the desired folder (with
permissions assigned to everyone) as part of your setup. Alternatively, if you run the following
code immediately after creating a folder under CommonApplicationData (before writing any
files) it will ensure that everyone in the “users” group is given unrestricted access:

public void AssignUsersFullControlToFolder (string path)
{
  try
  {
    var sec = Directory.GetAccessControl (path);
    if (UsersHaveFullControl (sec)) return;

    var rule = new FileSystemAccessRule (
      GetUsersAccount().ToString(),
      FileSystemRights.FullControl,
      InheritanceFlags.ContainerInherit | InheritanceFlags.ObjectInherit,
      PropagationFlags.None,
      AccessControlType.Allow);

      sec.AddAccessRule (rule);
      Directory.SetAccessControl (path, sec);
  }
  catch (UnauthorizedAccessException)
  {
    // Folder was already created by another user
  }
}

bool UsersHaveFullControl (FileSystemSecurity sec)
{
  var usersAccount = GetUsersAccount();
  var rules = sec.GetAccessRules (true, true, typeof (NTAccount))
                 .OfType<FileSystemAccessRule>();

  return rules.Any (r =>
    r.FileSystemRights == FileSystemRights.FullControl &&
    r.AccessControlType == AccessControlType.Allow &&
    r.InheritanceFlags == (InheritanceFlags.ContainerInherit |
                           InheritanceFlags.ObjectInherit) &&
    r.IdentityReference == usersAccount);
}

NTAccount GetUsersAccount()
{
  var sid = new SecurityIdentifier (WellKnownSidType.BuiltinUsersSid, null);
  return (NTAccount)sid.Translate (typeof (NTAccount));
}

Another place to write configuration and log files is to the application’s base directory, which
you can obtain with AppDomain.CurrentDomain.BaseDirectory. This is not recommended,
however, because the operating system is likely to deny your application permissions to write
to this folder after initial installation (without administrative elevation).

Querying Volume Information
You can query the drives on a computer with the DriveInfo class:

DriveInfo c = new DriveInfo ("C");       // Query the C: drive.



long totalSize = c.TotalSize;            // Size in bytes.
long freeBytes = c.TotalFreeSpace;       // Ignores disk quotas.
long freeToMe  = c.AvailableFreeSpace;   // Takes quotas into account.

foreach (DriveInfo d in DriveInfo.GetDrives())    // All defined drives.
{
  Console.WriteLine (d.Name);             // C:\
  Console.WriteLine (d.DriveType);        // Fixed
  Console.WriteLine (d.RootDirectory);    // C:\

  if (d.IsReady)   // If the drive is not ready, the following two
                   // properties will throw exceptions:
  {
    Console.WriteLine (d.VolumeLabel);    // The Sea Drive
    Console.WriteLine (d.DriveFormat);    // NTFS
  }
}

The static GetDrives method returns all mapped drives, including CD-ROMs, media cards,
and network connections. DriveType is an enum with the following values:

Unknown, NoRootDirectory, Removable, Fixed, Network, CDRom, Ram

Catching Filesystem Events
The FileSystemWatcher class lets you monitor a directory (and optionally, subdirectories)
for activity. FileSystemWatcher has events that fire when files or subdirectories are created,
modified, renamed, and deleted, as well as when their attributes change. These events fire
regardless of the user or process performing the change. Here’s an example:

static void Main() { Watch (@"c:\temp", "*.txt", true); }

static void Watch (string path, string filter, bool includeSubDirs)
{
  using (var watcher = new FileSystemWatcher (path, filter))
  {
    watcher.Created += FileCreatedChangedDeleted;
    watcher.Changed += FileCreatedChangedDeleted;
    watcher.Deleted += FileCreatedChangedDeleted;
    watcher.Renamed += FileRenamed;
    watcher.Error   += FileError;

    watcher.IncludeSubdirectories = includeSubDirs;
    watcher.EnableRaisingEvents = true;

    Console.WriteLine ("Listening for events - press <enter> to end");
    Console.ReadLine();
  }
  // Disposing the FileSystemWatcher stops further events from firing.
}

static void FileCreatedChangedDeleted (object o, FileSystemEventArgs e)
  => Console.WriteLine ("File {0} has been {1}", e.FullPath, e.ChangeType);

static void FileRenamed (object o, RenamedEventArgs e)
  => Console.WriteLine ("Renamed: {0}->{1}", e.OldFullPath, e.FullPath);

static void FileError (object o, ErrorEventArgs e)
  => Console.WriteLine ("Error: " + e.GetException().Message);

WARNING
Because FileSystemWatcher raises events on a separate thread, you must exception-handle
the event handling code to prevent an error from taking down the application. See “Exception



Handling” in Chapter 14 for more information.

The Error event does not inform you of filesystem errors; instead, it indicates that the
FileSystemWatcher’s event buffer overflowed because it was overwhelmed by Changed,
Created, Deleted, or Renamed events. You can change the buffer size via the
InternalBufferSize property.
IncludeSubdirectories applies recursively. So, if you create a FileSystemWatcher on C:\
with IncludeSubdirectories true, its events will fire when a file or directory changes
anywhere on the hard drive.

WARNING
A trap in using FileSystemWatcher is to open and read newly created or updated files before
the file has been fully populated or updated. If you’re working in conjunction with some
other software that’s creating files, you might need to consider some strategy to mitigate this,
such as creating files with an unwatched extension and then renaming them once fully
written.

File I/O in UWP
UWP applications are restricted in terms of the directories and files they can access. The
easiest way to navigate the restrictions is to use the WinRT types in the Windows.Storage
namespace, the two primary classes being StorageFolder and StorageFile.

NOTE
In Windows Runtime for Windows 8 and 8.1, you couldn’t use FileStream or the
Directory/File classes at all. This made it harder to write portable class libraries, so this
restriction has been relaxed in UWP for Windows 10, although the limits on what directories
and files you can access still apply.
Also note that UWP expects you to use asynchronous methods (Chapter 14) to encourage
responsive UIs. Using FileStream’s synchronous methods on a UWP UI thread will throw an
exception.

Working with Directories
The StorageFolder class represents a directory. You can obtain a StorageFolder via its
static method GetFolderFromPathAsync, giving it a full path to the folder. However, given
that UWP lets you access files only in certain locations, an easier approach is to obtain a
StorageFolder via the KnownFolders class, which exposes a static property for each of the
(potentially) permitted locations:

public static StorageFolder DocumentsLibrary { get; }
public static StorageFolder PicturesLibrary { get; }
public static StorageFolder MusicLibrary { get; }
public static StorageFolder VideosLibrary { get; }



NOTE
File access is further restricted by what’s declared in the package manifest. In particular,
UWP applications can access only those files whose extensions match their declared file type
associations.

In addition, Package.Current.InstalledLocation returns the StorageFolder of your
current application (to which you have read-only access).
KnownFolders also has properties for accessing removable devices and home group folders.
StorageFolder has the properties you’d expect (Name, Path, DateCreated, DateModified,
Attributes and so on), methods to delete/rename the folder (DeleteAsync/RenameAsync),
and methods to list files and subfolders (GetFilesAsync and GetFoldersAsync).
As is evident from their names, the methods are asynchronous, returning an object that you can
convert into a task with the AsTask extension method, or directly await. The following obtains
a directory listing of all files in the documents folder:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
IReadOnlyList<StorageFile> files = await docsFolder.GetFilesAsync();
foreach (IStorageFile file in files)
  Debug.WriteLine (file.Name);

The CreateFileQueryWithOptions method lets you filter to a specific extension:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
var queryOptions = new QueryOptions (CommonFileQuery.DefaultQuery,
                                     new[] { ".txt" });
var txtFiles = await docsFolder.CreateFileQueryWithOptions (queryOptions)
                               .GetFilesAsync();
foreach (StorageFile file in txtFiles)
  Debug.WriteLine (file.Name);

The QueryOptions class exposes properties to further control the search. For example, the
FolderDepth property requests a recursive directory listing:

queryOptions.FolderDepth = FolderDepth.Deep;

Working with Files
StorageFile is the primary class for working with files. You can obtain an instance from a
full path (to which you have permission) with the static
StorageFile.GetFileFromPathAsync method, or from a relative path by calling
GetFileAsync method on a StorageFolder (or IStorageFolder) object:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
StorageFile file = await docsFolder.GetFileAsync ("foo.txt");

If the file does not exist, a FileNotFoundException is thrown at that point.
StorageFile has properties such as Name, Path, etc., and methods for working with files,
such as Move, Rename, Copy and Delete (all Async). The CopyAsync method returns a
StorageFile corresponding to the new file. There’s also a CopyAndReplaceAsync which
accepts a target StorageFile object rather than a target name and folder.



StorageFile also exposes methods to open the file for reading/writing via .NET streams
(OpenStreamForReadAsync and OpenStreamForWriteAsync). For example, the following
creates and writes to a file called test.txt in the documents folder:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;

StorageFile file = await docsFolder.CreateFileAsync
  ("test.txt", CreationCollisionOption.ReplaceExisting);

using (Stream stream = await file.OpenStreamForWriteAsync())
using (StreamWriter writer = new StreamWriter (stream))
  await writer.WriteLineAsync ("This is a test");

WARNING
If you don’t specify CreationCollisionOption.ReplaceExisting and the file already exists, it
will automatically append a number to the filename to make it unique.

The following reads the file back:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
StorageFile file = await docsFolder.GetFileAsync ("test.txt");

using (var stream = await file.OpenStreamForReadAsync ())
using (StreamReader reader = new StreamReader (stream))
  Debug.WriteLine (await reader.ReadToEndAsync());

Isolated Storage in UWP Apps
UWP apps also have access to private folders that are isolated from other applications and can
be used to store application-specific data:

Windows.Storage.ApplicationData.Current.LocalFolder
Windows.Storage.ApplicationData.Current.RoamingFolder
Windows.Storage.ApplicationData.Current.TemporaryFolder

Each of these static properties returns a StorageFolder object that can be used to read/write
and list files as we described previously.

Memory-Mapped Files
Memory-mapped files provide two key features:

Efficient random access to file data

The ability to share memory between different processes on the same computer

The types for memory-mapped files reside in the System.IO.MemoryMappedFiles namespace
and were introduced in Framework 4.0. Internally, they work by wrapping the Win32 API for
memory-mapped files.

Memory-Mapped Files and Random File I/O
Although an ordinary FileStream allows random file I/O (by setting the stream’s Position



property), it’s optimized for sequential I/O. As a rough rule of thumb:
FileStreams are ~10 times faster than memory-mapped files for sequential I/O.

Memory-mapped files are ~10 times faster than FileStreams for random I/O.

Changing a FileStream’s Position can cost several microseconds — which adds up if done
within a loop. A FileStream is also unsuitable for multithreaded access — because its
position changes as it is read or written.
To create a memory-mapped file:

1. Obtain a FileStream as you would ordinarily.

2. Instantiate a MemoryMappedFile, passing in the file stream.

3. Call CreateViewAccessor on the memory-mapped file object.

The last step gives you a MemoryMappedViewAccessor object that provides methods for
randomly reading and writing simple types, structures, and arrays (more on this in “Working
with View Accessors”).
The following creates a one million-byte file and then uses the memory-mapped file API to
read and then write a byte at position 500,000:

File.WriteAllBytes ("long.bin", new byte [1000000]);

using (MemoryMappedFile mmf = MemoryMappedFile.CreateFromFile ("long.bin"))
using (MemoryMappedViewAccessor accessor = mmf.CreateViewAccessor())
{
  accessor.Write (500000, (byte) 77);
  Console.WriteLine (accessor.ReadByte (500000));   // 77
}

You can also specify a map name and capacity when calling CreateFromFile. Specifying a
non-null map name allows the memory block to be shared with other processes (see the
following section); specifying a capacity automatically enlarges the file to that value. The
following creates a 1,000-byte file:

using (var mmf = MemoryMappedFile.CreateFromFile
                 ("long.bin", FileMode.Create, null, 1000))
  ...

Memory-Mapped Files and Shared Memory
You can also use memory-mapped files as a means of sharing memory between processes on
the same computer. One process creates a shared memory block by calling
MemoryMappedFile.CreateNew, while other processes subscribe to that same memory block
by calling MemoryMappedFile.OpenExisting with the same name. Although it’s still referred
to as a memory-mapped “file,” it lives entirely in memory and has no disk presence.
The following creates a 500-byte shared memory-mapped file, and writes the integer 12345 at
position 0:

using (MemoryMappedFile mmFile = MemoryMappedFile.CreateNew ("Demo", 500))
using (MemoryMappedViewAccessor accessor = mmFile.CreateViewAccessor())
{



  accessor.Write (0, 12345);
  Console.ReadLine();   // Keep shared memory alive until user hits Enter.
}

while the following opens that same memory-mapped file and reads that integer:

// This can run in a separate EXE:
using (MemoryMappedFile mmFile = MemoryMappedFile.OpenExisting ("Demo"))
using (MemoryMappedViewAccessor accessor = mmFile.CreateViewAccessor())
  Console.WriteLine (accessor.ReadInt32 (0));   // 12345

Working with View Accessors
Calling CreateViewAccessor on a MemoryMappedFile gives you a view accessor that lets
you read/write values at random positions.
The Read*/Write* methods accept numeric types, bool, and char, as well as arrays and
structs that contain value-type elements or fields. Reference types — and arrays or structs that
contain reference types — are prohibited because they cannot map into unmanaged memory. So
if you want to write a string, you must encode it into an array of bytes:

byte[] data = Encoding.UTF8.GetBytes ("This is a test");
accessor.Write (0, data.Length);
accessor.WriteArray (4, data, 0, data.Length);

Notice that we wrote the length first. This means we know how many bytes to read back later:

byte[] data = new byte [accessor.ReadInt32 (0)];
accessor.ReadArray (4, data, 0, data.Length);
Console.WriteLine (Encoding.UTF8.GetString (data));   // This is a test

Here’s an example of reading/writing a struct:

struct Data { public int X, Y; }
...
var data = new Data { X = 123, Y = 456 };
accessor.Write (0, ref data);
accessor.Read (0, out data);
Console.WriteLine (data.X + " " + data.Y);   // 123 456

The Read and Write methods are surprisingly slow. You can get much better performance by
directly accessing the underlying unmanaged memory via a pointer. Following on from the
previous example:

unsafe
{
  byte* pointer = null;
  try
  {
    accessor.SafeMemoryMappedViewHandle.AcquirePointer (ref pointer);
    int* intPointer = (int*) pointer;
    Console.WriteLine (*intPointer);               // 123
  }
  finally
  {
    if (pointer != null)
      accessor.SafeMemoryMappedViewHandle.ReleasePointer();
  }
}



The performance advantage of pointers is even more pronounced when working with large
structures because they let you work directly with the raw data rather than using Read/Write to
copy data between managed and unmanaged memory. We explore this further in Chapter 25.

Isolated Storage
Each .NET program has access to a local storage area unique to that program, called isolated
storage. Isolated storage is useful when your program can’t access the standard filesystem, and
so cannot write to ApplicationData, LocalApplicationData, CommonApplicationData,
MyDocuments, and so on (see “Special Folders”). This is the case with Silverlight applications
and ClickOnce applications deployed with restricted “Internet” permissions. We cover Isolated
Storage in the online addendum, at http://www.albahari.com/nutshell.

http://www.albahari.com/nutshell


Chapter 16. Networking

The Framework offers a variety of classes in the System.Net.* namespaces for
communicating via standard network protocols, such as HTTP, TCP/IP, and FTP. Here’s a
summary of the key components:

A WebClient façade class for simple download/upload operations via HTTP or FTP

WebRequest and WebResponse classes for low-level control over client-side HTTP or FTP
operations

HttpClient for consuming HTTP web APIs and RESTful services

HttpListener for writing an HTTP server

SmtpClient for constructing and sending mail messages via SMTP

Dns for converting between domain names and addresses

TcpClient, UdpClient, TcpListener, and Socket classes for direct access to the
transport and network layers

These types are all part of .NET Standard 2.0, which means UWP applications can use them
(unless you’re using an older version of UWP that doesn’t support .NET Standard 2.0). UWP
apps or WinRT types for TCP and UDP communication in Windows.Networking.Sockets,
which we demonstrate in the final section in this chapter. These have the advantage of
encouraging asynchronous programming.
The .NET types in this chapter are in the System.Net.* and System.IO namespaces.

Network Architecture
Figure 16-1 illustrates the .NET networking types and the communication layers in which they
reside. Most types reside in the transport layer or application layer. The transport layer
defines basic protocols for sending and receiving bytes (TCP and UDP); the application layer
defines higher-level protocols designed for specific applications such as retrieving web pages
(HTTP), transferring files (FTP), sending mail (SMTP), and converting between domain names
and IP addresses (DNS).



Figure 16-1. Network architecture

It’s usually most convenient to program at the application layer; however, there are a couple of
reasons you might want to work directly at the transport layer. One is if you need an application
protocol not provided in the Framework, such as POP3 for retrieving mail. Another is if you
want to invent a custom protocol for a special application such as a peer-to-peer client.
Of the application protocols, HTTP is special in its applicability to general-purpose
communication. Its basic mode of operation — “give me the web page with this URL” —
adapts nicely to “get me the result of calling this endpoint with these arguments.” (In addition to
the “get” verb, there is “put,” “post,” and “delete,” allowing for REST-based services.)
HTTP also has a rich set of features that are useful in multitier business applications and
service-oriented architectures, such as protocols for authentication and encryption, message
chunking, extensible headers and cookies, and the ability to have many server applications
share a single port and IP address. For these reasons, HTTP is well supported in the
Framework — both directly, as described in this chapter, and at a higher level, through such
technologies as WCF, Web Services, and ASP.NET.



The Framework provides client-side support for FTP, the popular Internet protocol for sending
and receiving files. Server-side support comes in the form of IIS or Unix-based server
software.
As the preceding discussion makes clear, networking is a field that is awash in acronyms. We
list the most common in Table 16-1.

Table 16-1. Network acronyms

Acronym Expansion Notes

DNS Domain Name Service Converts between domain names (e.g., ebay.com) and IP addresses (e.g., 199.54.213.2)

FTP File Transfer Protocol Internet-based protocol for sending and receiving files

HTTP Hypertext Transfer
Protocol

Retrieves web pages and runs web services

IIS Internet Information
Services

Microsoft’s web server software

IP Internet Protocol Network-layer protocol below TCP and UDP

LAN Local Area Network Most LANs use Internet-based protocols such as TCP/IP

POP Post Office Protocol Retrieves Internet mail

REST REpresentational State
Transfer

A popular alternative to Web Services that leverages machine-followable links in
responses and that can operate over basic HTTP

SMTP Simple Mail Transfer
Protocol

Sends Internet mail

TCP Transmission and
Control Protocol

Transport-layer Internet protocol on top of which most higher-layer services are built

UDP Universal Datagram
Protocol

Transport-layer Internet protocol used for low-overhead services such as VoIP

UNC Universal Naming
Convention

\\computer\sharename\filename

URI Uniform Resource
Identifier

Ubiquitous resource naming system (e.g., http://www.amazon.com or
mailto:joe@bloggs.org)

URL Uniform Resource
Locator

Technical meaning (fading from use): subset of URI; popular meaning: synonym of URI

Addresses and Ports
For communication to work, a computer or device requires an address. The Internet uses two
addressing systems:

IPv4
Currently the dominant addressing system; IPv4 addresses are 32 bits wide. When string-
formatted, IPv4 addresses are written as four dot-separated decimals (e.g.,
101.102.103.104). An address can be unique in the world — or unique within a particular
subnet (such as on a corporate network).

IPv6
The newer 128-bit addressing system. Addresses are string-formatted in hexadecimal
with a colon separator (e.g., [3EA0:FFFF:198A:E4A3:4FF2:54fA:41BC:8D31]). The
.NET Framework requires that you add square brackets around the address.

http://ebay.com
http://www.amazon.com
mailto:mailto:joe@bloggs.org


The IPAddress class in the System.Net namespace represents an address in either protocol. It
has a constructor accepting a byte array, and a static Parse method accepting a correctly
formatted string:

IPAddress a1 = new IPAddress (new byte[] { 101, 102, 103, 104 });
IPAddress a2 = IPAddress.Parse ("101.102.103.104");
Console.WriteLine (a1.Equals (a2));                     // True
Console.WriteLine (a1.AddressFamily);                   // InterNetwork

IPAddress a3 = IPAddress.Parse
  ("[3EA0:FFFF:198A:E4A3:4FF2:54fA:41BC:8D31]");
Console.WriteLine (a3.AddressFamily);   // InterNetworkV6

The TCP and UDP protocols break out each IP address into 65,535 ports, allowing a computer
on a single address to run multiple applications, each on its own port. Many applications have
standard port assignments; for instance, HTTP uses port 80; SMTP uses port 25.

NOTE
The TCP and UDP ports from 49152 to 65535 are officially unassigned, so they are good for
testing and small-scale deployments.

An IP address and port combination is represented in the .NET Framework by the IPEndPoint
class:

IPAddress a = IPAddress.Parse ("101.102.103.104");
IPEndPoint ep = new IPEndPoint (a, 222);           // Port 222
Console.WriteLine (ep.ToString());                 // 101.102.103.104:222

NOTE
Firewalls block ports. In many corporate environments, only a few ports are open —
typically, port 80 (for unencrypted HTTP) and port 443 (for secure HTTP).

URIs
A URI is a specially formatted string that describes a resource on the Internet or a LAN, such
as a web page, file, or email address. Examples include http://www.ietf.org,
ftp://myisp/doc.txt, and mailto:joe@bloggs.com. The exact formatting is defined by the
Internet Engineering Task Force (http://www.ietf.org/).
A URI can be broken up into a series of elements — typically, scheme, authority, and path.
The Uri class in the System namespace performs just this division, exposing a property for
each element. This is illustrated in Figure 16-2.

http://www.ietf.org
mailto:mailto:joe@bloggs.com
http://www.ietf.org/


Figure 16-2. URI properties

NOTE
The Uri class is useful when you need to validate the format of a URI string or to split a URI
into its component parts. Otherwise, you can treat a URI simply as a string — most
networking methods are overloaded to accept either a Uri object or a string.

You can construct a Uri object by passing any of the following strings into its constructor:
A URI string, such as http://www.ebay.com or file://janespc/sharedpics/dolphin.jpg

An absolute path to a file on your hard disk, such as c:\myfiles\data.xls

A UNC path to a file on the LAN, such as \\janespc\sharedpics\dolphin.jpg

File and UNC paths are automatically converted to URIs: the “file:” protocol is added, and
backslashes are converted to forward slashes. The Uri constructors also perform some basic
cleanup on your string before creating the Uri, including converting the scheme and hostname
to lowercase and removing default and blank port numbers. If you supply a URI string without
the scheme, such as “www.test.com”, a UriFormatException is thrown.
Uri has an IsLoopback property, which indicates whether the Uri references the local host (IP
address 127.0.0.1), and an IsFile property, which indicates whether the Uri references a
local or UNC (IsUnc) path. If IsFile returns true, the LocalPath property returns a version
of AbsolutePath that is friendly to the local operating system (with backslashes), on which
you can call File.Open.
Instances of Uri have read-only properties. To modify an existing Uri, instantiate a
UriBuilder object — this has writable properties and can be converted back via its Uri
property.
Uri also provides methods for comparing and subtracting paths:

Uri info = new Uri ("http://www.domain.com:80/info/");

http://www.ebay.com
http://www.test.com


Uri page = new Uri ("http://www.domain.com/info/page.html");

Console.WriteLine (info.Host);     // www.domain.com
Console.WriteLine (info.Port);     // 80
Console.WriteLine (page.Port);     // 80  (Uri knows the default HTTP port)

Console.WriteLine (info.IsBaseOf (page));         // True
Uri relative = info.MakeRelativeUri (page);
Console.WriteLine (relative.IsAbsoluteUri);       // False
Console.WriteLine (relative.ToString());          // page.html

A relative Uri, such as page.html in this example, will throw an exception if you call almost
any property or method other than IsAbsoluteUri and ToString(). You can instantiate a
relative Uri directly as follows:

Uri u = new Uri ("page.html", UriKind.Relative);

WARNING
A trailing slash is significant in a URI and makes a difference as to how a server processes a
request if a path component is present.
For instance, given the URI http://www.albahari.com/nutshell/, you can expect an HTTP
web server to look in the nutshell subdirectory in the site’s web folder and return the default
document (usually index.html).
Without the trailing slash, the web server will instead look for a file called nutshell (without
an extension) directly in the site’s root folder — which is usually not what you want. If no
such file exists, most web servers will assume the user mistyped and will return a 301
Permanent Redirect error, suggesting the client retries with the trailing slash. A .NET HTTP
client, by default, will respond transparently to a 301 in the same way as a web browser —
by retrying with the suggested URI. This means that if you omit a trailing slash when it
should have been included, your request will still work — but will suffer an unnecessary extra
round trip.

The Uri class also provides static helper methods such as EscapeUriString(), which
converts a string to a valid URL by converting all characters with an ASCII value greater than
127 to hexadecimal representation. The CheckHostName() and CheckSchemeName() methods
accept a string and check whether it is syntactically valid for the given property (although they
do not attempt to determine whether a host or URI exists).

Client-Side Classes
WebRequest and WebResponse are the common base classes for managing both HTTP and FTP
client-side activity, as well as the “file:” protocol. They encapsulate the “request/response”
model that these protocols all share: the client makes a request, and then awaits a response
from a server.
WebClient is a convenient façade class that does the work of calling WebRequest and
WebResponse, saving you some coding. WebClient gives you a choice of dealing in strings,
byte arrays, files, or streams; WebRequest and WebResponse support just streams.
Unfortunately, you cannot rely entirely on WebClient because it doesn’t support some features
(such as cookies).

http://www.albahari.com/nutshell/


HttpClient is another class that builds on WebRequest and WebResponse (or more
specifically, HttpWebRequest and HttpWebResponse) and was introduced in Framework 4.5.
Whereas WebClient acts mostly as a thin layer over the request/response classes, HttpClient
adds functionality to help you work with HTTP-based web APIs, REST-based services, and
custom authentication schemes.
For simply downloading/uploading a file, string or byte array, both WebClient and
HttpClient are suitable. Both have asynchronous methods, although only WebClient offers
progress reporting.

WARNING
By default, the CLR throttles HTTP concurrency. If you plan to use asynchronous methods
or multithreading to make more than two requests at once (whether via WebRequest,
WebClient or HttpClient), you’ll need to first increase the concurrency limit via the static
property ServicePointManager.DefaultConnectionLimit. There’s a good MSDN blog article
on this topic at http://tinyurl.com/44axxby.

WebClient
Here are the steps in using WebClient:

1. Instantiate a WebClient object.

2. Assign the Proxy property.

3. Assign the Credentials property if authentication is required.

4. Call a DownloadXXX or UploadXXX method with the desired URI.

Its download methods are as follows:

public void   DownloadFile   (string address, string fileName);
public string DownloadString (string address);
public byte[] DownloadData   (string address);
public Stream OpenRead       (string address);

Each is overloaded to accept a Uri object instead of a string address. The upload methods are
similar; their return values contain the response (if any) from the server:

public byte[] UploadFile  (string address, string fileName);
public byte[] UploadFile  (string address, string method, string fileName);
public string UploadString(string address, string data);
public string UploadString(string address, string method, string data);
public byte[] UploadData  (string address, byte[] data);
public byte[] UploadData  (string address, string method, byte[] data);
public byte[] UploadValues(string address, NameValueCollection data);
public byte[] UploadValues(string address, string method,
                                            NameValueCollection data);
public Stream OpenWrite    (string address);
public Stream OpenWrite    (string address, string method);

The UploadValues methods can be used to post values to an HTTP form, with a method
argument of “POST”. WebClient also has a BaseAddress property; this allows you to specify
a string to be prefixed to all addresses, such as http://www.mysite.com/data/.

http://tinyurl.com/44axxby
http://www.mysite.com/data/


Here’s how to download the code samples page for this book to a file in the current folder, and
then display it in the default web browser:

WebClient wc = new WebClient { Proxy = null };
wc.DownloadFile ("http://www.albahari.com/nutshell/code.aspx", "code.htm");
System.Diagnostics.Process.Start ("code.htm");

NOTE
WebClient implements IDisposable under duress — by virtue of deriving from Component
(this allows it to be sited in the Visual Studio’s Designer’s component tray). Its Dispose
method does nothing useful at runtime, however, so you don’t need to dispose WebClient
instances.

From Framework 4.5, WebClient provides asynchronous versions of its long-running methods
(Chapter 14) that return tasks that you can await:

await wc.DownloadFileTaskAsync ("http://oreilly.com", "webpage.htm");

(The “TaskAsync” suffix disambiguates these methods from the old EAP-based asynchronous
methods which use the “Async” suffix). Unfortunately, the new methods don’t support the
standard “TAP” pattern for cancellation and progress reporting. Instead, for cancellation you
must call the CancelAsync method on the WebClient object, and for progress reporting,
handle the DownloadProgressChanged/UploadProgressChanged event. The following
downloads a web page with progress reporting, canceling the download if it takes longer than
5 seconds:

var wc = new WebClient();

wc.DownloadProgressChanged += (sender, args) =>
  Console.WriteLine (args.ProgressPercentage + "% complete");

Task.Delay (5000).ContinueWith (ant => wc.CancelAsync());
 
await wc.DownloadFileTaskAsync ("http://oreilly.com", "webpage.htm");

NOTE
When a request is canceled, a WebException is thrown whose Status property is
WebExceptionStatus.RequestCanceled. (For historical reasons, an
OperationCanceledException is not thrown.)

The progress-related events capture and post to the active synchronization context, so their
handlers can update UI controls without needing Dispatcher.BeginInvoke.

WARNING
Using the same WebClient object to perform more than one operation in sequence should be
avoided if you’re relying on cancellation or progress reporting, as it can result in race
conditions.



WebRequest and WebResponse
WebRequest and WebResponse are more complex to use than WebClient, but also more
flexible. Here’s how to get started:

1. Call WebRequest.Create with a URI to instantiate a web request.

2. Assign the Proxy property.

3. Assign the Credentials property if authentication is required.

To upload data:
4. Call GetRequestStream on the request object, and then write to the stream. Go to step 5

if a response is expected.

To download data:
5. Call GetResponse on the request object to instantiate a web response.

6. Call GetResponseStream on the response object, and then read the stream (a
StreamReader can help!).

The following downloads and displays the code samples web page (a rewrite of the preceding
example):

WebRequest req = WebRequest.Create
                ("http://www.albahari.com/nutshell/code.html");
req.Proxy = null;
using (WebResponse res = req.GetResponse())
using (Stream rs = res.GetResponseStream())
using (FileStream fs = File.Create ("code.html"))
  rs.CopyTo (fs);

Here’s the asynchronous equivalent:

WebRequest req = WebRequest.Create
                ("http://www.albahari.com/nutshell/code.html");
req.Proxy = null;
using (WebResponse res = await req.GetResponseAsync())
using (Stream rs = res.GetResponseStream())
using (FileStream fs = File.Create ("code.html"))
  await rs.CopyToAsync (fs);

WARNING
The web response object has a ContentLength property, indicating the length of the response
stream in bytes, as reported by the server. This value comes from the response headers and
may be missing or incorrect. In particular, if an HTTP server chooses the “chunked” mode to
break up a large response, the ContentLength value is usually –1. The same can apply with
dynamically generated pages.

The static Create method instantiates a subclass of the WebRequest type, such as
HttpWebRequest or FtpWebRequest. Its choice of subclass depends on the URI’s prefix, and



is shown in Table 16-2.

Table 16-2. URI prefixes
and web request types

Prefix Web request type

http: or https: HttpWebRequest

ftp: FtpWebRequest

file: FileWebRequest

NOTE
Casting a web request object to its concrete type (HttpWebRequest or FtpWebRequest) allows
you to access its protocol-specific features.

You can also register your own prefixes by calling WebRequest.RegisterPrefix. This
requires a prefix along with a factory object with a Create method that instantiates an
appropriate web request object.
The “https:” protocol is for secure (encrypted) HTTP, via Secure Sockets Layer or SSL. Both
WebClient and WebRequest activate SSL transparently upon seeing this prefix (see “SSL”
under “Working with HTTP” later in this chapter). The “file:” protocol simply forwards
requests to a FileStream object. Its purpose is in meeting a consistent protocol for reading a
URI, whether it be a web page, FTP site, or file path.
WebRequest has a Timeout property, in milliseconds. If a timeout occurs, a WebException is
thrown with a Status property of WebExceptionStatus.Timeout. The default timeout is 100
seconds for HTTP and infinite for FTP.
You cannot recycle a WebRequest object for multiple requests — each instance is good for one
job only.

HttpClient
HttpClient is new to Framework 4.5 and provides another layer on top of Http WebRequest
and HttpWebResponse. It was written in response to the growth of HTTP-based web APIs and
REST services, to provide a better experience than WebClient when dealing with protocols
more elaborate than simply fetching a web page. Specifically:

A single HttpClient instance supports concurrent requests. To get concurrency with
WebClient, you need to create a fresh instance per concurrent request, which can get
awkward when you introduce custom headers, cookies, and authentication schemes.

HttpClient lets you write and plug in custom message handlers. This enables mocking in
unit tests, and the creation of custom pipelines (for logging, compression, encryption, and so
on). Unit-testing code that calls WebClient is a pain.

HttpClient has a richer and extensible type system for headers and content.



NOTE
HttpClient is not a complete replacement for WebClient, because it doesn’t support progress
reporting. WebClient also has the advantage of supporting FTP, file:// and custom URI
schemes. It’s also available in older Framework versions.

The simplest way to use HttpClient is to instantiate it and then call one of its Get* methods,
passing in a URI:

string html = await new HttpClient().GetStringAsync ("http://linqpad.net");

(There’s also GetByteArrayAsync and GetStreamAsync.) All I/O-bound methods in
HttpClient are asynchronous (there are no synchronous equivalents).
Unlike with WebClient, to get the best performance with HttpClient, you must re-use same
instance (otherwise things such as DNS resolution may be unnecessarily repeated).
HttpClient permits concurrent operations, so the following is legal and downloads two web
pages at once:

var client = new HttpClient();
var task1 = client.GetStringAsync ("http://www.linqpad.net");
var task2 = client.GetStringAsync ("http://www.albahari.com");
Console.WriteLine (await task1);
Console.WriteLine (await task2);

HttpClient has a Timeout property and a BaseAddress property which prefixes a URI to
every request. HttpClient is somewhat of a thin shell: most of the other properties that you
might expect to find here are defined in another class called HttpClientHandler. To access
this class, you instantiate it and then pass the instance into HttpClient’s constructor:

var handler = new HttpClientHandler { UseProxy = false };
var client = new HttpClient (handler);
...

In this example, we told the handler to disable proxy support. There are also properties to
control cookies, automatic redirection, authentication, and so on (we’ll describe these in the
following sections, and in “Working with HTTP”).

GetAsync and response messages
The GetStringAsync, GetByteArrayAsync, and GetStreamAsync methods are convenient
shortcuts for calling the more general GetAsync method, which returns a response message:

var client = new HttpClient();
// The GetAsync method also accepts a CancellationToken.
HttpResponseMessage response = await client.GetAsync ("http://...");
response.EnsureSuccessStatusCode();
string html = await response.Content.ReadAsStringAsync();

HttpResponseMessage exposes properties for accessing the headers (see “Working with
HTTP”) and the HTTP StatusCode. Unlike with WebClient, an unsuccessful status code such
as 404 (not found) doesn’t cause an exception to be thrown unless you explicitly call
EnsureSuccessStatusCode. Communication or DNS errors, however, do throw exceptions



(see “Exception Handling”).
HttpContent has a CopyToAsync method for writing to another stream, which is useful in
writing the output to a file:

using (var fileStream = File.Create ("linqpad.html"))
  await response.Content.CopyToAsync (fileStream);

GetAsync is one of four methods corresponding to HTTP’s four verbs (the others are
PostAsync, PutAsync and DeleteAsync). We demonstrate PostAsync later in “Uploading
Form Data”.

SendAsync and request messages
The four methods just described are all shortcuts for calling SendAsync, the single low-level
method into which everything else feeds. To use this, you first construct an
HttpRequestMessage:

var client = new HttpClient();
var request = new HttpRequestMessage (HttpMethod.Get, "http://...");
HttpResponseMessage response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
...

Instantiating a HttpRequestMessage object means you can customize properties of the request,
such as the headers (see “Headers”) and the content itself, allowing you to upload data.

Uploading data and HttpContent
After instantiating a HttpRequestMessage object, you can upload content by assigning its
Content property. The type for this property is an abstract class called HttpContent. The
Framework includes the following concrete subclasses for different kinds of content (you can
also write your own):

ByteArrayContent

StringContent

FormUrlEncodedContent (see “Uploading Form Data”)

StreamContent

For example:

var client = new HttpClient (new HttpClientHandler { UseProxy = false });
var request = new HttpRequestMessage (
  HttpMethod.Post, "http://www.albahari.com/EchoPost.aspx");
request.Content = new StringContent ("This is a test");
HttpResponseMessage response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
Console.WriteLine (await response.Content.ReadAsStringAsync());

HttpMessageHandler
We said previously that most of the properties for customizing requests are defined not in
HttpClient but in HttpClientHandler. The latter is actually a subclass of the abstract
HttpMessageHandler class, defined as follows:



public abstract class HttpMessageHandler : IDisposable
{
  protected internal abstract Task<HttpResponseMessage> SendAsync
    (HttpRequestMessage request, CancellationToken cancellationToken);

  public void Dispose();
  protected virtual void Dispose (bool disposing);
}

The SendAsync method is called from HttpClient’s SendAsync method.
HttpMessageHandler is simple enough to subclass easily and offers an extensibility point into
HttpClient.

Unit testing and mocking
We can subclass HttpMessageHandler to create a mocking handler to assist with unit testing:

class MockHandler : HttpMessageHandler
{
  Func <HttpRequestMessage, HttpResponseMessage> _responseGenerator;
   
  public MockHandler
    (Func <HttpRequestMessage, HttpResponseMessage> responseGenerator)
  {
    _responseGenerator = responseGenerator;
  }
   
  protected override Task <HttpResponseMessage> SendAsync
    (HttpRequestMessage request, CancellationToken cancellationToken)
  {
    cancellationToken.ThrowIfCancellationRequested();
    var response = _responseGenerator (request);
    response.RequestMessage = request;
    return Task.FromResult (response);
  }
}

Its constructor accepts a function that tells the mocker how to generate a response from a
request. This is the most versatile approach, as the same handler can test multiple requests.
SendAsync is synchronous by virtue of Task.FromResult. We could have maintained
asynchrony by having our response generator return a Task<HttpResponseMessage>, but this
is pointless given that we can expect a mocking function to be short-running. Here’s how to use
our mocking handler:

var mocker = new MockHandler (request =>
  new HttpResponseMessage (HttpStatusCode.OK)
  {
    Content = new StringContent ("You asked for " + request.RequestUri)
  });

var client = new HttpClient (mocker);      
var response = await client.GetAsync ("http://www.linqpad.net");
string result = await response.Content.ReadAsStringAsync();
Assert.AreEqual ("You asked for http://www.linqpad.net/", result);

(Assert.AreEqual is a method you’d expect to find in a unit-testing framework such as
NUnit.)

Chaining handlers with DelegatingHandler
You can create a message handler that calls another (resulting in a chain of handlers) by

http://www.linqpad.net/


subclassing DelegatingHandler. This can be used to implement custom authentication,
compression, and encryption protocols. The following demonstrates a simple logging handler:

class LoggingHandler : DelegatingHandler
{
  public LoggingHandler (HttpMessageHandler nextHandler)
  {
     InnerHandler = nextHandler;
  }
   
  protected async override Task <HttpResponseMessage> SendAsync
    (HttpRequestMessage request, CancellationToken cancellationToken)
  {
    Console.WriteLine ("Requesting: " + request.RequestUri);
    var response = await base.SendAsync (request, cancellationToken);
    Console.WriteLine ("Got response: " + response.StatusCode);
    return response;
  }
}

Notice that we’ve maintained asynchrony in overriding SendAsync. Introducing the async
modifier when overriding a task-returning method is perfectly legal — and desirable in this
case.
A better solution than writing to the Console would be to have the constructor accept some
kind of logging object. Better still would be to accept a couple of Action<T> delegates which
tell it how to log the request and response objects.

Proxies
A proxy server is an intermediary through which HTTP and FTP requests can be routed.
Organizations sometimes set up a proxy server as the only means by which employees can
access the Internet — primarily because it simplifies security. A proxy has an address of its
own and can demand authentication so that only selected users on the local area network can
access the Internet.
You can instruct a WebClient or WebRequest object to route requests through a proxy server
with a WebProxy object:

// Create a WebProxy with the proxy's IP address and port. You can
// optionally set Credentials if the proxy needs a username/password.

WebProxy p = new WebProxy ("192.178.10.49", 808);
p.Credentials = new NetworkCredential ("username", "password");
// or:
p.Credentials = new NetworkCredential ("username", "password", "domain");

WebClient wc = new WebClient();
wc.Proxy = p;
  ...

// Same procedure with a WebRequest object:
WebRequest req = WebRequest.Create ("...");
req.Proxy = p;

To use a proxy with HttpClient, first create an HttpClientHandler, assign its Proxy
property, and then feed that into HttpClient’s constructor:

WebProxy p = new WebProxy ("192.178.10.49", 808);
p.Credentials = new NetworkCredential ("username", "password", "domain");



var handler = new HttpClientHandler { Proxy = p };
var client = new HttpClient (handler);
...

WARNING
If you know there’s no proxy, it’s worth setting the Proxy property to null on WebClient and
WebRequest objects. Otherwise, the Framework may attempt to “auto-detect” your proxy
settings, adding up to 30 seconds to your request. If you’re wondering why your web
requests execute slowly, this is probably it!

HttpClientHandler also has a UseProxy property that you can assign to false instead of
nulling out the Proxy property to defeat auto-detection.
If you supply a domain when constructing the NetworkCredential, Windows-based
authentication protocols are used. To use the currently authenticated Windows user, assign the
static CredentialCache.DefaultNetworkCredentials value to the proxy’s Credentials
property.
As an alternative to repeatedly setting the Proxy, you can set the global default as follows:

WebRequest.DefaultWebProxy = myWebProxy;

or:

WebRequest.DefaultWebProxy = null;

Whatever you set applies for the life of the application domain (unless some other code
changes it!).

Authentication
You can supply a username and password to an HTTP or FTP site by creating a
NetworkCredential object and assigning it to the Credentials property of WebClient or
WebRequest:

WebClient wc = new WebClient { Proxy = null };
wc.BaseAddress = "ftp://ftp.albahari.com";

// Authenticate, then upload and download a file to the FTP server.
// The same approach also works for HTTP and HTTPS.

string username = "nutshell";
string password = "oreilly";
wc.Credentials = new NetworkCredential (username, password);

wc.DownloadFile ("guestbook.txt", "guestbook.txt");

string data = "Hello from " + Environment.UserName + "!\r\n";
File.AppendAllText ("guestbook.txt", data);

wc.UploadFile ("guestbook.txt", "guestbook.txt");

HttpClient exposes the same Credentials property through HttpClientHandler:

var handler = new HttpClientHandler();



handler.Credentials = new NetworkCredential (username, password);
var client = new HttpClient (handler);
...

This works with dialog-based authentication protocols, such as Basic and Digest, and is
extensible through the AuthenticationManager class. It also supports Windows NTLM and
Kerberos (if you include a domain name when constructing the NetworkCredential object). If
you want to use the currently authenticated Windows user, you can leave the Credentials
property null and instead set UseDefaultCredentials true.

NOTE
Assigning Credentials is useless for getting through forms-based authentication. We discuss
forms-based authentication separately (see “Forms Authentication”).

The authentication is ultimately handled by a WebRequest subtype (in this case,
FtpWebRequest), which automatically negotiates a compatible protocol. In the case of HTTP,
there can be a choice: if you examine the initial response from a Microsoft Exchange server
web mail page, for instance, it might contain the following headers:

HTTP/1.1 401 Unauthorized
Content-Length: 83
Content-Type: text/html
Server: Microsoft-IIS/6.0
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
WWW-Authenticate: Basic realm="exchange.somedomain.com"
X-Powered-By: ASP.NET
Date: Sat, 05 Aug 2006 12:37:23 GMT

The 401 code signals that authorization is required; the “WWW-Authenticate” headers indicate
what authentication protocols are understood. If you configure a WebClient or WebRequest
object with the correct username and password, however, this message will be hidden from
you because the Framework responds automatically by choosing a compatible authentication
protocol, and then resubmitting the original request with an extra header. For example:

Authorization: Negotiate TlRMTVNTUAAABAAAt5II2gjACDArAAACAwACACgAAAAQ
ATmKAAAAD0lVDRdPUksHUq9VUA==

This mechanism provides transparency, but generates an extra round trip with each request.
You can avoid the extra round trips on subsequent requests to the same URI by setting the
PreAuthenticate property to true. This property is defined on the WebRequest class (and
works only in the case of HttpWebRequest). WebClient doesn’t support this feature at all.

CredentialCache
You can force a particular authentication protocol with a CredentialCache object. A
credential cache contains one or more NetworkCredential objects, each keyed to a particular
protocol and URI prefix. For example, you might want to avoid the Basic protocol when
logging into an Exchange Server, as it transmits passwords in plain text:

CredentialCache cache = new CredentialCache();
Uri prefix = new Uri ("http://exchange.somedomain.com");



cache.Add (prefix, "Digest",  new NetworkCredential ("joe", "passwd"));
cache.Add (prefix, "Negotiate", new NetworkCredential ("joe", "passwd"));

WebClient wc = new WebClient();
wc.Credentials = cache;
...

An authentication protocol is specified as a string. The valid values are as follows:

Basic, Digest, NTLM, Kerberos, Negotiate

In this particular example, WebClient will choose Negotiate, because the server didn’t
indicate that it supported Digest in its authentication headers. Negotiate is a Windows protocol
that boils down to either Kerberos or NTLM, depending on the capabilities of the server.
The static CredentialCache.DefaultNetworkCredentials property allows you to add the
currently authenticated Windows user to the credential cache without having to specify a
password:

cache.Add (prefix, "Negotiate", CredentialCache.DefaultNetworkCredentials);

Authenticating via headers with HttpClient
If you’re using HttpClient, another way to authenticate is to set the authentication header
directly:

var client = new HttpClient();
client.DefaultRequestHeaders.Authorization =
  new AuthenticationHeaderValue ("Basic",
    Convert.ToBase64String (Encoding.UTF8.GetBytes ("username:password")));
...

This strategy also works with custom authentication systems such as OAuth. We discuss
headers in more detail soon.

Exception Handling
WebRequest, WebResponse, WebClient, and their streams all throw a WebException in the
case of a network or protocol error. HttpClient does the same but then wraps the
WebException in an HttpRequestException. You can determine the specific error via the
WebException’s Status property; this returns a WebExceptionStatus enum that has the
following members:

CacheEntryNotFound
ConnectFailure
ConnectionClosed
KeepAliveFailure
MessageLengthLimitExceeded
NameResolutionFailure
Pending

PipelineFailure
ProtocolError
ProxyNameResolutionFailure
ReceiveFailure
RequestCanceled
RequestProhibitedByCachePolicy
RequestProhibitedByProxy

SecureChannelFailure
SendFailure
ServerProtocolViolation
Success
Timeout
TrustFailure
UnknownError

An invalid domain name causes a NameResolutionFailure; a dead network causes a
ConnectFailure; a request exceeding WebRequest.Timeout milliseconds causes a Timeout.
Errors such as “Page not found,” “Moved Permanently,” and “Not Logged In” are specific to
the HTTP or FTP protocols, and so are all lumped together under the ProtocolError status.
With HttpClient, these errors are not thrown unless you call EnsureSuccessStatusCode on



the response object. Prior to doing so, you can get the specific status code by querying the
StatusCode property:

var client = new HttpClient();
var response = await client.GetAsync ("http://linqpad.net/foo");
HttpStatusCode responseStatus = response.StatusCode;

With WebClient and WebRequest/WebResponse, you must actually catch the WebException
and then:

1. Cast the WebException’s Response property to HttpWebResponse or FtpWebResponse.

2. Examine the response object’s Status property (an HttpStatusCode or
FtpStatusCode enum) and/or its StatusDescription property (string).

For example:

WebClient wc = new WebClient { Proxy = null };
try
{
  string s = wc.DownloadString ("http://www.albahari.com/notthere");
}
catch (WebException ex)
{
  if (ex.Status == WebExceptionStatus.NameResolutionFailure)
    Console.WriteLine ("Bad domain name");
  else if (ex.Status == WebExceptionStatus.ProtocolError)
  {
    HttpWebResponse response = (HttpWebResponse) ex.Response;
    Console.WriteLine (response.StatusDescription);      // "Not Found"
    if (response.StatusCode == HttpStatusCode.NotFound)
      Console.WriteLine ("Not there!");                  // "Not there!"
  }
  else throw;
}

NOTE
If you want the three-digit status code, such as 401 or 404, simply cast the HttpStatusCode or
FtpStatusCode enum to an integer.
By default, you’ll never get a redirection error because WebClient and WebRequest
automatically follow redirection responses. You can switch off this behavior in a WebRequest
object by setting AllowAutoRedirect to false.
The redirection errors are 301 (Moved Permanently), 302 (Found/Redirect), and 307
(Temporary Redirect).

If an exception is thrown because you’ve incorrectly used the WebClient or WebRequest
classes, it will more likely be an InvalidOperationException or
ProtocolViolationException than a WebException.

Working with HTTP
This section describes HTTP-specific request and response features of WebClient,
HttpWebRequest/HttpWebResponse, and the HttpClient class.



Headers
WebClient, WebRequest, and HttpClient all let you add custom HTTP headers, as well as
enumerate the headers in a response. A header is simply a key/value pair containing metadata,
such as the message content type or server software. Here’s how to add a custom header to a
request, then list all headers in a response message in a WebClient:

WebClient wc = new WebClient { Proxy = null };
wc.Headers.Add ("CustomHeader", "JustPlaying/1.0");
wc.DownloadString ("http://www.oreilly.com");

foreach (string name in wc.ResponseHeaders.Keys)
  Console.WriteLine (name + "=" + wc.ResponseHeaders [name]);

Age=51
X-Cache=HIT from oregano.bp
X-Cache-Lookup=HIT from oregano.bp:3128
Connection=keep-alive
Accept-Ranges=bytes
Content-Length=95433
Content-Type=text/html
...

HttpClient instead exposes strongly typed collections with properties for standard HTTP
headers. The DefaultRequestHeaders property is for headers that apply to every request:

var client = new HttpClient (handler);

client.DefaultRequestHeaders.UserAgent.Add (
  new ProductInfoHeaderValue ("VisualStudio", "2015"));

client.DefaultRequestHeaders.Add ("CustomHeader", "VisualStudio/2015");

whereas the Headers property on the HttpRequestMessage class is for headers specific to a
request.

Query Strings
A query string is simply a string appended to a URI with a question mark, used to send simple
data to the server. You can specify multiple key/value pairs in a query string with the following
syntax:

?key1=value1&key2=value2&key3=value3...

WebClient provides an easy way to add query strings through a dictionary-style property. The
following searches Google for the word “WebClient”, displaying the result page in French:

WebClient wc = new WebClient { Proxy = null };
wc.QueryString.Add ("q", "WebClient");     // Search for "WebClient"
wc.QueryString.Add ("hl", "fr");           // Display page in French
wc.DownloadFile ("http://www.google.com/search", "results.html");
System.Diagnostics.Process.Start ("results.html");

To achieve the same result with WebRequest or with HttpClient, you must manually append a
correctly formatted string to the request URI:

string requestURI = "http://www.google.com/search?q=WebClient&hl=fr";



If there’s a possibility of your query including symbols or spaces, you can leverage Uri’s
EscapeDataString method to create a legal URI:

string search = Uri.EscapeDataString ("(WebClient OR HttpClient)");
string language = Uri.EscapeDataString ("fr");
string requestURI = "http://www.google.com/search?q=" + search +
                    "&hl=" + language;

This resultant URI is:

http://www.google.com/search?q=(WebClient%20OR%20HttpClient)&hl=fr

(EscapeDataString is similar to EscapeUriString except that it also encodes characters
such as & and = which would otherwise mess up the query string.)

NOTE
Microsoft’s Web Protection library (http://wpl.codeplex.com) offers another
encoding/decoding solution that takes into account cross-site scripting vulnerabilities.

Uploading Form Data
WebClient provides UploadValues methods for posting data to an HTML form:

WebClient wc = new WebClient { Proxy = null };

var data = new System.Collections.Specialized.NameValueCollection();
data.Add ("Name", "Joe Albahari");
data.Add ("Company", "O'Reilly");

byte[] result = wc.UploadValues ("http://www.albahari.com/EchoPost.aspx",
                                 "POST", data);

Console.WriteLine (Encoding.UTF8.GetString (result));

The keys in the NameValueCollection, such as searchtextbox and searchMode, correspond
to the names of input boxes on the HTML form.
Uploading form data is more work via WebRequest. (You’ll need to take this route if you need
to use features such as cookies.) Here’s the procedure:

1. Set the request’s ContentType to “application/x-www-form-urlencoded” and its Method
to “POST”.

2. Build a string containing the data to upload, encoded as follows:

name1=value1&name2=value2&name3=value3...

3. Convert the string to a byte array, with Encoding.UTF8.GetBytes.

4. Set the web request’s ContentLength property to the byte array length.

5. Call GetRequestStream on the web request and write the data array.

6. Call GetResponse to read the server’s response.

http://wpl.codeplex.com


Here’s the previous example written with WebRequest:

var req = WebRequest.Create ("http://www.albahari.com/EchoPost.aspx");
req.Proxy = null;
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";

string reqString = "Name=Joe+Albahari&Company=O'Reilly";
byte[] reqData = Encoding.UTF8.GetBytes (reqString);
req.ContentLength = reqData.Length;

using (Stream reqStream = req.GetRequestStream())
  reqStream.Write (reqData, 0, reqData.Length);

using (WebResponse res = req.GetResponse())
using (Stream resSteam = res.GetResponseStream())
using (StreamReader sr = new StreamReader (resSteam))
  Console.WriteLine (sr.ReadToEnd());

With HttpClient, you instead create and populate FormUrlEncodedContent object, which
you can then either pass into the PostAsync method, or assign to a request’s Content property:

string uri = "http://www.albahari.com/EchoPost.aspx";
var client = new HttpClient();
var dict = new Dictionary<string,string>
{
    { "Name", "Joe Albahari" },
    { "Company", "O'Reilly" }
};
var values = new FormUrlEncodedContent (dict);
var response = await client.PostAsync (uri, values);
response.EnsureSuccessStatusCode();
Console.WriteLine (await response.Content.ReadAsStringAsync());

Cookies
A cookie is a name/value string pair that an HTTP server sends to a client in a response header.
A web browser client typically remembers cookies, and replays them to the server in each
subsequent request (to the same address) until their expiry. A cookie allows a server to know
whether it’s talking to the same client it was a minute ago — or yesterday — without needing a
messy query string in the URI.
By default, HttpWebRequest ignores any cookies received from the server. To accept cookies,
create a CookieContainer object and assign it to the WebRequest. The cookies received in a
response can then be enumerated:

var cc = new CookieContainer();

var request = (HttpWebRequest) WebRequest.Create ("http://www.google.com");
request.Proxy = null;
request.CookieContainer = cc;
using (var response = (HttpWebResponse) request.GetResponse())
{
  foreach (Cookie c in response.Cookies)
  {
    Console.WriteLine (" Name:   " + c.Name);
    Console.WriteLine (" Value:  " + c.Value);
    Console.WriteLine (" Path:   " + c.Path);
    Console.WriteLine (" Domain: " + c.Domain);
  }
  // Read response stream...
}



 Name:   PREF
 Value:  ID=6b10df1da493a9c4:TM=1179025486:LM=1179025486:S=EJCZri0aWEHlk4tt
 Path:   /
 Domain: .google.com

To do the same with HttpClient, first instantiate a HttpClientHandler:

var cc = new CookieContainer();
var handler = new HttpClientHandler();
handler.CookieContainer = cc;
var client = new HttpClient (handler);
...

The WebClient façade class does not support cookies.
To replay the received cookies in future requests, simply assign the same CookieContainer
object to each new WebRequest object, or with HttpClient, keep using the same object to
make requests. CookieContainer is serializable, so it can be written to disk — see
Chapter 17. Alternatively, you can start with a fresh CookieContainer, and then add cookies
manually as follows:

Cookie c = new Cookie ("PREF",
                       "ID=6b10df1da493a9c4:TM=1179...",
                       "/",
                       ".google.com");
freshCookieContainer.Add (c);

The third and fourth arguments indicate the path and domain of the originator. A
CookieContainer on the client can house cookies from many different places; WebRequest
sends only those cookies whose path and domain match those of the server.

Forms Authentication
We saw in the previous section how a NetworkCredentials object can satisfy authentication
systems such as Basic or NTLM (that pop up a dialog box in a web browser). Most websites
requiring authentication, however, use some type of forms-based approach. Enter your
username and password into text boxes that are part of an HTML form decorated in appropriate
corporate graphics, press a button to post the data, and then receive a cookie upon successful
authentication. The cookie allows you greater privileges in browsing pages in the website.
With WebRequest or HttpClient, you can do all this programmatically with the features
discussed in the preceding two sections. This can be useful for testing, or for automation in
cases where there’s not a proper API.
A typical website that implements forms authentication will contain HTML like this:

<form action="http://www.somesite.com/login" method="post">
  <input type="text" id="user" name="username">
  <input type="password" id="pass" name="password">
  <button type="submit" id="login-btn">Log In</button>
</form>

Here’s how to log in to such a site with WebRequest/WebResponse:

string loginUri = "http://www.somesite.com/login";
string username = "username";   // (Your username)
string password = "password";   // (Your password)
string reqString = "username=" + username + "&password=" + password;



byte[] requestData = Encoding.UTF8.GetBytes (reqString);

CookieContainer cc = new CookieContainer();
var request = (HttpWebRequest)WebRequest.Create (loginUri);
request.Proxy = null;
request.CookieContainer = cc;
request.Method = "POST";

request.ContentType = "application/x-www-form-urlencoded";
request.ContentLength = requestData.Length;

using (Stream s = request.GetRequestStream())
  s.Write (requestData, 0, requestData.Length);

using (var response = (HttpWebResponse) request.GetResponse())
  foreach (Cookie c in response.Cookies)
    Console.WriteLine (c.Name + " = " + c.Value);

// We're now logged in. As long as we assign cc to subsequent WebRequest
// objects, we'll be treated as an authenticated user.

And with HttpClient:

string loginUri = "http://www.somesite.com/login";
string username = "username";
string password = "password";

CookieContainer cc = new CookieContainer();
var handler = new HttpClientHandler { CookieContainer = cc };

var request = new HttpRequestMessage (HttpMethod.Post, loginUri);
request.Content = new FormUrlEncodedContent (new Dictionary<string,string>
{
  { "username", username },
  { "password", password }
});

var client = new HttpClient (handler);
var response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
...

SSL
WebClient, HttpClient, and WebRequest all use SSL automatically when you specify an
“https:” prefix. The only complication that can arise relates to bad X.509 certificates. If the
server’s site certificate is invalid in any way (for instance, if it’s a test certificate), an
exception is thrown when you attempt to communicate. To work around this, you can attach a
custom certificate validator to the static ServicePointManager class:

using System.Net;
using System.Net.Security;
using System.Security.Cryptography.X509Certificates;
...
static void ConfigureSSL()
{
  ServicePointManager.ServerCertificateValidationCallback = CertChecker;
}

ServerCertificateValidationCallback is a delegate. If it returns true, the certificate is
accepted:

static bool CertChecker (object sender, X509Certificate certificate,
                         X509Chain chain, SslPolicyErrors errors)



{
  // Return true if you're happy with the certificate
  ...
}

Writing an HTTP Server
You can write your own .NET HTTP server with the HttpListener class. The following is a
simple server that listens on port 51111, waits for a single client request, and then returns a
one-line reply:

static void Main()
{
  ListenAsync();                           // Start server
  WebClient wc = new WebClient();          // Make a client request.
  Console.WriteLine (wc.DownloadString
    ("http://localhost:51111/MyApp/Request.txt"));
}

async static void ListenAsync()
{
  HttpListener listener = new HttpListener();
  listener.Prefixes.Add ("http://localhost:51111/MyApp/");  // Listen on
  listener.Start();                                         // port 51111.

  // Await a client request:
  HttpListenerContext context = await listener.GetContextAsync();

  // Respond to the request:
  string msg = "You asked for: " + context.Request.RawUrl;
  context.Response.ContentLength64 = Encoding.UTF8.GetByteCount (msg);
  context.Response.StatusCode = (int) HttpStatusCode.OK;

  using (Stream s = context.Response.OutputStream)
  using (StreamWriter writer = new StreamWriter (s))
    await writer.WriteAsync (msg);

  listener.Stop();
}

OUTPUT: You asked for: /MyApp/Request.txt

HttpListener does not internally use .NET Socket objects; it instead calls the Windows
HTTP Server API. This allows many applications on a computer to listen on the same IP
address and port — as long as each registers different address prefixes. In our example, we
registered the prefix http://localhost/myapp, so another application would be free to listen on
the same IP and port on another prefix such as http://localhost/anotherapp. This is of value
because opening new ports on corporate firewalls can be politically arduous.
HttpListener waits for the next client request when you call GetContext, returning an object
with Request and Response properties. Each is analogous to a WebRequest and
WebResponse object, but from the server’s perspective. You can read and write headers and
cookies, for instance, to the request and response objects, much as you would at the client end.
You can choose how fully to support features of the HTTP protocol, based on your anticipated
client audience. At a bare minimum, you should set the content length and status code on each
request.
Here’s a very simple web page server, written asynchronously:

using System;
using System.IO;

http://localhost/myapp
http://localhost/anotherapp


using System.Net;
using System.Text;
using System.Threading.Tasks;

class WebServer
{
  HttpListener _listener;
  string _baseFolder;      // Your web page folder.

  public WebServer (string uriPrefix, string baseFolder)
  {
    _listener = new HttpListener();
    _listener.Prefixes.Add (uriPrefix);
    _baseFolder = baseFolder;
  }

  public async void Start()
  {
    _listener.Start();
    while (true)
      try
      {
        var context = await _listener.GetContextAsync();
        Task.Run (() => ProcessRequestAsync (context));
      }
      catch (HttpListenerException)     { break; }   // Listener stopped.
      catch (InvalidOperationException) { break; }   // Listener stopped.
  }

  public void Stop() { _listener.Stop(); }

  async void ProcessRequestAsync (HttpListenerContext context)
  {
    try
    {
      string filename = Path.GetFileName (context.Request.RawUrl);
      string path = Path.Combine (_baseFolder, filename);
      byte[] msg;
      if (!File.Exists (path))
      {
        Console.WriteLine ("Resource not found: " + path);
        context.Response.StatusCode = (int) HttpStatusCode.NotFound;
        msg = Encoding.UTF8.GetBytes ("Sorry, that page does not exist");
      }
      else
      {
        context.Response.StatusCode = (int) HttpStatusCode.OK;
        msg = File.ReadAllBytes (path);
      }
      context.Response.ContentLength64 = msg.Length;
      using (Stream s = context.Response.OutputStream)
        await s.WriteAsync (msg, 0, msg.Length);
    }
    catch (Exception ex) { Console.WriteLine ("Request error: " + ex); }
  }
}

Here’s a main method to set things in motion:

static void Main()
{
  // Listen on port 51111, serving files in d:\webroot:
  var server = new WebServer ("http://localhost:51111/", @"d:\webroot");
  try
  {
    server.Start();
    Console.WriteLine ("Server running... press Enter to stop");
    Console.ReadLine();
  }
  finally { server.Stop(); }
}



You can test this at the client end with any web browser; the URI in this case will be
http://localhost:51111/ plus the name of the web page.

WARNING
HttpListener will not start if other software is competing for the same port (unless that
software also uses the Windows HTTP Server API). Examples of applications that might
listen on the default port 80 include a web server or a peer-to-peer program such as Skype.

Our use of asynchronous functions makes this server scalable and efficient. Starting this from a
UI thread, however, would hinder scalability because for each request, execution would
bounce back to the UI thread after each await. Incurring such overhead is particularly pointless
given that we don’t have shared state, so in a UI scenario we’d get off the UI thread, either like
this:

Task.Run (Start);

or by calling ConfigureAwait(false) after calling GetContextAsync.
Note that we used Task.Run to call ProcessRequestAsync, even though the method was
already asynchronous. This allows the caller to process another request immediately, rather
than having to first wait out the synchronous phase of the method (up until the first await).

Using FTP
For simple FTP upload and download operations, you can use WebClient as we did
previously:

WebClient wc = new WebClient { Proxy = null };
wc.Credentials = new NetworkCredential ("nutshell", "oreilly");
wc.BaseAddress = "ftp://ftp.albahari.com";
wc.UploadString ("tempfile.txt", "hello!");
Console.WriteLine (wc.DownloadString ("tempfile.txt"));   // hello!

There’s more to FTP, however, than just uploading and downloading files. The protocol also
lists a set of commands or “methods,” defined as string constants in WebRequestMethods.Ftp:

AppendFile
DeleteFile
DownloadFile
GetDateTimestamp
GetFileSize

ListDirectory
ListDirectoryDetails
MakeDirectory
PrintWorkingDirectory
RemoveDirectory

Rename
UploadFile
UploadFileWithUniqueName

To run one of these commands, you assign its string constant to the web request’s Method
property, and then call GetResponse(). Here’s how to get a directory listing:

var req = (FtpWebRequest) WebRequest.Create ("ftp://ftp.albahari.com");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");
req.Method = WebRequestMethods.Ftp.ListDirectory;

using (WebResponse resp = req.GetResponse())
using (StreamReader reader = new StreamReader (resp.GetResponseStream()))
  Console.WriteLine (reader.ReadToEnd());

http://localhost:51111/


RESULT:
.
..
guestbook.txt
tempfile.txt
test.doc

In the case of getting a directory listing, we needed to read the response stream to get the result.
Most other commands, however, don’t require this step. For instance, to get the result of the
GetFileSize command, just query the response’s Content Length property:

var req = (FtpWebRequest) WebRequest.Create (
                          "ftp://ftp.albahari.com/tempfile.txt");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");

req.Method = WebRequestMethods.Ftp.GetFileSize;

using (WebResponse resp = req.GetResponse())
  Console.WriteLine (resp.ContentLength);            // 6

The GetDateTimestamp command works in a similar way, except that you query the
response’s LastModified property. This requires that you cast to FtpWebResponse:

...
req.Method = WebRequestMethods.Ftp.GetDateTimestamp;

using (var resp = (FtpWebResponse) req.GetResponse() )
  Console.WriteLine (resp.LastModified);

To use the Rename command, you must populate the request’s RenameTo property with the new
filename (without a directory prefix). For example, to rename a file in the incoming directory
from tempfile.txt to deleteme.txt:

var req = (FtpWebRequest) WebRequest.Create (
                          "ftp://ftp.albahari.com/tempfile.txt");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");

req.Method = WebRequestMethods.Ftp.Rename;
req.RenameTo = "deleteme.txt";

req.GetResponse().Close();        // Perform the rename

Here’s how to delete a file:

var req = (FtpWebRequest) WebRequest.Create (
                          "ftp://ftp.albahari.com/deleteme.txt");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");

req.Method = WebRequestMethods.Ftp.DeleteFile;

req.GetResponse().Close();        // Perform the deletion

NOTE
In all these examples, you would typically use an exception handling block to catch network
and protocol errors. A typical catch block looks like this:



catch (WebException ex)
{
   if (ex.Status == WebExceptionStatus.ProtocolError)
   {
     // Obtain more detail on error:
     var response = (FtpWebResponse) ex.Response;
     FtpStatusCode errorCode = response.StatusCode;
     string errorMessage = response.StatusDescription;
     ...
   }
   ...
 }

Using DNS
The static Dns class encapsulates the Domain Name Service, which converts between a raw IP
address, such as 66.135.192.87, and a human-friendly domain name, such as ebay.com.
The GetHostAddresses method converts from domain name to IP address (or addresses):

foreach (IPAddress a in Dns.GetHostAddresses ("albahari.com"))
  Console.WriteLine (a.ToString());     // 205.210.42.167

The GetHostEntry method goes the other way around, converting from address to domain
name:

IPHostEntry entry = Dns.GetHostEntry ("205.210.42.167");
Console.WriteLine (entry.HostName);                    // albahari.com

GetHostEntry also accepts an IPAddress object, so you can specify an IP address as a byte
array:

IPAddress address = new IPAddress (new byte[] { 205, 210, 42, 167 });
IPHostEntry entry = Dns.GetHostEntry (address);
Console.WriteLine (entry.HostName);                    // albahari.com

Domain names are automatically resolved to IP addresses when you use a class such as
WebRequest or TcpClient. If you plan to make many network requests to the same address
over the life of an application, however, you can sometimes improve performance by first using
Dns to explicitly convert the domain name into an IP address, and then communicating directly
with the IP address from that point on. This avoids repeated round-tripping to resolve the same
domain name, and it can be of benefit when dealing at the transport layer (via TcpClient,
UdpClient, or Socket).
The DNS class also provides awaitable task-based asynchronous methods:

foreach (IPAddress a in await Dns.GetHostAddressesAsync ("albahari.com"))
  Console.WriteLine (a.ToString());

Sending Mail with SmtpClient
The SmtpClient class in the System.Net.Mail namespace allows you to send mail messages
through the ubiquitous Simple Mail Transfer Protocol. To send a simple text message,
instantiate SmtpClient, set its Host property to your SMTP server address, and then call
Send:

http://ebay.com


SmtpClient client = new SmtpClient();
client.Host = "mail.myisp.net";
client.Send ("from@adomain.com", "to@adomain.com", "subject", "body");

To frustrate spammers, most SMTP servers on the Internet will accept connections only from
the ISP’s subscribers, so you need the SMTP address appropriate to the current connection for
this to work.
Constructing a MailMessage object exposes further options, including the ability to add
attachments:

SmtpClient client = new SmtpClient();
client.Host = "mail.myisp.net";
MailMessage mm = new MailMessage();

mm.Sender = new MailAddress ("kay@domain.com", "Kay");
mm.From   = new MailAddress ("kay@domain.com", "Kay");
mm.To.Add  (new MailAddress ("bob@domain.com", "Bob"));
mm.CC.Add  (new MailAddress ("dan@domain.com", "Dan"));
mm.Subject = "Hello!";
mm.Body = "Hi there. Here's the photo!";
mm.IsBodyHtml = false;
mm.Priority = MailPriority.High;

Attachment a = new Attachment ("photo.jpg",
                               System.Net.Mime.MediaTypeNames.Image.Jpeg);
mm.Attachments.Add (a);
client.Send (mm);

SmtpClient allows you to specify Credentials for servers requiring authentication,
EnableSsl if supported, and change the TCP Port to a nondefault value. By changing the
DeliveryMethod property, you can instruct the SmtpClient to instead use IIS to send mail
messages or simply to write each message to an .eml file in a specified directory:

SmtpClient client = new SmtpClient();
client.DeliveryMethod = SmtpDeliveryMethod.SpecifiedPickupDirectory;
client.PickupDirectoryLocation = @"c:\mail";

Using TCP
TCP and UDP constitute the transport layer protocols on top of which most Internet — and
local area network — services are built. HTTP, FTP, and SMTP use TCP; DNS uses UDP.
TCP is connection-oriented and includes reliability mechanisms; UDP is connectionless, has a
lower overhead, and supports broadcasting. BitTorrent uses UDP, as does Voice over IP.
The transport layer offers greater flexibility — and potentially improved performance — over
the higher layers, but it requires that you handle such tasks as authentication and encryption
yourself.
With TCP in .NET, you have a choice of either the easier-to-use TcpClient and TcpListener
façade classes, or the feature-rich Socket class. (In fact, you can mix and match, because
TcpClient exposes the underlying Socket object through the Client property.) The Socket
class exposes more configuration options and allows direct access to the network layer (IP)
and non–Internet-based protocols such as Novell’s SPX/IPX.
(TCP and UDP communication is also possible via WinRT types: see “TCP in Windows
Runtime”.)
As with other protocols, TCP differentiates a client and server: the client initiates a request,



while the server waits for a request. Here’s the basic structure for a synchronous TCP client
request:

using (TcpClient client = new TcpClient())
{
  client.Connect ("address", port);
  using (NetworkStream n = client.GetStream())
  {
    // Read and write to the network stream...
  }
}

TcpClient’s Connect method blocks until a connection is established (ConnectAsync is the
asynchronous equivalent). The NetworkStream then provides a means of two-way
communication, for both transmitting and receiving bytes of data from a server.
A simple TCP server looks like this:

TcpListener listener = new TcpListener (<ip address>, port);
listener.Start();

while (keepProcessingRequests)
  using (TcpClient c = listener.AcceptTcpClient())
  using (NetworkStream n = c.GetStream())
  {
    // Read and write to the network stream...
  }

listener.Stop();

TcpListener requires the local IP address on which to listen (a computer with two network
cards, for instance, may have two addresses). You can use IPAddress.Any to tell it to listen on
all (or the only) local IP addresses. AcceptTcpClient blocks until a client request is received
(again, there’s also an asynchronous version), at which point we call GetStream, just as on the
client side.
When working at the transport layer, you need to decide on a protocol for who talks when, and
for how long — rather like with a walkie-talkie. If both parties talk or listen at the same time,
communication breaks down!
Let’s invent a protocol where the client speaks first, saying “Hello,” and then the server
responds by saying “Hello right back!” Here’s the code:

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;

class TcpDemo
{
  static void Main()
  {
    new Thread (Server).Start();       // Run server method concurrently.
    Thread.Sleep (500);                // Give server time to start.
    Client();
  }

  static void Client()
  {
    using (TcpClient client = new TcpClient ("localhost", 51111))
    using (NetworkStream n = client.GetStream())
    {



      BinaryWriter w = new BinaryWriter (n);
      w.Write ("Hello");
      w.Flush();
      Console.WriteLine (new BinaryReader (n).ReadString());
    }
  }

  static void Server()     // Handles a single client request, then exits.
  {
    TcpListener listener = new TcpListener (IPAddress.Any, 51111);
    listener.Start();
    using (TcpClient c = listener.AcceptTcpClient())
    using (NetworkStream n = c.GetStream())
    {
      string msg = new BinaryReader (n).ReadString();
      BinaryWriter w = new BinaryWriter (n);
      w.Write (msg + " right back!");
      w.Flush();                      // Must call Flush because we're not
    }                                 // disposing the writer.
    listener.Stop();
  }
}

// OUTPUT: Hello right back!

In this example, we’re using the localhost loopback to run the client and server on the same
machine. We’ve arbitrarily chosen a port in the unallocated range (above 49152) and used a
BinaryWriter and BinaryReader to encode the text messages. We’ve avoided closing or
disposing the readers and writers in order to keep the underlying NetworkStream open until
our conversation completes.
BinaryReader and BinaryWriter might seem like odd choices for reading and writing
strings. However, they have a major advantage over StreamReader and StreamWriter: they
prefix strings with an integer indicating the length, so a BinaryReader always knows exactly
how many bytes to read. If you call StreamReader.ReadToEnd you might block indefinitely —
because a NetworkStream doesn’t have an end! As long as the connection is open, the network
stream can never be sure that the client isn’t going to send more data.

NOTE
StreamReader is in fact completely out of bounds with NetworkStream, even if you plan only
to call ReadLine. This is because StreamReader has a read-ahead buffer, which can result in it
reading more bytes than are currently available, blocking indefinitely (or until the socket times
out). Other streams such as FileStream don’t suffer this incompatibility with StreamReader
because they have a definite end — at which point Read returns immediately with a value of
0.

Concurrency with TCP
TcpClient and TcpListener offer task-based asynchronous methods for scalable
concurrency. Using these is simply a question of replacing blocking method calls with their
*Async versions, and awaiting the task that’s returned.
In the following example, we write an asynchronous TCP server that accepts requests of 5000
bytes in length, reverses the bytes, and then sends them back to the client:

async void RunServerAsync ()
{



  var listener = new TcpListener (IPAddress.Any, 51111);
  listener.Start ();
  try
  {
    while (true)
      Accept (await listener.AcceptTcpClientAsync ());
  }
  finally { listener.Stop(); }
}

async Task Accept (TcpClient client)
{
  await Task.Yield ();
  try
  {
    using (client)
    using (NetworkStream n = client.GetStream ())
    {
      byte[] data = new byte [5000];
     
      int bytesRead = 0; int chunkSize = 1;
      while (bytesRead < data.Length && chunkSize > 0)
        bytesRead += chunkSize =
          await n.ReadAsync (data, bytesRead, data.Length - bytesRead);
     
      Array.Reverse (data);   // Reverse the byte sequence
      await n.WriteAsync (data, 0, data.Length);
    }
  }
  catch (Exception ex) { Console.WriteLine (ex.Message); }
}

Such a program is scalable in that it does not block a thread for the duration of a request. So, if
a thousand clients were to connect at once over a slow network connections (so that each
request took several seconds from start to finish, for example), this program would not require
1000 threads for that time (unlike with a synchronous solution). Instead, it leases threads only
for the small periods of time required to execute code before and after the await expressions.

Receiving POP3 Mail with TCP
The .NET Framework provides no application-layer support for POP3, so you have to write at
the TCP layer in order to receive mail from a POP3 server. Fortunately, this is a simple
protocol; a POP3 conversation goes like this:

Client Mail server Notes

Client connects... +OK Hello there. Welcome message

USER joe +OK Password required.  

PASS password +OK Logged in.  

LIST +OK
1 1876
2 5412
3 845
.

Lists the ID and file size of each message on the server

RETR 1 +OK 1876 octets
Content of message #1...
.

Retrieves the message with the specified ID

DELE 1 +OK Deleted. Deletes a message from the server

QUIT +OK Bye-bye.  

Each command and response is terminated by a new line (CR + LF) except for the multiline



LIST and RETR commands, which are terminated by a single dot on a separate line. Because
we can’t use StreamReader with NetworkStream, we can start by writing a helper method to
read a line of text in a nonbuffered fashion:

static string ReadLine (Stream s)
{
  List<byte> lineBuffer = new List<byte>();
  while (true)
  {
    int b = s.ReadByte();
    if (b == 10 || b < 0) break;
    if (b != 13) lineBuffer.Add ((byte)b);
  }
  return Encoding.UTF8.GetString (lineBuffer.ToArray());
}

We also need a helper method to send a command. Because we always expect to receive a
response starting with “+OK,” we can read and validate the response at the same time:

static void SendCommand (Stream stream, string line)
{
  byte[] data = Encoding.UTF8.GetBytes (line + "\r\n");
  stream.Write (data, 0, data.Length);
  string response = ReadLine (stream);
  if (!response.StartsWith ("+OK"))
    throw new Exception ("POP Error: " + response);
}

With these methods written, the job of retrieving mail is easy. We establish a TCP connection
on port 110 (the default POP3 port), and then start talking to the server. In this example, we
write each mail message to a randomly named file with an .eml extension, before deleting the
message off the server:

using (TcpClient client = new TcpClient ("mail.isp.com", 110))
using (NetworkStream n = client.GetStream())
{
  ReadLine (n);                             // Read the welcome message.
  SendCommand (n, "USER username");
  SendCommand (n, "PASS password");
  SendCommand (n, "LIST");                  // Retrieve message IDs
  List<int> messageIDs = new List<int>();
  while (true)
  {
    string line = ReadLine (n);             // e.g.,  "1 1876"
    if (line == ".") break;
    messageIDs.Add (int.Parse (line.Split (' ')[0] ));   // Message ID
  }

  foreach (int id in messageIDs)         // Retrieve each message.
  {
    SendCommand (n, "RETR " + id);
    string randomFile = Guid.NewGuid().ToString() + ".eml";
    using (StreamWriter writer = File.CreateText (randomFile))
      while (true)
      {
        string line = ReadLine (n);      // Read next line of message.
        if (line == ".") break;          // Single dot = end of message.
        if (line == "..") line = ".";    // "Escape out" double dot.
        writer.WriteLine (line);         // Write to output file.
      }
    SendCommand (n, "DELE " + id);       // Delete message off server.
  }
  SendCommand (n, "QUIT");
}



TCP in Windows Runtime
Windows Runtime also exposes TCP functionality, through the
Windows.Networking.Sockets namespace. As with the .NET implementation, there are two
primary classes to handle server and client roles. In WinRT, these are StreamSocketListener
and StreamSocket.
The following method starts a server on port 51111, and waits for a client to connect. It then
reads a single message comprising a length-prefixed string:

async void Server()
{
  var listener = new StreamSocketListener();
  listener.ConnectionReceived += async (sender, args) =>
  {
    using (StreamSocket socket = args.Socket)
    {
      var reader = new DataReader (socket.InputStream);
      await reader.LoadAsync (4);
      uint length = reader.ReadUInt32();
      await reader.LoadAsync (length);
      Debug.WriteLine (reader.ReadString (length));
    }
    listener.Dispose();   // Close listener after one message.
  };
  await listener.BindServiceNameAsync ("51111");
}

In this example, we used a WinRT type called DataReader (in Windows.Networking) to read
from the input stream, rather than converting to a .NET Stream object and using a
BinaryReader. DataReader is rather like BinaryReader except that it supports asynchrony.
The LoadAsync method asynchronously reads a specified number of bytes into an internal
buffer, which then allows you to call methods such as ReadUInt32 or ReadString. The idea is
that if you wanted to, say, read 1000 integers in a row, you’d first call LoadAsync with a value
of 4000, and then ReadInt32 1000 times in a loop. This avoids the overhead of calling
asynchronous operations in a loop (as each asynchronous operation incurs a small overhead).

NOTE
DataReader/DataWriter have a ByteOrder property to control whether numbers are encoding
in big- or little-endian format. Big-endian is the default.

The StreamSocket object that we obtained from awaiting AcceptAsync has separate input
and output streams. So, to write a message back, we’d use the socket’s OutputStream. We can
illustrate the use of OutputStream and DataWriter with the corresponding client code:

async void Client()
{
  using (var socket = new StreamSocket())
  {
    await socket.ConnectAsync (new HostName ("localhost"), "51111",
                              SocketProtectionLevel.PlainSocket);
    var writer = new DataWriter (socket.OutputStream);
    string message = "Hello!";
    uint length = (uint) Encoding.UTF8.GetByteCount (message);
    writer.WriteUInt32 (length);
    writer.WriteString (message);
    await writer.StoreAsync();



  }
}

We start by instantiating a StreamSocket directly, then call ConnectAsync with the hostname
and port. (You can pass either a DNS name or an IP address string into HostName’s
constructor.) By specifying SocketProtectionLevel.Ssl, you can request SSL encryption (if
configured on the server).
Again, we used a WinRT DataWriter rather than a .NET BinaryWriter, and wrote the length
of the string (measured in bytes rather than characters), followed by the string itself which is
UTF-8 encoded. Finally, we called StoreAsync which writes the buffer to the backing stream,
and closed the socket.



Chapter 17. Serialization

This chapter introduces serialization and deserialization, the mechanism by which objects can
be represented in a flat text or binary form. Unless otherwise stated, the types in this chapter all
exist in the following namespaces:

System.Runtime.Serialization
System.Xml.Serialization

Serialization Concepts
Serialization is the act of taking an in-memory object or object graph (set of objects that
reference each other) and flattening it into a stream of bytes or XML nodes that can be stored or
transmitted. Deserialization works in reverse, taking a data stream and reconstituting it into an
in-memory object or object graph.
Serialization and deserialization are typically used to:

Transmit objects across a network or application boundary.

Store representations of objects within a file or database.

Another, less common use is to deep-clone objects. The data contract and XML serialization
engines can also be used as general-purpose tools for loading and saving XML files of a known
structure.
The .NET Framework supports serialization and deserialization both from the perspective of
clients wanting to serialize and deserialize objects, and from the perspective of types wanting
some control over how they are serialized.

Serialization Engines
There are four serialization mechanisms in the .NET Framework:

The data contract serializer

The binary serializer (in desktop apps)

The (attribute-based) XML serializer (XmlSerializer)

The IXmlSerializable interface

Of these, the first three are serialization “engines” that do most or all of the serialization work
for you. The last is just a hook for doing the serialization yourself, using XmlReader and
XmlWriter. IXmlSerializable can work in conjunction with the data contract serializer or
XmlSerializer, to handle the more complicated XML serialization tasks.
Table 17-1 compares each of the engines. More stars equate to a better score.

Table 17-1. Serialization engine comparison

Feature Data contract serializer Binary serializer XmlSerializer IXmlSerializable



Level of automation *** ***** **** *

Type coupling Choice Tight Loose Loose

Version tolerance ***** *** ***** *****

Preserves object references Choice Yes No Choice

Can serialize nonpublic fields Yes Yes No Yes

Suitability for interoperable messaging ***** ** **** ****

Flexibility in reading/writing XML files ** - **** *****

Compact output ** **** ** **

Performance *** **** * to *** ***

The scores for IXmlSerializable assume you’ve (hand) coded optimally using XmlReader
and XmlWriter. The XML serialization engine requires that you recycle the same
XmlSerializer object for good performance.

Why three engines?
The reason for there being three engines is partly historical. The Framework started out with
two distinct goals in serialization:

Serializing .NET object graphs with type and reference fidelity

Interoperating with XML and SOAP messaging standards

The first was led by the requirements of Remoting; the second, by Web Services. The job of
writing one serialization engine to do both was too daunting, so Microsoft wrote two engines:
the binary serializer and the XML serializer.
When Windows Communication Foundation (WCF) was later written, as part of Framework
3.0, part of the goal was to unify Remoting and Web Services. This required a new
serialization engine — hence, the data contract serializer. The data contract serializer unifies
the features of the older two engines relevant to (interoperable) messaging. Outside of this
context, however, the two older engines are still important.

The data contract serializer
The data contract serializer is the newest and the most versatile of the three serialization
engines and is used by WCF. The serializer is particularly strong in two scenarios:

When exchanging information through standards-compliant messaging protocols

When you need good version tolerance, plus the option of preserving object references

The data contract serializer supports a data contract model that helps you decouple the low-
level details of the types you want to serialize from the structure of the serialized data. This
provides excellent version tolerance, meaning you can deserialize data that was serialized
from an earlier or later version of a type. You can even deserialize types that have been
renamed or moved to a different assembly.
The data contract serializer can cope with most object graphs, although it can require more
assistance than the binary serializer. It can also be used as a general-purpose tool for
reading/writing XML files, if you’re flexible on how the XML is structured. (If you need to
store data in attributes or cope with XML elements presenting in a random order, you cannot



use the data contract serializer.)

The binary serializer
The binary serialization engine is easy to use, highly automatic, and well supported throughout
the .NET Framework. Remoting uses binary serialization — including when communicating
between two application domains in the same process (see Chapter 24).
The binary serializer is highly automated: quite often, a single attribute is all that’s required to
make a complex type fully serializable. The binary serializer is also faster than the data
contract serializer when full type fidelity is needed. However, it tightly couples a type’s
internal structure to the format of the serialized data, resulting in poor version tolerance. (Prior
to Framework 2.0, even adding a simple field was a version-breaking change.) The binary
engine is also not really designed to produce XML, although it offers a formatter for SOAP-
based messaging that provides limited interoperability with simple types.

XmlSerializer
The XML serialization engine can only produce XML, and it is less powerful than other
engines in saving and restoring a complex object graph (it cannot restore shared object
references). It’s the most flexible of the three, however, in following an arbitrary XML
structure. For instance, you can choose whether properties are serialized to elements or
attributes and the handling of a collection’s outer element. The XML engine also provides
excellent version tolerance.
XmlSerializer is used by ASMX Web Services.

IXmlSerializable
Implementing IXmlSerializable means to do the serialization yourself with an XmlReader
and XmlWriter. The IXmlSerializable interface is recognized both by XmlSerializer and
by the data contract serializer, so it can be used selectively to handle the more complicated
types. (It also can be used directly by WCF and ASMX Web Services.) We describe
XmlReader and XmlWriter in detail in Chapter 11.

Formatters
The output of the data contract and binary serializers is shaped by a pluggable formatter. The
role of a formatter is the same with both serialization engines, although they use completely
different classes to do the job.
A formatter shapes the final presentation to suit a particular medium or context of serialization.
In general, you can choose between XML and binary formatters. An XML formatter is designed
to work within the context of an XML reader/writer, text file/stream, or SOAP messaging
packet. A binary formatter is designed to work in a context where an arbitrary stream of bytes
will do — typically a file/stream or proprietary messaging packet. Binary output is usually
smaller than XML — sometimes radically so.

NOTE
The term “binary” in the context of a formatter is unrelated to the “binary” serialization
engine. Each of the two engines ships with both XML and binary formatters!



In theory, the engines are decoupled from their formatters. In practice, the design of each engine
is geared toward one kind of formatter. The data contract serializer is geared toward the
interoperability requirements of XML messaging. This is good for the XML formatter but
means its binary formatter doesn’t always achieve the gains you might hope. In contrast, the
binary engine provides a relatively good binary formatter, but its XML formatter is highly
limited, offering only crude SOAP interoperability.

Explicit Versus Implicit Serialization
Serialization and deserialization can be initiated in two ways.
The first is explicitly, by requesting that a particular object be serialized or deserialized. When
you serialize or deserialize explicitly, you choose both the serialization engine and the
formatter.
In contrast, implicit serialization is initiated by the Framework. This happens when:

A serializer recursively serializes a child object.

You use a feature that relies on serialization, such as WCF, Remoting, or Web Services.

WCF always uses the data contract serializer, although it can interoperate with the attributes
and interfaces of the other engines.
Remoting always uses the binary serialization engine.
Web Services always uses XmlSerializer.

The Data Contract Serializer
Here are the basic steps in using the data contract serializer:

1. Decide whether to use the DataContractSerializer or the
NetDataContractSerializer.

2. Decorate the types and members you want to serialize with [DataContract] and
[DataMember] attributes, respectively.

3. Instantiate the serializer and call WriteObject or ReadObject.

If you choose the DataContractSerializer, you will also need to register “known types”
(subtypes that can also be serialized), and decide whether to preserve object references.
You may also need to take special action to ensure that collections are properly serialized.

NOTE
Types for the data contract serializer are defined in the System.Runtime.Serialization
namespace, in an assembly of the same name.

DataContractSerializer Versus NetDataContractSerializer
There are two data contract serializers:



DataContractSerializer

Loosely couples .NET types to data contract types

NetDataContractSerializer

Tightly couples .NET types to data contract types
The DataContractSerializer can produce interoperable standards-compliant XML such as
this:

<Person xmlns="...">
  ...
</Person>

It requires, however, that you explicitly register serializable subtypes in advance so that it can
map a data contract name such as “Person” to the correct .NET type. The
NetDataContractSerializer requires no such assistance, because it writes the full type and
assembly names of the types it serializes, rather like the binary serialization engine:

<Person z:Type="SerialTest.Person" z:Assembly=
  "SerialTest, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
  ...
</Person>

Such output, however, is proprietary. It also relies on the presence of a specific.NET type in a
specific namespace and assembly in order to deserialize.
If you’re saving an object graph to a “black box,” you can choose either serializer, depending
on what benefits are more important to you. If you’re communicating through WCF, or
reading/writing an XML file, you’ll most likely want the DataContractSerializer.
Another difference between the two serializers is that NetDataContractSerializer always
preserves referential equality; DataContractSerializer does so only upon request.
We’ll go into each of these topics in more detail in the following sections.

Using the Serializers
After choosing a serializer, the next step is to attach attributes to the types and members you
want to serialize. At a minimum:

Add the [DataContract] attribute to each type.

Add the [DataMember] attribute to each member that you want to include.

Here’s an example:

namespace SerialTest
{
  [DataContract] public class Person
  {
    [DataMember] public string Name;
    [DataMember] public int Age;
  }
}

These attributes are enough to make a type implicitly serializable through the data contract
engine.



You can then explicitly serialize or deserialize an object instance by instantiating a
DataContractSerializer or NetDataContractSerializer and calling WriteObject or
ReadObject:

Person p = new Person { Name = "Stacey", Age = 30 };

var ds = new DataContractSerializer (typeof (Person));

using (Stream s = File.Create ("person.xml"))
  ds.WriteObject (s, p);                            // Serialize

Person p2;
using (Stream s = File.OpenRead ("person.xml"))
  p2 = (Person) ds.ReadObject (s);                  // Deserialize

Console.WriteLine (p2.Name + " " + p2.Age);         // Stacey 30

DataContractSerializer’s constructor requires the root object type (the type of the object
you’re explicitly serializing). In contrast, NetDataContractSerializer does not:

var ns = new NetDataContractSerializer();

// NetDataContractSerializer is otherwise the same to use
// as DataContractSerializer.
...

Both types of serializer use the XML formatter by default. With an XmlWriter, you can request
that the output be indented for readability:

Person p = new Person { Name = "Stacey", Age = 30 };
var ds = new DataContractSerializer (typeof (Person));

XmlWriterSettings settings = new XmlWriterSettings() { Indent = true };
using (XmlWriter w = XmlWriter.Create ("person.xml", settings))
  ds.WriteObject (w, p);

System.Diagnostics.Process.Start ("person.xml");

Here’s the result:

<Person xmlns="http://schemas.datacontract.org/2004/07/SerialTest"
        xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
  <Age>30</Age>
  <Name>Stacey</Name>
</Person>

The XML element name <Person> reflects the data contract name, which, by default, is the
.NET type name. You can override this and explicitly state a data contract name as follows:

[DataContract (Name="Candidate")]
public class Person { ... }

The XML namespace reflects the data contract namespace, which, by default, is
http://schemas.datacontract.org/2004/07/, plus the .NET type namespace. You can override
this in a similar fashion:

[DataContract (Namespace="http://oreilly.com/nutshell")]
public class Person { ... }

http://schemas.datacontract.org/2004/07/


NOTE
Specifying a name and namespace decouples the contract identity from the .NET type name.
It ensures that, should you later refactor and change the type’s name or namespace,
serialization is unaffected.

You can also override names for data members:

[DataContract (Name="Candidate", Namespace="http://oreilly.com/nutshell")]
public class Person
{
  [DataMember (Name="FirstName")]  public string Name;
  [DataMember (Name="ClaimedAge")] public int Age;
}

Here’s the output:

<?xml version="1.0" encoding="utf-8"?>
<Candidate xmlns="http://oreilly.com/nutshell"
           xmlns:i="http://www.w3.org/2001/XMLSchema-instance" >
  <ClaimedAge>30</ClaimedAge>
  <FirstName>Stacey</FirstName>
</Candidate>

[DataMember] supports both fields and properties — public and private. The field or
property’s data type can be any of the following:

Any primitive type

DateTime, TimeSpan, Guid, Uri, or an Enum value

Nullable versions of the above

byte[] (serializes in XML to base 64)

Any “known” type decorated with DataContract

Any IEnumerable type (see the section “Serializing Collections” later in this chapter)

Any type with the [Serializable] attribute or implementing ISerializable (see the
section “Extending Data Contracts” later in this chapter)

Any type implementing IXmlSerializable

Specifying a binary formatter
You can use a binary formatter with DataContractSerializer or
NetDataContractSerializer. The process is the same:

Person p = new Person { Name = "Stacey", Age = 30 };
var ds = new DataContractSerializer (typeof (Person));

var s = new MemoryStream();
using (XmlDictionaryWriter w = XmlDictionaryWriter.CreateBinaryWriter (s))
  ds.WriteObject (w, p);

var s2 = new MemoryStream (s.ToArray());



Person p2;
using (XmlDictionaryReader r = XmlDictionaryReader.CreateBinaryReader (s2,
                               XmlDictionaryReaderQuotas.Max))
  p2 = (Person) ds.ReadObject (r);

The output varies between being slightly smaller than that of the XML formatter, and radically
smaller if your types contain large arrays.

Serializing Subclasses
You don’t need to do anything special to handle the serializing of subclasses with the
NetDataContractSerializer. The only requirement is that subclasses have the
DataContract attribute. The serializer will write the fully qualified names of the actual types
that it serializes as follows:

<Person ... z:Type="SerialTest.Person" z:Assembly=
  "SerialTest, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">

A DataContractSerializer, however, must be informed about all subtypes that it may have
to serialize or deserialize. To illustrate, suppose we subclass Person as follows:

[DataContract] public class Person
{
  [DataMember] public string Name;
  [DataMember] public int Age;
}
[DataContract] public class Student : Person { }
[DataContract] public class Teacher : Person { }

and then write a method to clone a Person:

static Person DeepClone (Person p)
{
  var ds = new DataContractSerializer (typeof (Person));
  MemoryStream stream = new MemoryStream();
  ds.WriteObject (stream, p);
  stream.Position = 0;
  return (Person) ds.ReadObject (stream);
}

which we call as follows:

Person  person  = new Person  { Name = "Stacey", Age = 30 };
Student student = new Student { Name = "Stacey", Age = 30 };
Teacher teacher = new Teacher { Name = "Stacey", Age = 30 };

Person  p2 =           DeepClone (person);     // OK
Student s2 = (Student) DeepClone (student);    // SerializationException
Teacher t2 = (Teacher) DeepClone (teacher);    // SerializationException

DeepClone works if called with a Person but throws an exception with a Student or
Teacher, because the deserializer has no way of knowing what .NET type (or assembly) a
“Student” or “Teacher” should resolve to. This also helps with security, in that it prevents the
deserialization of unexpected types.
The solution is to specify all permitted or “known” subtypes. You can do this either when
constructing the DataContractSerializer:



var ds = new DataContractSerializer (typeof (Person),
  new Type[] { typeof (Student), typeof (Teacher) } );

or in the type itself, with the KnownType attribute:

[DataContract, KnownType (typeof (Student)), KnownType (typeof (Teacher))]
public class Person
...

Here’s what a serialized Student now looks like:

<Person xmlns="..."
        xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
        i:type="Student" >
  ...
<Person>

Because we specified Person as the root type, the root element still has that name. The actual
subclass is described separately — in the type attribute.

NOTE
The NetDataContractSerializer suffers a performance hit when serializing subtypes — with
either formatter. It seems that when it encounters a subtype, it has to stop and think for a
while!
Serialization performance matters on an application server that’s handling many concurrent
requests.

Object References
References to other objects are serialized, too. Consider the following classes:

[DataContract] public class Person
{
  [DataMember] public string Name;
  [DataMember] public int Age;
  [DataMember] public Address HomeAddress;
}

[DataContract] public class Address
{
  [DataMember] public string Street, Postcode;
}

Here’s the result of serializing this to XML using the DataContractSerializer:

<Person...>
  <Age>...</Age>
  <HomeAddress>
    <Street>...</Street>
    <Postcode>...</Postcode>
  </HomeAddress>
  <Name>...</Name>
</Person>

NOTE



The DeepClone method we wrote in the preceding section would clone HomeAddress, too —
distinguishing it from a simple MemberwiseClone.

If you’re using a DataContractSerializer, the same rules apply when subclassing Address
as when subclassing the root type. So, if we define a USAddress class, for instance:

[DataContract]
public class USAddress : Address { }

and assign an instance of it to a Person:

Person p = new Person { Name = "John", Age = 30 };
p.HomeAddress = new USAddress { Street="Fawcett St", Postcode="02138" };

p could not be serialized. The solution is either to apply the KnownType attribute to Address:

[DataContract, KnownType (typeof (USAddress))]
public class Address
{
  [DataMember] public string Street, Postcode;
}

or to tell DataContractSerializer about USAddress in construction:

var ds = new DataContractSerializer (typeof (Person),
  new Type[] { typeof (USAddress) } );

(We don’t need to tell it about Address because it’s the declared type of the Home Address data
member.)

Preserving object references
The NetDataContractSerializer always preserves referential equality. The
DataContractSerializer does not, unless you specifically ask it to.
This means that if the same object is referenced in two different places, a
DataContractSerializer ordinarily writes it twice. So, if we modify the preceding example
so that Person also stores a work address:

[DataContract] public class Person
{
  ...
  [DataMember] public Address HomeAddress, WorkAddress;
}

and then serialize an instance as follows:

Person p = new Person { Name = "Stacey", Age = 30 };
p.HomeAddress = new Address { Street = "Odo St", Postcode = "6020" };
p.WorkAddress = p.HomeAddress;

we would see the same address details twice in the XML:

...
<HomeAddress>



  <Postcode>6020</Postcode>
  <Street>Odo St</Street>
</HomeAddress>
...
<WorkAddress>
  <Postcode>6020</Postcode>
  <Street>Odo St</Street>
</WorkAddress>

When this was later deserialized, WorkAddress and HomeAddress would be different objects.
The advantage of this system is that it keeps the XML simple and standards-compliant. The
disadvantages of this system include larger XML, loss of referential integrity, and the inability
to cope with cyclical references.
You can request referential integrity by specifying true for preserveObjectReferences
when constructing a DataContractSerializer:

var ds = new DataContractSerializer (typeof (Person),
                                     null, 1000, false, true, null);

The third argument is mandatory when preserveObjectReferences is true: it indicates the
maximum number of object references that the serializer should keep track of. The serializer
throws an exception if this number is exceeded (this prevents a denial of service attack through
a maliciously constructed stream).
Here’s what the XML then looks like for a Person with the same home and work addresses:

<Person xmlns="http://schemas.datacontract.org/2004/07/SerialTest"
        xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/"
        z:Id="1">
  <Age>30</Age>
  <HomeAddress z:Id="2">
    <Postcode z:Id="3">6020</Postcode>
    <Street z:Id="4">Odo St</Street>
  </HomeAddress>
  <Name z:Id="5">Stacey</Name>
  <WorkAddress z:Ref="2" i:nil="true" />
</Person>

The cost of this is in reduced interoperability (notice the proprietary namespace of the Id and
Ref attributes).

Version Tolerance
You can add and remove data members without breaking forward or backward compatibility.
By default, the data contract deserializers do the following:

Skip over data for which there is no [DataMember] in the type.

Don’t complain if any [DataMember] is missing in the serialization stream.

Rather than skipping over unrecognized data, you can instruct the deserializer to store
unrecognized data members in a black box, and then replay them should the type later be
reserialized. This allows you to correctly round-trip data that’s been serialized by a later
version of your type. To activate this feature, implement IExtensibleDataObject. This
interface really means “IBlackBoxProvider.” It requires that you implement a single property,
to get/set the black box:



[DataContract] public class Person : IExtensibleDataObject{
  [DataMember] public string Name;
  [DataMember] public int Age;

  ExtensionDataObject IExtensibleDataObject.ExtensionData { get; set; }
}

Required members
If a member is essential for a type, you can demand that it be present with IsRequired:

[DataMember (IsRequired=true)] public int ID;

If that member is not present, an exception is then thrown upon deserialization.

Member Ordering
The data contract serializers are extremely fussy about the ordering of data members. The
deserializers, in fact, skip over any members considered out of sequence.
Members are written in the following order when serializing:

1. Base class to subclass

2. Low Order to high Order (for data members whose Order is set)

3. Alphabetical order (using ordinal string comparison)

So, in the preceding examples, Age comes before Name. In the following example, Name comes
before Age:

[DataContract] public class Person
{
  [DataMember (Order=0)] public string Name;
  [DataMember (Order=1)] public int Age;
}

If Person has a base class, the base class’s data members would all serialize first.
The main reason to specify an order is to comply with a particular XML schema. XML element
order equates to data member order.
If you don’t need to interoperate with anything else, the easiest approach is not to specify a
member Order and rely purely on alphabetical ordering. A discrepancy will then never arise
between serialization and deserialization as members are added and removed. The only time
you’ll come unstuck is if you move a member between a base class and a subclass.

Null and Empty Values
There are two ways to deal with a data member whose value is null or empty:

1. Explicitly write the null or empty value (the default).

2. Omit the data member from the serialization output.

In XML, an explicit null value looks like this:

<Person xmlns="..."



           xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
  <Name i:nil="true" />
</Person>

Writing null or empty members can waste space, particularly on a type with lots of fields or
properties that are usually left empty. More importantly, you may need to follow an XML
schema that expects the use of optional elements (e.g., minOccurs="0") rather than nil values.
You can instruct the serializer not to emit data members for null/empty values as follows:

[DataContract] public class Person
{
  [DataMember (EmitDefaultValue=false)] public string Name;
  [DataMember (EmitDefaultValue=false)] public int Age;
}

Name is omitted if its value is null; Age is omitted if its value is 0 (the default value for the
int type). If we were to make Age a nullable int, then it would be omitted if (and only if) its
value was null.

NOTE
The data contract deserializer, in rehydrating an object, bypasses the type’s constructors and
field initializers. This allows you to omit data members as described without breaking fields
that are assigned nondefault values through an initializer or constructor. To illustrate, suppose
we set the default Age for a Person to 30 as follows:

[DataMember (EmitDefaultValue=false)]
public int Age = 30;

Now suppose that we instantiate Person, explicitly set its Age from 30 to 0, and then serialize
it. The output won’t include Age, because 0 is the default value for the int type. This means
that in deserialization, Age will be ignored and the field will remain at its default value —
which fortunately is 0, given that field initializers and constructors were bypassed.

Data Contracts and Collections
The data contract serializers can save and repopulate any enumerable collection. For instance,
suppose we define Person to have a List<> of addresses:

[DataContract] public class Person
{
  ...
  [DataMember] public List<Address> Addresses;
}

[DataContract] public class Address
{
  [DataMember] public string Street, Postcode;
}

Here’s the result of serializing a Person with two addresses:

<Person ...>
  ...
  <Addresses>



    <Address>
      <Postcode>6020</Postcode>
      <Street>Odo St</Street>
    </Address>
    <Address>
      <Postcode>6152</Postcode>
      <Street>Comer St</Street>
    </Address>
  </Addresses>
  ...
</Person>

Notice that the serializer doesn’t encode any information about the particular type of collection
it serialized. If the Addresses field was instead of type Address[], the output would be
identical. This allows the collection type to change between serialization and deserialization
without causing an error.
Sometimes, though, you need your collection to be of a more specific type than you expose. An
extreme example is with interfaces:

[DataMember] public IList<Address> Addresses;

This serializes correctly (as before), but a problem arises in deserialization. There’s no way
the deserializer can know which concrete type to instantiate, so it chooses the simplest option
— an array. The deserializer sticks to this strategy even if you initialize the field with a
different concrete type:

[DataMember] public IList<Address> Addresses = new List<Address>();

(Remember that the deserializer bypasses field initializers.) The workaround is to make the
data member a private field and add a public property to access it:

[DataMember (Name="Addresses")] List<Address> _addresses;

public IList<Address> Addresses { get { return _addresses; } }

In a nontrivial application, you would probably use properties in this manner anyway. The only
unusual thing here is that we’ve marked the private field as the data member, rather than the
public property.

Subclassed Collection Elements
The serializer handles subclassed collection elements transparently. You must declare the valid
subtypes just as you would if they were used anywhere else:

[DataContract, KnownType (typeof (USAddress))]
public class Address
{
  [DataMember] public string Street, Postcode;
}

public class USAddress : Address { }

Adding a USAddress to a Person’s address list then generates XML like this:

...
  <Addresses>



    <Address i:type="USAddress">
      <Postcode>02138</Postcode>
      <Street>Fawcett St</Street>
    </Address>
  </Addresses>

Customizing Collection and Element Names
If you subclass a collection class itself, you can customize the XML name used to describe
each element by attaching a CollectionDataContract attribute:

[CollectionDataContract (ItemName="Residence")]
public class AddressList : Collection<Address> { }

[DataContract] public class Person
{
  ...
  [DataMember] public AddressList Addresses;
}

Here’s the result:

...
  <Addresses>
    <Residence>
      <Postcode>6020</Postcode
      <Street>Odo St</Street>
    </Residence>
    ...

CollectionDataContract also lets you specify a Namespace and Name. The latter is not used
when the collection is serialized as a property of another object (such as in this example), but it
is when the collection is serialized as the root object.
You can also use CollectionDataContract to control the serialization of dictionaries:

[CollectionDataContract (ItemName="Entry",
                          KeyName="Kind",
                        ValueName="Number")]
public class PhoneNumberList : Dictionary <string, string> { }

[DataContract] public class Person
{
  ...
  [DataMember] public PhoneNumberList PhoneNumbers;
}

Here’s how this formats:

...
  <PhoneNumbers>
    <Entry>
      <Kind>Home</Kind>
      <Number>08 1234 5678</Number>
    </Entry>
    <Entry>
      <Kind>Mobile</Kind>
      <Number>040 8765 4321</Number>
    </Entry>
  </PhoneNumbers>



Extending Data Contracts
This section describes how you can extend the capabilities of the data contract serializer
through serialization hooks, [Serializable] and IXmlSerializable.

Serialization and Deserialization Hooks
You can request that a custom method be executed before or after serialization, by flagging the
method with one of the following attributes:

[OnSerializing]

Indicates a method to be called just before serialization

[OnSerialized]

Indicates a method to be called just after serialization
Similar attributes are supported for deserialization:

[OnDeserializing]

Indicates a method to be called just before deserialization

[OnDeserialized]

Indicates a method to be called just after deserialization
The custom method must have a single parameter of type StreamingContext. This parameter
is required for consistency with the binary engine, and it is not used by the data contract
serializer.
[OnSerializing] and [OnDeserialized] are useful in handling members that are outside the
capabilities of the data contract engine, such as a collection that has an extra payload or that
does not implement standard interfaces. Here’s the basic approach:

[DataContract] public class Person
{
  public SerializationUnfriendlyType Addresses;

  [DataMember (Name="Addresses")]
  SerializationFriendlyType _serializationFriendlyAddresses;

  [OnSerializing]
  void PrepareForSerialization (StreamingContext sc)
  {
    // Copy Addresses — > _serializationFriendlyAddresses
    // ...
  }

  [OnDeserialized]
  void CompleteDeserialization (StreamingContext sc)
  {
    // Copy _serializationFriendlyAddresses — > Addresses
    // ...
  }
}

An [OnSerializing] method can also be used to conditionally serialize fields:

public DateTime DateOfBirth;

[DataMember] public bool Confidential;

[DataMember (Name="DateOfBirth", EmitDefaultValue=false)]



DateTime? _tempDateOfBirth;

[OnSerializing]
void PrepareForSerialization (StreamingContext sc)
{
  if (Confidential)
    _tempDateOfBirth = DateOfBirth;
  else
    _tempDateOfBirth = null;
}

Recall that the data contract deserializers bypass field initializers and constructors. An
[OnDeserializing] method acts as a pseudoconstructor for deserialization, and it is useful
for initializing fields excluded from serialization:

[DataContract] public class Test
{
  bool _editable = true;

  public Test() { _editable = true; }

  [OnDeserializing]
  void Init (StreamingContext sc)
  {
    _editable = true;
  }
}

If it wasn’t for the Init method, _editable would be false in a deserialized instance of Test
— despite the other two attempts at making it true.
Methods decorated with these four attributes can be private. If subtypes need to participate,
they can define their own methods with the same attributes, and they will get executed, too.

Interoperating with [Serializable]
The data contract serializer can also serialize types marked with the binary serialization
engine’s attributes and interfaces. This ability is important, since support for the binary engine
has been woven into much of what was written prior to Framework 3.0 — including the .NET
Framework itself!

NOTE
The following things flag a type as being serializable for the binary engine:

The [Serializable] attribute

Implementing ISerializable

Binary interoperability is useful in serializing existing types as well as new types that need to
support both engines. It also provides another means of extending the capability of the data
contract serializer, because the binary engine’s ISerializable is more flexible than the data
contract attributes. Unfortunately, the data contract serializer is inefficient in how it formats
data added via ISerializable.
A type wanting the best of both worlds cannot define attributes for both engines. This creates a



problem for types such as string and DateTime, which for historical reasons cannot divorce
the binary engine attributes. The data contract serializer works around this by filtering out these
basic types and processing them specially. For all other types marked for binary serialization,
the data contract serializer applies similar rules to what the binary engine would use. This
means it honors attributes such as NonSerialized or calls ISerializable if implemented. It
does not thunk to the binary engine itself — this ensures that output is formatted in the same
style as if data contract attributes were used.

WARNING
Types designed to be serialized with the binary engine expect object references to be
preserved. You can enable this option through the DataContractSerializer (or by using the
NetDataContractSerializer).

The rules for registering known types also apply to objects and subobjects serialized through
the binary interfaces.
The following example illustrates a class with a [Serializable] data member:

[DataContract] public class Person
{
  ...
  [DataMember] public Address MailingAddress;
}
[Serializable] public class Address
{
  public string Postcode, Street;
}

Here’s the result of serializing it:

<Person ...>
  ...
  <MailingAddress>
    <Postcode>6020</Postcode>
    <Street>Odo St</Street>
  </MailingAddress>
  ...

Had Address implemented ISerializable, the result would be less efficiently formatted:

  <MailingAddress>
    <Street xmlns:d3p1="http://www.w3.org/2001/XMLSchema"
      i:type="d3p1:string" xmlns="">str</Street>
    <Postcode xmlns:d3p1="http://www.w3.org/2001/XMLSchema"
      i:type="d3p1:string" xmlns="">pcode</Postcode>
  </MailingAddress>

Interoperating with IXmlSerializable
A limitation of the data contract serializer is that it gives you little control over the structure of
the XML. In a WCF application this can actually be beneficial, in that it makes it easier for the
infrastructure to comply with standard messaging protocols.
If you do need precise control over the XML, you can implement IXmlSerializable and then
use XmlReader and XmlWriter to manually read and write the XML. The data contract



serializer allows you to do this just on the types for which this level of control is required. We
describe the IXmlSerializable interface further in the final section of this chapter.

The Binary Serializer
The binary serialization engine is used implicitly by Remoting. It can also be used to perform
such tasks as saving and restoring objects to disk. The binary serialization is highly automated
and can handle complex object graphs with minimum intervention. It’s not available, however,
in Windows Store apps.
There are two ways to make a type support binary serialization. The first is attribute-based; the
second involves implementing ISerializable. Adding attributes is simpler; implementing
ISerializable is more flexible. You typically implement ISerializable to:

Dynamically control what gets serialized.

Make your serializable type friendly to being subclassed by other parties.

Getting Started
A type can be made serializable with a single attribute:

[Serializable] public sealed class Person
{
  public string Name;
  public int Age;
}

The [Serializable] attribute instructs the serializer to include all fields in the type. This
includes both private and public fields (but not properties). Every field must itself be
serializable; otherwise, an exception is thrown. Primitive .NET types such as string and int
support serialization (as do many other .NET types).

NOTE
The Serializable attribute is not inherited, so subclasses are not automatically serializable,
unless also marked with this attribute.
With automatic properties, the binary serialization engine serializes the underlying compiler-
generated field. The name of this field, unfortunately, can change when its type is
recompiled, breaking compatibility with existing serialized data. The workaround is either to
avoid automatic properties in [Serializable] types or to implement ISerializable.

To serialize an instance of Person, you instantiate a formatter and call Serialize. There are
two formatters for use with the binary engine:

BinaryFormatter

This is the more efficient of the two, producing smaller output in less time. Its namespace
is System.Runtime.Serialization.Formatters.Binary.

SoapFormatter

This supports basic SOAP-style messaging when used with Remoting. Its namespace is



System.Runtime.Serialization.Formatters.Soap.
BinaryFormatter is contained in mscorlib; SoapFormatter is contained in System
.Runtime.Serialization.Formatters.Soap.dll.

WARNING
The SoapFormatter is less functional than the BinaryFormatter. The SoapFormatter doesn’t
support generic types or the filtering of extraneous data necessary for version-tolerant
serialization.

The two formatters are otherwise exactly the same to use. The following serializes a Person
with a BinaryFormatter:

Person p = new Person() { Name = "George", Age = 25 };

IFormatter formatter = new BinaryFormatter();

using (FileStream s = File.Create ("serialized.bin"))
  formatter.Serialize (s, p);

All the data necessary to reconstruct the Person object is written to the file serialized.bin. The
Deserialize method restores the object:

using (FileStream s = File.OpenRead ("serialized.bin"))
{
  Person p2 = (Person) formatter.Deserialize (s);
  Console.WriteLine (p2.Name + " " + p.Age);     // George 25
}

WARNING
The deserializer bypasses all constructors when re-creating objects. Behind the scenes, it calls
FormatterServices.GetUninitializedObject to do this job. You can call this method yourself
to implement some very grubby design patterns!

The serialized data includes full type and assembly information, so if we try to cast the result
of deserialization to a matching Person type in a different assembly, an error would result. The
deserializer fully restores object references to their original state upon deserialization. This
includes collections, which are just treated as serializable objects like any other (all collection
types in System.Collections.* are marked as serializable).

NOTE
The binary engine can handle large, complex object graphs without special assistance (other
than ensuring that all participating members are serializable). One thing to be wary of is that
the serializer’s performance degrades in proportion to the number of references in your
object graph. This can become an issue in a Remoting server that has to process many
concurrent requests.



Binary Serialization Attributes

[NonSerialized]
Unlike data contracts, which have an opt-in policy in serializing fields, the binary engine has
an opt-out policy. Fields that you don’t want serialized, such as those used for temporary
calculations, or for storing file or window handles, you must mark explicitly with the
[NonSerialized] attribute:

[Serializable] public sealed class Person
{
  public string Name;
  public DateTime DateOfBirth;

  // Age can be calculated, so there's no need to serialize it.
  [NonSerialized] public int Age;
}

This instructs the serializer to ignore the Age member.

WARNING
Nonserialized members are always empty or null when deserialized — even if field
initializers or constructors set them otherwise.

[OnDeserializing] and [OnDeserialized]
Deserialization bypasses all your normal constructors as well as field initializers. This is of
little consequence if every field partakes in serialization, but it can be problematic if some
fields are excluded via [NonSerialized]. We can illustrate this by adding a bool field called
Valid:

public sealed class Person
{
  public string Name;
  public DateTime DateOfBirth;

  [NonSerialized] public int Age;
  [NonSerialized] public bool Valid = true;

  public Person() { Valid = true; }
}

A deserialized Person will not be Valid — despite the constructor and field initializer.
The solution is the same as with the data contract serializer: to define a special deserialization
“constructor” with the [OnDeserializing] attribute. A method that you flag with this attribute
gets called just prior to deserialization:

[OnDeserializing]
void OnDeserializing (StreamingContext context)
{
  Valid = true;
}

We could also write an [OnDeserialized] method to update the calculated Age field (this



fires just after deserialization):

[OnDeserialized]
void OnDeserialized (StreamingContext context)
{
  TimeSpan ts = DateTime.Now - DateOfBirth;
  Age = ts.Days / 365;                         // Rough age in years
}

[OnSerializing] and [OnSerialized]
The binary engine also supports the [OnSerializing] and [OnSerialized] attributes. These
flag a method for execution before or after serialization. To see how they can be useful, we’ll
define a Team class that contains a generic List of players:

[Serializable] public sealed class Team
{
  public string Name;
  public List<Person> Players = new List<Person>();
}

This class serializes and deserializes correctly with the binary formatter but not the SOAP
formatter. This is because of an obscure limitation: the SOAP formatter refuses to serialize
generic types! An easy solution is to convert Players to an array just prior to serialization,
then convert it back to a generic List upon deserialization. To make this work, we can add
another field for storing the array, mark the original Players field as [NonSerialized], and
then write the conversion code in as follows:

[Serializable] public sealed class Team
{
  public string Name;
  Person[] _playersToSerialize;

  [NonSerialized] public List<Person> Players = new List<Person>();

  [OnSerializing]
  void OnSerializing (StreamingContext context)
  {
    _playersToSerialize = Players.ToArray();
  }

  [OnSerialized]
  void OnSerialized (StreamingContext context)
  {
    _playersToSerialize = null;   // Allow it to be freed from memory
  }

  [OnDeserialized]
  void OnDeserialized (StreamingContext context)
  {
    Players = new List<Person> (_playersToSerialize);
  }
}

[OptionalField] and Versioning
By default, adding a field breaks compatibility with data that’s already serialized, unless you
attach the [OptionalField] attribute to the new field.
To illustrate, suppose we start with a Person class that has just one field. Let’s call it Version
1:



[Serializable] public sealed class Person       // Version 1
{
  public string Name;
}

Later, we realize we need a second field, so we create Version 2 as follows:

[Serializable] public sealed class Person       // Version 2
{
  public string Name;
  public DateTime DateOfBirth;
}

If two computers were exchanging Person objects via Remoting, deserialization would go
wrong unless they both updated to Version 2 at exactly the same time. The OptionalField
attribute gets around this problem:

[Serializable] public sealed class Person       // Version 2 Robust
{
  public string Name;
  [OptionalField (VersionAdded = 2)] public DateTime DateOfBirth;
}

This tells the deserializer not to panic if it sees no DateOfBirth in the data stream, and instead
to treat the missing field as nonserialized. This means you end up with an empty DateTime (you
can assign a different value in an [OnDeserializing] method).
The VersionAdded argument is an integer that you increment each time you augment a type’s
fields. This serves as documentation, and it has no effect on serialization semantics.

WARNING
If versioning robustness is important, avoid renaming and deleting fields and avoid
retrospectively adding the NonSerialized attribute. Never change a field’s type.

So far we’ve focused on the backward-compatibility problem: the deserializer failing to find
an expected field in the serialization stream. But with two-way communication, a forward-
compatibility problem can also arise whereby the deserializer encounters an extraneous field
with no knowledge of how to process it. The binary formatter is programmed to automatically
cope with this by throwing away the extraneous data; the SOAP formatter instead throws an
exception! Hence, you must use the binary formatter if two-way versioning robustness is
required; otherwise, manually control the serialization by implementing ISerializable.

Binary Serialization with ISerializable
Implementing ISerializable gives a type complete control over its binary serialization and
deserialization.
Here’s the ISerializable interface definition:

public interface ISerializable
{
  void GetObjectData (SerializationInfo info, StreamingContext context);
}



GetObjectData fires upon serialization; its job is to populate the Serialization Info object
(a name-value dictionary) with data from all fields that you want serialized. Here’s how we
would write a GetObjectData method that serializes two fields, called Name and
DateOfBirth:

 public virtual void GetObjectData (SerializationInfo info,
                                     StreamingContext context)
  {
    info.AddValue ("Name", Name);
    info.AddValue ("DateOfBirth", DateOfBirth);
  }

In this example, we’ve chosen to name each item according to its corresponding field. This is
not required; any name can be used, as long as the same name is used upon deserialization. The
values themselves can be of any serializable type; the Framework will recursively serialize as
necessary. It’s legal to store null values in the dictionary.

NOTE
It’s a good idea to make the GetObjectData method virtual — unless your class is sealed.
This allows subclasses to extend serialization without having to reimplement the interface.

SerializationInfo also contains properties that you can use to control the type and assembly
that the instance should deserialize as. The StreamingContext parameter is a structure that
contains, among other things, an enumeration value indicating where the serialized instance is
heading (disk, Remoting, etc., although this value is not always populated).
In addition to implementing ISerializable, a type controlling its own serialization needs to
provide a deserialization constructor that takes the same two parameters as GetObjectData.
The constructor can be declared with any accessibility and the runtime will still find it.
Typically, though, you would declare it protected so that subclasses can call it.
In the following example, we implement ISerializable in the Team class. When it comes to
handling the List of players, we serialize the data as an array rather than a generic list, so as
to offer compatibility with the SOAP formatter:

[Serializable] public class Team : ISerializable
{
  public string Name;
  public List<Person> Players;

  public virtual void GetObjectData (SerializationInfo si,
                                     StreamingContext sc)
  {
    si.AddValue ("Name", Name);
    si.AddValue ("PlayerData", Players.ToArray());
  }

  public Team() {}

  protected Team (SerializationInfo si, StreamingContext sc)
  {
    Name = si.GetString ("Name");

    // Deserialize Players to an array to match our serialization:
    Person[] a = (Person[]) si.GetValue ("PlayerData", typeof (Person[]));

    // Construct a new List using this array:



    Players = new List<Person> (a);
  }
}

For commonly used types, the SerializationInfo class has typed “Get” methods such as
GetString, in order to make writing deserialization constructors easier. If you specify a name
for which no data exists, an exception is thrown. This happens most often when there’s a
version mismatch between the code doing the serialization and deserialization. You’ve added
an extra field, for instance, and then forgotten about the implications of deserializing an old
instance. To work around this problem, you can either:

Add exception handling around code that retrieves a data member added in a later version.

Implement your own version numbering system. For example:

public string MyNewField;

public virtual void GetObjectData (SerializationInfo si,
                                     StreamingContext sc)
{
  si.AddValue ("_version", 2);
  si.AddValue ("MyNewField", MyNewField);
  ...
}

protected Team (SerializationInfo si, StreamingContext sc)
{
  int version = si.GetInt32 ("_version");
  if (version >= 2) MyNewField = si.GetString ("MyNewField");
  ...
}

Subclassing Serializable Classes
In the preceding examples, we sealed the classes that relied on attributes for serialization. To
see why, consider the following class hierarchy:

[Serializable] public class Person
{
  public string Name;
  public int Age;
}

[Serializable] public sealed class Student : Person
{
  public string Course;
}

In this example, both Person and Student are serializable, and both classes use the default
runtime serialization behavior since neither class implements ISerializable.
Now imagine that the developer of Person decides for some reason to implement
ISerializable and provide a deserialization constructor to control Person serialization. The
new version of Person might look like this:

[Serializable] public class Person : ISerializable
{
  public string Name;
  public int Age;

  public virtual void GetObjectData (SerializationInfo si,
                                     StreamingContext sc)



  {
    si.AddValue ("Name", Name);
    si.AddValue ("Age", Age);
  }

  protected Person (SerializationInfo si, StreamingContext sc)
  {
    Name = si.GetString ("Name");
    Age = si.GetInt32 ("Age");
  }

  public Person() {}
}

Although this works for instances of Person, this change breaks serialization of Student
instances. Serializing a Student instance would appear to succeed, but the Course field in the
Student type isn’t saved to the stream because the implementation of
ISerializable.GetObjectData on Person has no knowledge of the members of the
Student-derived type. Additionally, deserialization of Student instances throws an exception
since the runtime is looking (unsuccessfully) for a deserialization constructor on Student.
The solution to this problem is to implement ISerializable from the outset for serializable
classes that are public and nonsealed. (With internal classes, it’s not so important because
you can easily modify the subclasses later if required.)
If we started out by writing Person as in the preceding example, Student would then be
written as follows:

[Serializable]
public class Student : Person
{
  public string Course;

  public override void GetObjectData (SerializationInfo si,
                                      StreamingContext sc)
  {
    base.GetObjectData (si, sc);
    si.AddValue ("Course", Course);
  }

  protected Student (SerializationInfo si, StreamingContext sc)
    : base (si, sc)
  {
    Course = si.GetString ("Course");
  }

  public Student() {}
}

XML Serialization
The Framework provides a dedicated XML serialization engine called XmlSerializer in the
System.Xml.Serialization namespace. It’s suitable for serializing .NET types to XML files
and is also used implicitly by ASMX Web Services.
As with the binary engine, there are two approaches you can take:

Sprinkle attributes throughout your types (defined in System.Xml.Serialization).

Implement IXmlSerializable.

Unlike with the binary engine, however, implementing the interface (i.e., IXmlSerializable)



eschews the engine completely, leaving you to code the serialization yourself with XmlReader
and XmlWriter.

Getting Started with Attribute-Based Serialization
To use XmlSerializer, you instantiate it and call Serialize or Deserialize with a Stream
and object instance. To illustrate, suppose we define the following class:

public class Person
{
  public string Name;
  public int Age;
}

The following saves a Person to an XML file, and then restores it:

Person p = new Person();
p.Name = "Stacey"; p.Age = 30;

XmlSerializer xs = new XmlSerializer (typeof (Person));

using (Stream s = File.Create ("person.xml"))
  xs.Serialize (s, p);

Person p2;
using (Stream s = File.OpenRead ("person.xml"))
  p2 = (Person) xs.Deserialize (s);

Console.WriteLine (p2.Name + " " + p2.Age);   // Stacey 30

Serialize and Deserialize can work with a Stream, XmlWriter/XmlReader, or
TextWriter/TextReader. Here’s the resultant XML:

<?xml version="1.0"?>
<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <Name>Stacey</Name>
  <Age>30</Age>
</Person>

XmlSerializer can serialize types without any attributes — such as our Person type. By
default, it serializes all public fields and properties on a type. You can exclude members you
don’t want serialized with the XmlIgnore attribute:

public class Person
{
  ...
  [XmlIgnore] public DateTime DateOfBirth;
}

Unlike the other two engines, XmlSerializer does not recognize the [OnDeserializing]
attribute and relies instead on a parameterless constructor for deserialization, throwing an
exception if one is not present. (In our example, Person has an implicit parameterless
constructor.) This also means field initializers execute prior to deserialization:

public class Person
{
  public bool Valid = true;    // Executes before deserialization
}



Although XmlSerializer can serialize almost any type, it recognizes the following types and
treats them specially:

The primitive types, DateTime, TimeSpan, Guid, and nullable versions

byte[] (which is converted to base 64)

An XmlAttribute or XmlElement (whose contents are injected into the stream)

Any type implementing IXmlSerializable

Any collection type

The deserializer is version tolerant: it doesn’t complain if elements or attributes are missing or
if superfluous data is present.

Attributes, names, and namespaces
By default, fields and properties serialize to an XML element. You can request an XML
attribute be used instead as follows:

[XmlAttribute] public int Age;

You can control an element or attribute’s name as follows:

public class Person
{
  [XmlElement ("FirstName")] public string Name;
  [XmlAttribute ("RoughAge")] public int Age;
}

Here’s the result:

<Person RoughAge="30" ...>
  <FirstName>Stacey</FirstName>
</Person>

The default XML namespace is blank (unlike the data contract serializer, which uses the type’s
namespace). To specify an XML namespace, [XmlElement] and [XmlAttribute] both accept
a Namespace argument. You can also assign a name and namespace to the type itself with
[XmlRoot]:

[XmlRoot ("Candidate", Namespace = "http://mynamespace/test/")]
public class Person { ... }

This names the person element “Candidate” as well as assigning a namespace to this element
and its children.

XML element order
XmlSerializer writes elements in the order that they’re defined in the class. You can change
this by specifying an Order in the XmlElement attribute:

public class Person
{
  [XmlElement (Order = 2)] public string Name;



  [XmlElement (Order = 1)] public int Age;
}

If you use Order at all, you must use it throughout.
The deserializer is not fussy about the order of elements — they can appear in any sequence
and the type will properly deserialize.

Subclasses and Child Objects

Subclassing the root type
Suppose your root type has two subclasses as follows:

public class Person { public string Name; }

public class Student : Person { }
public class Teacher : Person { }

and you write a reusable method to serialize the root type:

public void SerializePerson (Person p, string path)
{
  XmlSerializer xs = new XmlSerializer (typeof (Person));
  using (Stream s = File.Create (path))
    xs.Serialize (s, p);
}

To make this method work with a Student or Teacher, you must inform XmlSerializer about
the subclasses. There are two ways to do this. The first is to register each subclass with the
XmlInclude attribute:

[XmlInclude (typeof (Student))]
[XmlInclude (typeof (Teacher))]
public class Person { public string Name; }

The second is to specify each of the subtypes when constructing XmlSerializer:

XmlSerializer xs = new XmlSerializer (typeof (Person),
                     new Type[] { typeof (Student), typeof (Teacher) } );

In either case, the serializer responds by recording the subtype in the type attribute (just like
with the data contract serializer):

<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:type="Student">
  <Name>Stacey</Name>
</Person>

This deserializer then knows from this attribute to instantiate a Student and not a Person.

NOTE
You can control the name that appears in the XML type attribute by applying [XmlType] to
the subclass:



[XmlType ("Candidate")]
public class Student : Person { }

Here’s the result:

<Person xmlns:xsi="..."
        xsi:type="Candidate">

Serializing child objects
XmlSerializer automatically recurses object references such as the HomeAddress field in
Person:

public class Person
{
  public string Name;
  public Address HomeAddress = new Address();
}

public class Address { public string Street, PostCode; }

To demonstrate:

Person p = new Person(); p.Name = "Stacey";
p.HomeAddress.Street = "Odo St";
p.HomeAddress.PostCode = "6020";

Here’s the XML to which this serializes:

<Person ... >
  <Name>Stacey</Name>
  <HomeAddress>
    <Street>Odo St</Street>
    <PostCode>6020</PostCode>
  </HomeAddress>
</Person>

WARNING
If you have two fields or properties that refer to the same object, that object is serialized
twice. If you need to preserve referential equality, you must use another serialization engine.

Subclassing child objects
Suppose you need to serialize a Person that can reference subclasses of Address as follows:

public class Address { public string Street, PostCode; }
public class USAddress : Address {  }
public class AUAddress : Address {  }

public class Person
{
  public string Name;
  public Address HomeAddress = new USAddress();
}



There are two distinct ways to proceed, depending on how you want the XML structured. If you
want the element name always to match the field or property name with the subtype recorded in
a type attribute:

<Person ...>
  ...
  <HomeAddress xsi:type="USAddress">
    ...
  </HomeAddress>
</Person>

you use [XmlInclude] to register each of the subclasses with Address as follows:

[XmlInclude (typeof (AUAddress))]
[XmlInclude (typeof (USAddress))]
public class Address
{
  public string Street, PostCode;
}

If, on the other hand, you want the element name to reflect the name of the subtype, to the
following effect:

<Person ...>
  ...
  <USAddress>
    ...
  </USAddress>
</Person>

you instead stack multiple [XmlElement] attributes onto the field or property in the parent
type:

public class Person
{
  public string Name;

  [XmlElement ("Address", typeof (Address))]
  [XmlElement ("AUAddress", typeof (AUAddress))]
  [XmlElement ("USAddress", typeof (USAddress))]
  public Address HomeAddress = new USAddress();
}

Each XmlElement maps an element name to a type. If you take this approach, you don’t require
the [XmlInclude] attributes on the Address type (although their presence doesn’t break
serialization).

NOTE
If you omit the element name in [XmlElement] (and specify just a type), the type’s default
name is used (which is influenced by [XmlType] but not [XmlRoot]).

Serializing Collections
XmlSerializer recognizes and serializes concrete collection types without intervention:



public class Person
{
  public string Name;
  public List<Address> Addresses = new List<Address>();
}

public class Address { public string Street, PostCode; }

Here’s the XML to which this serializes:

<Person ... >
  <Name>...</Name>
  <Addresses>
    <Address>
      <Street>...</Street>
      <Postcode>...</Postcode>
    </Address>
    <Address>
      <Street>...</Street>
      <Postcode>...</Postcode>
    </Address>
    ...
  </Addresses>
</Person>

The [XmlArray] attribute lets you rename the outer element (i.e., Addresses).
The [XmlArrayItem] attribute lets you rename the inner elements (i.e., the Address
elements).
For instance, the following class:

public class Person
{
  public string Name;

  [XmlArray ("PreviousAddresses")]
  [XmlArrayItem ("Location")]
  public List<Address> Addresses = new List<Address>();
}

serializes to this:

<Person ... >
  <Name>...</Name>
  <PreviousAddresses>
    <Location>
      <Street>...</Street>
      <Postcode>...</Postcode>
    </Location>
    <Location>
      <Street>...</Street>
      <Postcode>...</Postcode>
    </Location>
    ...
  </PreviousAddresses>
</Person>

The XmlArray and XmlArrayItem attributes also allow you to specify XML namespaces.
To serialize collections without the outer element, for example:

<Person ... >
  <Name>...</Name>
  <Address>



    <Street>...</Street>
    <Postcode>...</Postcode>
  </Address>
  <Address>
    <Street>...</Street>
    <Postcode>...</Postcode>
  </Address>
</Person>

instead add [XmlElement] to the collection field or property:

public class Person
{
  ...
  [XmlElement ("Address")]
  public List<Address> Addresses = new List<Address>();
}

Working with subclassed collection elements
The rules for subclassing collection elements follow naturally from the other subclassing rules.
To encode subclassed elements with the type attribute, for example:

<Person ... >
  <Name>...</Name>
  <Addresses>
    <Address xsi:type="AUAddress">
    ...

add [XmlInclude] attributes to the base (Address) type as we did before. This works
whether or not you suppress serialization of the outer element.
If you want subclassed elements to be named according to their type, for example:

<Person ... >
  <Name>...</Name>
  <! — start of optional outer element — >
  <AUAddress>
    <Street>...</Street>
    <Postcode>...</Postcode>
  </AUAddress>
  <USAddress>
    <Street>...</Street>
    <Postcode>...</Postcode>
  </USAddress>
  <! — end of optional outer element — >
</Person>

you must stack multiple [XmlArrayItem] or [XmlElement] attributes onto the collection field
or property.
Stack multiple [XmlArrayItem] attributes if you want to include the outer collection element:

[XmlArrayItem ("Address",   typeof (Address))]
[XmlArrayItem ("AUAddress", typeof (AUAddress))]
[XmlArrayItem ("USAddress", typeof (USAddress))]
public List<Address> Addresses = new List<Address>();

Stack multiple [XmlElement] attributes if you want to exclude the outer collection element:

[XmlElement ("Address",   typeof (Address))]
[XmlElement ("AUAddress", typeof (AUAddress))]
[XmlElement ("USAddress", typeof (USAddress))]



public List<Address> Addresses = new List<Address>();

IXmlSerializable
Although attribute-based XML serialization is flexible, it has limitations. For instance, you
cannot add serialization hooks — nor can you serialize nonpublic members. It’s also awkward
to use if the XML might present the same element or attribute in a number of different ways.
On that last issue, you can push the boundaries somewhat by passing an
XmlAttributeOverrides object into XmlSerializer’s constructor. There comes a point,
however, when it’s easier to take an imperative approach. This is the job of
IXmlSerializable:

public interface IXmlSerializable
{
  XmlSchema GetSchema();
  void ReadXml (XmlReader reader);
  void WriteXml (XmlWriter writer);
}

Implementing this interface gives you total control over the XML that’s read or written.

NOTE
A collection class that implements IXmlSerializable bypasses XmlSerializer’s rules for
serializing collections. This can be useful if you need to serialize a collection with a payload
— in other words, additional fields or properties that would otherwise be ignored.

The rules for implementing IXmlSerializable are as follows:
ReadXml should read the outer start element, then the content, and then the outer end
element.

WriteXml should write just the content.

For example:

using System;
using System.Xml;
using System.Xml.Schema;
using System.Xml.Serialization;

public class Address : IXmlSerializable
{
  public string Street, PostCode;

  public XmlSchema GetSchema() { return null; }

  public void ReadXml(XmlReader reader)
  {
    reader.ReadStartElement();
    Street   = reader.ReadElementContentAsString ("Street", "");
    PostCode = reader.ReadElementContentAsString ("PostCode", "");
    reader.ReadEndElement();
  }

  public void WriteXml (XmlWriter writer)
  {
    writer.WriteElementString ("Street", Street);



    writer.WriteElementString ("PostCode", PostCode);
  }
}

Serializing and deserializing an instance of Address via XmlSerializer automatically calls
the WriteXml and ReadXml methods. Further, if Person was defined as follows:

public class Person
{
  public string Name;
  public Address HomeAddress;
}

IXmlSerializable would be called upon selectively to serialize the HomeAddress field.
We describe XmlReader and XmlWriter at length in the first section of Chapter 11. Also in
Chapter 11, in “Patterns for Using XmlReader/XmlWriter”, we provide examples of
IXmlSerializable-ready classes.



Chapter 18. Assemblies

An assembly is the basic unit of deployment in .NET and is also the container for all types. An
assembly contains compiled types with their IL (Intermediate Language) code, runtime
resources, and information to assist with versioning, security, and referencing other assemblies.
An assembly also defines a boundary for type resolution and security permissioning. In general,
an assembly comprises a single Windows Portable Executable (PE) file — with an .exe
extension in the case of an application, or a .dll extension in the case of a reusable library. A
WinRT library has a .winmd extension and is similar to a .dll, except that it contains only
metadata and no IL code.
Most of the types in this chapter come from the following namespaces:

System.Reflection
System.Resources
System.Globalization

What’s in an Assembly
An assembly contains four kinds of things:

An assembly manifest
Provides information to the .NET runtime, such as the assembly’s name, version,
requested permissions, and other assemblies that it references.

An application manifest
Provides information to the operating system, such as how the assembly should be
deployed and whether administrative elevation is required.

Compiled types
The compiled IL code and metadata of the types defined within the assembly.

Resources
Other data embedded within the assembly, such as images and localizable text.

Of these, only the assembly manifest is mandatory, although an assembly nearly always
contains compiled types (unless it’s a WinRT reference assembly).
Assemblies are structured similarly whether they’re executables or libraries. The main
difference with an executable is that it defines an entry point.

The Assembly Manifest
The assembly manifest serves two purposes:

It describes the assembly to the managed hosting environment.

It acts as a directory to the modules, types, and resources in the assembly.

Assemblies are hence self-describing. A consumer can discover all of an assembly’s data,
types, and functions — without needing additional files.



NOTE
An assembly manifest is not something you add explicitly to an assembly — it’s automatically
embedded into an assembly as part of compilation.

Here’s a summary of the functionally significant data stored in the manifest:
The simple name of the assembly

A version number (AssemblyVersion)

A public key and signed hash of the assembly, if strongly named

A list of referenced assemblies, including their version and public key

A list of modules that comprise the assembly

A list of types defined in the assembly and the module containing each type

An optional set of security permissions requested or refused by the assembly
(SecurityPermission)

The culture it targets, if a satellite assembly (AssemblyCulture)

The manifest can also store the following informational data:
A full title and description (AssemblyTitle and AssemblyDescription)

Company and copyright information (AssemblyCompany and AssemblyCopyright)

A display version (AssemblyInformationalVersion)

Additional attributes for custom data

Some of this data is derived from arguments given to the compiler, such as the list of
referenced assemblies or the public key with which to sign the assembly. The rest comes from
assembly attributes, indicated in parentheses.

NOTE
You can view the contents of an assembly’s manifest with the .NET tool ildasm.exe. In
Chapter 19, we describe how to use reflection to do the same programmatically.

Specifying assembly attributes
You can control much of the manifest’s content with assembly attributes. For example:

[assembly: AssemblyCopyright ("\x00a9 Corp Ltd. All rights reserved.")]
[assembly: AssemblyVersion ("2.3.2.1")]

These declarations are usually all defined in one file in your project. Visual Studio



automatically creates a file called AssemblyInfo.cs in the Properties folder with every new C#
project for this purpose, prepopulated with a default set of assembly attributes that provide a
starting point for further customization.

The Application Manifest
An application manifest is an XML file that communicates information about the assembly to
the operating system. An application manifest, if present, is read and processed before the
.NET-managed hosting environment loads the assembly — and can influence how the operating
system launches an application’s process.
A .NET application manifest has a root element called assembly in the XML namespace
urn:schemas-microsoft-com:asm.v1:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
  <!-- contents of manifest -->
</assembly>

The following manifest instructs the OS to request administrative elevation:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
  <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
    <security>
      <requestedPrivileges>
        <requestedExecutionLevel level="requireAdministrator" />
      </requestedPrivileges>
    </security>
  </trustInfo>
</assembly>

We describe the consequences of requesting administrative elevation in Chapter 21.
UWP applications have a far more elaborate manifest, described in the Package.appxmanifest
file. This includes a declaration of the program’s capabilities, which determine permissions
granted by the operating system. The easiest way to edit this file is with Visual Studio, which
presents a UI when you double-click the manifest file.

Deploying a .NET application manifest
You can deploy a .NET application manifest in two ways:

As a specially named file located in the same folder as the assembly

Embedded within the assembly itself

As a separate file, its name must match that of the assembly’s, plus .manifest. So, if an
assembly was named MyApp.exe, its manifest would be named MyApp.exe.manifest.
To embed an application manifest file into an assembly, first build the assembly and then call
the .NET mt tool as follows:

mt -manifest MyApp.exe.manifest -outputresource:MyApp.exe;#1

NOTE



The .NET tool ildasm.exe is blind to the presence of an embedded application manifest.
Visual Studio, however, indicates whether an embedded application manifest is present if you
double-click the assembly in Solution Explorer.

Modules
The contents of an assembly are actually packaged within one or more intermediate containers,
called modules. A module corresponds to a file containing the contents of an assembly. The
reason for this extra layer of containership is to allow an assembly to span multiple files — a
feature that’s useful when building an assembly containing code compiled in a mixture of
programming languages.
Figure 18-1 shows the normal case of an assembly with a single module. Figure 18-2 shows a
multifile assembly. In a multifile assembly, the “main” module always contains the manifest;
additional modules can contain IL and/or resources. The manifest describes the relative
location of all the other modules that make up the assembly.

Figure 18-1. Single-file assembly

Multifile assemblies have to be compiled from the command line: there’s no support in Visual
Studio. To do this, you invoke the csc compiler with the /t switch to create each module, and
then link them with the assembly linker tool, al.exe.
Although the need for multifile assemblies is rare, at times you need to be aware of the extra
level of containership that modules impose — even when dealing just with single-module
assemblies. The main scenario is with reflection (see “Reflecting Assemblies” and “Emitting
Assemblies and Types” in Chapter 19).

The Assembly Class
The Assembly class in System.Reflection is a gateway to accessing assembly metadata at
runtime. There are a number of ways to obtain an assembly object; the simplest is via a Type’s
Assembly property:

Assembly a = typeof (Program).Assembly;

or, in UWP applications:



Assembly a = typeof (Program).GetTypeInfo().Assembly;

Figure 18-2. Multifile assembly

In desktop apps, you can also obtain an Assembly object by calling one of Assembly’s static
methods:

GetExecutingAssembly

Returns the assembly of the type that defines the currently executing function

GetCallingAssembly

Does the same as GetExecutingAssembly, but for the function that called the currently
executing function

GetEntryAssembly

Returns the assembly defining the application’s original entry method
Once you have an Assembly object, you can use its properties and methods to query the
assembly’s metadata and reflect upon its types. Table 18-1 shows a summary of these functions.

Table 18-1. Assembly members

Functions Purpose See the section...

FullName, GetName Returns the fully qualified name or an AssemblyName
object

“Assembly Names”

CodeBase, Location Location of the assembly file “Resolving and Loading Assemblies”

Load, LoadFrom,
LoadFile

Manually loads an assembly into the current
application domain

“Resolving and Loading Assemblies”



GlobalAssemblyCache Indicates whether the assembly is in the GAC “The Global Assembly Cache”

GetSatelliteAssembly Locates the satellite assembly of a given culture “Resources and Satellite Assemblies”

GetType, GetTypes Returns a type, or all types, defined in the assembly “Reflecting and Activating Types” in
Chapter 19

EntryPoint Returns the application’s entry method, as a
MethodInfo

“Reflecting and Invoking Members” in
Chapter 19

GetModules,
ManifestModule

Returns all modules, or the main module, of an
assembly

“Reflecting Assemblies” in Chapter 19

GetCustomAttributes Returns the assembly’s attributes “Working with Attributes” in Chapter 19

Strong Names and Assembly Signing
A strongly named assembly has a unique and untamperable identity. It works by adding two
bits of metadata to the manifest:

A unique number that belongs to the authors of the assembly

A signed hash of the assembly, proving that the unique number holder produced the
assembly

This requires a public/private key pair. The public key provides the unique identifying number,
and the private key facilitates signing.

NOTE
Strong-name-signing is not the same as Authenticode-signing. We cover Authenticode later in
this chapter.

The public key is valuable in guaranteeing the uniqueness of assembly references: a strongly
named assembly incorporates the public key into its identity. The signature is valuable for
security — it prevents a malicious party from tampering with your assembly. Without your
private key, no one can release a modified version of the assembly without the signature
breaking (causing an error when loaded). Of course, someone could re-sign the assembly with
a different key pair — but this would give the assembly a different identity. Any application
referencing the original assembly would shun the imposter because public key tokens are
written into references.

WARNING
Adding a strong name to a previously “weak” named assembly changes its identity. For this
reason, it pays to give production assemblies strong names from the outset.

A strongly named assembly can also be registered in the GAC.

How to Strongly Name an Assembly
To give an assembly a strong name, first generate a public/private key pair with the sn.exe



utility:

sn.exe -k MyKeyPair.snk

This manufactures a new key pair and stores it to a file called MyKeyPair.snk. If you
subsequently lose this file, you will permanently lose the ability to recompile your assembly
with the same identity.
You then compile with the /keyfile switch:

csc.exe /keyfile:MyKeyPair.snk Program.cs

Visual Studio assists you with both steps in the Project Properties window.

WARNING
A strongly named assembly cannot reference a weakly named assembly. This is another
compelling reason to strongly name all your production assemblies.

The same key pair can sign multiple assemblies — they’ll still have distinct identities if their
simple names differ. The choice as to how many key pair files to use within an organization
depends on a number of factors. Having a separate key pair for every assembly is advantageous
should you later transfer ownership of a particular application (along with its referenced
assemblies), in terms of minimum disclosure. But it makes it harder for you to create a security
policy that recognizes all of your assemblies. It also makes it harder to validate dynamically
loaded assemblies.

NOTE
Prior to C# 2.0, the compiler did not support the /keyfile switch and you would specify a
key file with the AssemblyKeyFile attribute instead. This presented a security risk, because
the path to the key file would remain embedded in the assembly’s metadata. For instance,
with ildasm, you can see quite easily that the path to the key file used to sign mscorlib in
CLR 1.1 was as follows:

F:\qfe\Tools\devdiv\EcmaPublicKey.snk

Obviously, you need access to that folder on Microsoft’s .NET Framework build machine to
take advantage of that information!

Delay Signing
In an organization with hundreds of developers, you might want to restrict access to the key
pairs used for signing assemblies, for a couple of reasons:

If a key pair gets leaked, your assemblies are no longer untamperable.

A test assembly, if signed and leaked, could be maliciously propagated as the real assembly.

Withholding key pairs from developers, though, means they cannot compile and test assemblies



with their correct identity. Delay signing is a system for working around this problem.
A delay-signed assembly is flagged with the correct public key, but not signed with the private
key. A delay-signed assembly is equivalent to a tampered assembly and would normally be
rejected by the CLR. The developer, however, instructs the CLR to bypass validation for the
delay-sign assemblies on that computer, allowing the unsigned assemblies to run. When it
comes time for final deployment, the private key holder re-signs the assembly with the real key
pair.
To delay-sign, you need a file containing just the public key. You can extract this from a key
pair by calling sn with the -p switch:

sn -k KeyPair.snk
sn -p KeyPair.snk PublicKeyOnly.pk

KeyPair.snk is kept secure and PublicKeyOnly.pk is freely distributed.

NOTE
You can also obtain PublicKeyOnly.pk from an existing signed assembly with the -e switch:

sn -e YourLibrary.dll PublicKeyOnly.pk

You then delay-sign with PublicKeyOnly.pk by calling csc with the /delaysign+ switch:

csc /delaysign+ /keyfile: PublicKeyOnly.pk /target:library YourLibrary.cs

Visual Studio does the same if you tick the “Delay sign” checkbox in Project Properties.
The next step is to instruct the .NET runtime to skip assembly identity verification on the
development computers running the delay-signed assemblies. This can be done on either a per-
assembly or a per-public key basis, by calling the sn tool with the Vr switch:

sn -Vr YourLibrary.dll

WARNING
Visual Studio does not perform this step automatically. You must disable assembly
verification manually from the command line. Otherwise, your assembly will not execute.

The final step is to fully sign the assembly prior to deployment. This is when you replace the
null signature with a real signature that can be generated only with access to the private key. To
do this, you call sn with the R switch:

sn -R YourLibrary.dll KeyPair.snk

You can then reinstate assembly verification on development machines as follows:

sn -Vu YourLibrary.dll



You won’t need to recompile any applications that reference the delay-signed assembly,
because you’ve changed only the assembly’s signature, not its identity.

Assembly Names
An assembly’s “identity” comprises four pieces of metadata from its manifest:

Its simple name

Its version (“0.0.0.0” if not present)

Its culture (“neutral” if not a satellite)

Its public key token (“null” if not strongly named)

The simple name comes not from any attribute, but from the name of the file to which it was
originally compiled (less any extension). So, the simple name of the System.Xml.dll assembly
is “System.Xml.” Renaming a file doesn’t change the assembly’s simple name.
The version number comes from the AssemblyVersion attribute. It’s a string divided into four
parts as follows:

major.minor.build.revision

You can specify a version number as follows:

[assembly: AssemblyVersion ("2.5.6.7")]

The culture comes from the AssemblyCulture attribute and applies to satellite assemblies,
described later in the section “Resources and Satellite Assemblies”.
The public key token comes from a key pair supplied at compile time via the /keyfile switch,
as we saw earlier, in the section “How to Strongly Name an Assembly”.

Fully Qualified Names
A fully qualified assembly name is a string that includes all four identifying components, in this
format:

simple-name, Version=version, Culture=culture, PublicKeyToken=public-key

For example, the fully qualified name of System.Xml.dll is:

"System.Xml, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"

If the assembly has no AssemblyVersion attribute, the version appears as “0.0.0.0”. If it is
unsigned, its public key token appears as “null”.
An Assembly object’s FullName property returns its fully qualified name. The compiler
always uses fully qualified names when recording assembly references in the manifest.



NOTE
A fully qualified assembly name does not include a directory path to assist in locating it on
disk. Locating an assembly residing in another directory is an entirely separate matter that we
pick up in “Resolving and Loading Assemblies”.

The AssemblyName Class
AssemblyName is a class with a typed property for each of the four components of a fully
qualified assembly name. AssemblyName has two purposes:

It parses or builds a fully qualified assembly name.

It stores some extra data to assist in resolving (finding) the assembly.

You can obtain an AssemblyName object in any of the following ways:
Instantiate an AssemblyName, providing a fully qualified name.

Call GetName on an existing Assembly.

Call AssemblyName.GetAssemblyName, providing the path to an assembly file on disk
(desktop apps only).

You can also instantiate an AssemblyName object without any arguments, and then set each of
its properties to build a fully qualified name. An AssemblyName is mutable when constructed
in this manner.
Here are its essential properties and methods:

string      FullName    { get; }            // Fully qualified name
string      Name        { get; set; }       // Simple name
Version     Version     { get; set; }       // Assembly version
CultureInfo CultureInfo { get; set; }       // For satellite assemblies
string      CodeBase    { get; set; }       // Location

byte[]      GetPublicKey();                 // 160 bytes
void        SetPublicKey (byte[] key);
byte[]      GetPublicKeyToken();            // 8-byte version
void        SetPublicKeyToken (byte[] publicKeyToken);

Version is itself a strongly typed representation, with properties for Major, Minor, Build,
and Revision numbers. GetPublicKey returns the full cryptographic public key;
GetPublicKeyToken returns the last eight bytes used in establishing identity.
To use AssemblyName to obtain the simple name of an assembly:

Console.WriteLine (typeof (string).Assembly.GetName().Name);  // mscorlib

To get an assembly version:

string v = myAssembly.GetName().Version.ToString();

We’ll examine the CodeBase property in the later section “Resolving and Loading
Assemblies”.



Assembly Informational and File Versions
Because an integral part of an assembly name is its version, changing the AssemblyVersion
attribute changes the assembly’s identity. This affects compatibility with referencing
assemblies, which can be undesirable when making nonbreaking updates. To address this, there
are two other independent assembly-level attributes for expressing version-related information,
both of which are ignored by the CLR:

AssemblyInformationalVersion

The version as displayed to the end user. This is visible in the Windows File Properties
dialog box as “Product Version.” Any string can go here, such as “5.1 Beta 2.” Typically,
all the assemblies in an application would be assigned the same informational version
number.

AssemblyFileVersion

This is intended to refer to the build number for that assembly. This is visible in the
Windows File Properties dialog box as “File Version.” As with AssemblyVersion, it
must contain a string consisting of up to four numbers separated by periods.

Authenticode Signing
Authenticode is a code-signing system whose purpose is to prove the identity of the publisher.
Authenticode and strong-name signing are independent: you can sign an assembly with either
or both systems.
While strong-name signing can prove that assemblies A, B, and C came from the same party
(assuming the private key hasn’t been leaked), it can’t tell you who that party was. In order to
know that the party was Joe Albahari — or Microsoft Corporation — you need Authenticode.
Authenticode is useful when downloading programs from the Internet, because it provides
assurance that a program came from whoever was named by the Certificate Authority and was
not modified in transit. It also prevents the “Unknown Publisher” warning shown in Figure 18-
3, when running a downloaded application for the first time. Authenticode signing is also a
requirement when submitting apps to the Windows Store, and for assemblies in general as part
of the Windows Logo program.



Figure 18-3. Unsigned file warning

Authenticode works with not only .NET assemblies, but also unmanaged executables and
binaries such as ActiveX controls or .msi deployment files. Of course, Authenticode doesn’t
guarantee that a program is free from malware — although it does make it less likely. A person
or entity has been willing to put its name (backed by a passport or company document) behind
the executable or library.

NOTE
The CLR does not treat an Authenticode signature as part of an assembly’s identity.
However, it can read and validate Authenticode signatures on demand, as we’ll see soon.

Signing with Authenticode requires that you contact a Certificate Authority (CA) with
evidence of your personal identity or company’s identity (articles of incorporation, etc.). Once
the CA has checked your documents, it will issue an X.509 code-signing certificate that is
typically valid for one to five years. This enables you to sign assemblies with the signtool
utility. You can also make a certificate yourself with the makecert utility, however it will be
recognized only on computers on which the certificate is explicitly installed.
The fact that (non–self-signed) certificates can work on any computer relies on public key
infrastructure. Essentially, your certificate is signed with another certificate belonging to a CA.
The CA is trusted because all CAs are loaded into the operating system (to see them, go to the
Windows Control Panel and choose Internet Options→Content tab→Certificates
button→Trusted Root Certification Authorities tab). A CA can revoke a publisher’s certificate



if leaked, so verifying an Authenticode signature requires periodically asking the CA for an up-
to-date list of certification revocations.
Because Authenticode uses cryptographic signing, an Authenticode signature is invalid if
someone subsequently tampers with the file. We discuss cryptography, hashing, and signing in
Chapter 21.

How to Sign with Authenticode

Obtaining and installing a certificate
The first step is to obtain a code-signing certificate from a CA (see sidebar). You can then
either work with the certificate as a password-protected file, or load the certificate into the
computer’s certificate store. The benefit of doing the latter is that you can sign without needing
to specify a password. This is advantageous because it avoids having a password visible in
automated build scripts or batch files.

WHERE TO GET A CODE-SIGNING CERTIFICATE
Just a handful of code-signing CAs are preloaded into Windows as root certification authorities.
These include (with prices for one-year code-signing certificates at the time of publication): Comodo
($180), Go Daddy ($249), GlobalSign ($400), DigiCert ($223), thawte ($299), and Symantic
($499).
There is also a reseller called Ksoftware (http://www.ksoftware.net), which currently offers Comodo
code-signing certificates for $84 per year.
The Authenticode certificates issued by Ksoftware, Comodo, Go Daddy, and GlobalSign are
advertised as less restrictive in that they will also sign non-Microsoft programs. Aside from this, the
products from all vendors are functionally equivalent.
Note that a certificate for SSL cannot generally be used for Authenticode signing (despite using the
same X.509 infrastructure). This is, in part, because a certificate for SSL is about proving
ownership of a domain; Authenticode is about proving who you are.

To load a certificate into the computer’s certificate store, go to the Windows Control Panel and
select Internet Options→Content tab→Certificates button→Import. Once the import is
complete, click the View button on the certificate, go to the Details tab, and copy the
certificate’s thumbprint. This is the SHA-1 hash that you’ll subsequently need to identity the
certificate when signing.

NOTE
If you also want to strong-name-sign your assembly (which is highly recommended), you
must do so before Authenticode signing. This is because the CLR knows about Authenticode
signing, but not vice versa. So if you strong-name-sign an assembly after Authenticode-
signing it, the latter will see the addition of the CLR’s strong name as an unauthorized
modification, and consider the assembly tampered.

Signing with signtool.exe
You can Authenticode-sign your programs with the signtool utility that comes with Visual
Studio. It displays a UI if you call it with the signwizard flag; otherwise, you can use it in

http://www.ksoftware.net/


command-line style as follows:

signtool sign /sha1 (thumbprint) filename

The thumbprint is that of the certificate as shown in the computer’s certificate store. (If the
certificate is in a file instead, specify the filename with /f, and the password with /p.)
For example:

signtool sign /sha1 ff813c473dc93aaca4bac681df472b037fa220b3 LINQPad.exe

You can also specify a description and product URL with /d and /du:

... /d LINQPad /du http://www.linqpad.net

In most cases, you will also want to specify a time-stamping server.

Time stamping
After your certificate expires, you’ll no longer be able to sign programs. However, programs
that you signed before its expiry will still be valid — if you specified a time-stamping server
with the /t switch when signing. The CA will provide you with a URI for this purpose; the
following is for Comodo (or Ksoftware):

... /t http://timestamp.comodoca.com/authenticode

Verifying that a program has been signed
The easiest way to view an Authenticode signature on a file is to view the file’s properties in
Windows Explorer (look in the Digital Signatures tab). The signtool utility also provides an
option for this.

Authenticode Validation
Both the operating system and the CLR may validate Authenticode signatures.
Windows validates Authenticode signatures before running programs marked as “blocked” —
in practice, this means programs run for the first time after having been downloaded from the
Internet. The status — or absence — of Authenticode information is then shown in the dialog
box we saw in Figure 18-3.
The CLR reads and validates Authenticode signatures when you ask for assembly evidence.
Here’s how to do that:

Publisher p = someAssembly.Evidence.GetHostEvidence<Publisher>();

The Publisher class (in System.Security.Policy) exposes a Certificate property. If this
returns a non-null value, it has been Authenticode-signed. You can then query this object for the
details of the certificate.

WARNING
Prior to Framework 4.0, the CLR would read and validate Authenticode signatures when an

http://www.linqpad.net
http://timestamp.comodoca.com/authenticode


assembly was loaded — rather than waiting until you called GetHostEvidence. This had
potentially disastrous performance consequences, because Authenticode validation may
round-trip to the CA to update the certificate revocation list — which can take up to 30
seconds (to fail) if there are Internet connectivity problems. For this reason, it’s best to avoid
Authenticode-signing .NET 3.5 or earlier assemblies if possible. (Signing .msi setup files,
though, is fine.)

Regardless of the Framework version, if a program has a bad or unverifiable Authenticode
signature, the CLR will merely make that information available via GetHostEvidence: it will
never display a warning to the user or prevent the assembly from running.
As we said previously, an Authenticode signature has no effect on an assembly’s identity or
name.

The Global Assembly Cache
As part of the .NET Framework installation, a central repository is created on the computer for
storing .NET assemblies, called the Global Assembly Cache, or GAC. The GAC contains a
centralized copy of the .NET Framework itself, and it can also be used to centralize your own
assemblies.
The main factor in choosing whether to load your assemblies into the GAC relates to
versioning. For assemblies in the GAC, versioning is centralized at the machine level and
controlled by the computer’s administrator. For assemblies outside the GAC, versioning is
handled on an application basis, so each application looks after its own dependency and update
issues (typically by maintaining its own copy of each assembly that it references).
The GAC is useful in the minority of cases where machine-centralized versioning is genuinely
advantageous. For example, consider a suite of interdependent plug-ins, each referencing some
shared assemblies. We’ll assume each plug-in is in its own directory, and for this reason,
there’s a possibility of there being multiple copies of a shared assembly (maybe some later
than others). Further, we’ll assume the hosting application will want to load each shared
assembly just once for the sake of efficiency and type compatibility. The task of assembly
resolution is now difficult for the hosting application, requiring careful planning and an
understanding of the subtleties of assembly loading contexts. The simple solution here is to put
the shared assemblies into the GAC. This ensures that the CLR always makes straightforward
and consistent assembly resolution choices.
In more typical scenarios, however, the GAC is best avoided because it adds the following
complications:

XCOPY or ClickOnce deployment is no longer possible; an administrative setup is required
to install your application.

Updating assemblies in the GAC also requires administrative privileges.

Use of the GAC can complicate development and testing, because fusion, the CLR’s
assembly resolution mechanism, always favors GAC assemblies over local copies.

Versioning and side-by-side execution require some planning, and a mistake may break
other applications.



On the positive side, the GAC can improve startup time for very large assemblies, because the
CLR verifies the signatures of assemblies in the GAC only once upon installation, rather than
every time the assembly loads. In percentage terms, this is relevant if you’ve generated native
images for your assemblies with the ngen.exe tool, choosing nonoverlapping base addresses. A
good article describing these issues is available online at the MSDN site, titled “To NGen or
Not to NGen?”

NOTE
Assemblies in the GAC are always fully trusted — even when called from an assembly
running in a limited-permissions sandbox. We discuss this further in Chapter 21.

How to Install Assemblies to the GAC
To install assemblies to the GAC, the first step is to give your assembly a strong name. Then
you can install it using the .NET command-line tool, gacutil:

gacutil /i MyAssembly.dll

If the assembly already exists in the GAC with the same public key and version, it’s updated.
You don’t have to uninstall the old one first.
To uninstall an assembly (note the lack of a file extension):

gacutil /u MyAssembly

You can also specify that assemblies be installed to the GAC as part of a setup project in
Visual Studio.
Calling gacutil with the /l switch lists all assemblies in the GAC.
Once an assembly is loaded into the GAC, applications can reference it without needing a local
copy of that assembly.

WARNING
If a local copy is present, it’s ignored in favor of the GAC image. This means there’s no way
to reference or test a recompiled version of your library — until you update the GAC. This
holds true as long as you preserve the assembly’s version and identity.

GAC and Versioning
Changing an assembly’s AssemblyVersion gives it a brand-new identity. To illustrate, let’s
say you write a utils assembly, version it “1.0.0.0”, strongly name it, and then install it in the
GAC. Then suppose later you add some new features, change the version to “1.0.0.1”,
recompile it, and reinstall it into the GAC. Instead of overwriting the original assembly, the
GAC now holds both versions. This means:

You can choose which version to reference when compiling another application that uses
utils.



Any application previously compiled to reference utils 1.0.0.0 will continue to do so.

This is called side-by-side execution. Side-by-side execution prevents the “DLL hell” that can
otherwise occur when a shared assembly is unilaterally updated: applications designed for the
older version might unexpectedly break.
A complication arises, though, when you want to apply bug fixes or minor updates to existing
assemblies. You have two options:

Reinstall the fixed assembly to the GAC with the same version number.

Compile the fixed assembly with a new version number and install that to the GAC.

The difficulty with the first option is that there’s no way to apply the update selectively to
certain applications. It’s all or nothing. The difficulty with the second option is that
applications will not normally use the newer assembly version without being recompiled.
There is a workaround — you can create a publisher policy allowing assembly version
redirection — at the cost of increasing deployment complexity.
Side-by-side execution is good for mitigating some of the problems of shared assemblies. If
you avoid the GAC altogether — instead allowing each application to maintain its own private
copy of utils — you eliminate all of the problems of shared assemblies!

Resources and Satellite Assemblies
An application typically contains not only executable code, but also content such as text,
images, or XML files. Such content can be represented in an assembly through a resource.
There are two overlapping use cases for resources:

Incorporating data that cannot go into source code, such as images

Storing data that might need translation in a multilingual application

An assembly resource is ultimately a byte stream with a name. You can think of an assembly as
containing a dictionary of byte arrays keyed by string. This can be seen in ildasm if we
disassemble an assembly that contains a resource called banner.jpg and a resource called
data.xml:

.mresource public banner.jpg
{
  // Offset: 0x00000F58 Length: 0x000004F6
}
.mresource public data.xml
{
  // Offset: 0x00001458 Length: 0x0000027E
}

In this case, banner.jpg and data.xml were included directly in the assembly — each as its
own embedded resource. This is the simplest way to work.
The Framework also lets you add content through intermediate .resources containers. They are
designed for holding content that may require translation into different languages. Localized
.resources can be packaged as individual satellite assemblies that are automatically picked up
at runtime, based on the user’s operating system language.



Figure 18-4 illustrates an assembly that contains two directly embedded resources, plus a
.resources container called welcome.resources, for which we’ve created two localized
satellites.

Figure 18-4. Resources

Directly Embedding Resources

NOTE
Embedding resources into assemblies is not supported in Windows Store apps. Instead, add
any extra files to your deployment package, and access them by reading from your
application StorageFolder (Package.Current.InstalledLocation).

To directly embed a resource at the command line, use the /resource switch when compiling:

csc /resource:banner.jpg /resource:data.xml MyApp.cs

You can optionally specify that the resource be given a different name in the assembly as
follows:

csc /resource:<file-name>,<resource-name>

To directly embed a resource using Visual Studio:
Add the file to your project.

Set its build action to “Embedded Resource.”



Visual Studio always prefixes resource names with the project’s default namespace, plus the
names of any subfolders in which the file is contained. So, if your project’s default namespace
was Westwind.Reports and your file was called banner.jpg in the folder pictures, the
resource name would be Westwind.Reports.pictures.banner.jpg.

WARNING
Resource names are case-sensitive. This makes project subfolder names in Visual Studio that
contain resources effectively case-sensitive.

To retrieve a resource, you call GetManifestResourceStream on the assembly containing the
resource. This returns a stream, which you can then read as any other:

Assembly a = Assembly.GetEntryAssembly();

using (Stream s = a.GetManifestResourceStream ("TestProject.data.xml"))
using (XmlReader r = XmlReader.Create (s))
  ...

System.Drawing.Image image;
using (Stream s = a.GetManifestResourceStream ("TestProject.banner.jpg"))
  image = System.Drawing.Image.FromStream (s);

The stream returned is seekable, so you can also do this:

byte[] data;
using (Stream s = a.GetManifestResourceStream ("TestProject.banner.jpg"))
  data = new BinaryReader (s).ReadBytes ((int) s.Length);

If you’ve used Visual Studio to embed the resource, you must remember to include the
namespace-based prefix. To help avoid error, you can specify the prefix in a separate argument,
using a type. The type’s namespace is used as the prefix:

using (Stream s = a.GetManifestResourceStream (typeof (X), "XmlData.xml"))

X can be any type with the desired namespace of your resource (typically, a type in the same
project folder).

WARNING
Setting a project item’s build action in Visual Studio to “Resource” within a WPF application
is not the same as setting its build action to “Embedded Resource”. The former actually adds
the item to a .resources file called <AssemblyName>.g.resources, whose content you access
through WPF’s Application class, using a URI as a key.
To add to the confusion, WPF further overloads the term “resource.” Static resources and
dynamic resources are both unrelated to assembly resources!

GetManifestResourceNames returns the names of all resources in the assembly.

.resources Files



.resources files are containers for potentially localizable content. A .resources file ends up as
an embedded resource within an assembly — just like any other kind of file. The difference is
that you must:

Package your content into the .resources file to begin with.

Access its content through a ResourceManager or pack URI, rather than a
GetManifestResourceStream.

.resources files are structured in binary and so are not human-editable; therefore, you must rely
on tools provided by the Framework and Visual Studio to work with them. The standard
approach with strings or simple data types is to use the .resx format, which can be converted to
a .resources file either by Visual Studio or the resgen tool. The .resx format is also suitable
for images intended for a Windows Forms or ASP.NET application.
In a WPF application, you must use Visual Studio’s “Resource” build action for images or
similar content needing to be referenced by URI. This applies whether localization is needed
or not.
We describe how to do each of these in the following sections.

.resx Files
A .resx file is a design-time format for producing .resources files. A .resx file uses XML and is
structured with name/value pairs as follows:

<root>
  <data name="Greeting">
    <value>hello</value>
  </data>
  <data name="DefaultFontSize" type="System.Int32, mscorlib">
    <value>10</value>
  </data>
</root>

To create a .resx file in Visual Studio, add a project item of type “Resources File”. The rest of
the work is done automatically:

The correct header is created.

A designer is provided for adding strings, images, files, and other kinds of data.

The .resx file is automatically converted to the .resources format and embedded into the
assembly upon compilation.

A class is written to help you access the data later on.

NOTE
The resource designer adds images as typed Image objects (System.Drawing.dll), rather than
as byte arrays, making them unsuitable for WPF applications.

Creating a .resx file at the command line



If you’re working at the command line, you must start with a .resx file that has a valid header.
The easiest way to accomplish this is to create a simple .resx file programmatically. The
System.Resources.ResXResourceWriter class (which, peculiarly, resides in the
System.Windows.Forms.dll assembly) does exactly this job:

using (ResXResourceWriter w = new ResXResourceWriter ("welcome.resx")) { }

From here, you can either continue to use the ResXResourceWriter to add resources (by
calling AddResource) or manually edit the .resx file that it wrote.
The easiest way to deal with images is to treat the files as binary data and convert them to an
image upon retrieval. This is also more versatile than encoding them as a typed Image object.
You can include binary data within a .resx file in base 64 format as follows:

<data name="flag.png" type="System.Byte[], mscorlib">
  <value>Qk32BAAAAAAAAHYAAAAoAAAAMAMDAwACAgIAAAAD/AA....</value>
</data>

or as a reference to another file that is then read by resgen:

<data name="flag.png"
  type="System.Resources.ResXFileRef, System.Windows.Forms">
  <value>flag.png;System.Byte[], mscorlib</value>
</data>

When you’re done, you must convert the .resx file by calling resgen. The following converts
welcome.resx into welcome.resources:

resgen welcome.resx

The final step is to include the .resources file when compiling, as follows:

csc /resources:welcome.resources MyApp.cs

Reading .resources files

NOTE
If you create a .resx file in Visual Studio, a class of the same name is generated automatically
with properties to retrieve each of its items.

The ResourceManager class reads .resources files embedded within an assembly:

ResourceManager r = new ResourceManager ("welcome",
                                         Assembly.GetExecutingAssembly());

(The first argument must be namespace-prefixed if the resource was compiled in Visual
Studio.)
You can then access what’s inside by calling GetStringor GetObject with a cast:

string greeting = r.GetString ("Greeting");



int fontSize = (int) r.GetObject ("DefaultFontSize");
Image image = (Image) r.GetObject ("flag.png");       // (Visual Studio)
byte[] imgData = (byte[]) r.GetObject ("flag.png");   // (Command line)

To enumerate the contents of a .resources file:

ResourceManager r = new ResourceManager (...);
ResourceSet set = r.GetResourceSet (CultureInfo.CurrentUICulture,
                                    true, true);
foreach (System.Collections.DictionaryEntry entry in set)
  Console.WriteLine (entry.Key);

Creating a pack URI resource in Visual Studio
In a WPF application, XAML files need to be able to access resources by URI. For instance:

<Button>
  <Image Height="50" Source="flag.png"/>
</Button>

Or, if the resource is in another assembly:

<Button>
  <Image Height="50" Source="UtilsAssembly;Component/flag.png"/>
</Button>

(Component is a literal keyword.)
To create resources that can be loaded in this manner, you cannot use .resx files. Instead, you
must add the files to your project and set their build action to “Resource” (not “Embedded
Resource”). Visual Studio then compiles them into a .resources file called
<AssemblyName>.g.resources — also the home of compiled XAML (.baml) files.
To load a URI-keyed resource programmatically, call Application.GetResource-Stream:

Uri u = new Uri ("flag.png", UriKind.Relative);
using (Stream s = Application.GetResourceStream (u).Stream)

Notice we used a relative URI. You can also use an absolute URI in exactly the following
format (the three commas are not a typo):

Uri u = new Uri ("pack://application:,,,/flag.png");

If you’d rather specify an Assembly object, you can retrieve content instead with a
ResourceManager:

Assembly a = Assembly.GetExecutingAssembly();
ResourceManager r = new ResourceManager (a.GetName().Name + ".g", a);
using (Stream s = r.GetStream ("flag.png"))
  ...

A ResourceManager also lets you enumerate the content of a .g.resources container within a
given assembly.

Satellite Assemblies
Data embedded in .resources is localizable.



Resource localization is relevant when your application runs on a version of Windows built to
display everything in a different language. For consistency, your application should use that
same language too.
A typical setup is as follows:

The main assembly contains .resources for the default or fallback language.

Separate satellite assemblies contain localized .resources translated to different languages.

When your application runs, the Framework examines the language of the current operating
system (from CultureInfo.CurrentUICulture). Whenever you request a resource using
ResourceManager, the Framework looks for a localized satellite assembly. If one’s available
— and it contains the resource key you requested — it’s used in place of the main assembly’s
version.
This means you can enhance language support simply by adding new satellites — without
changing the main assembly.

NOTE
A satellite assembly cannot contain executable code, only resources.

Satellite assemblies are deployed in subdirectories of the assembly’s folder as follows:

programBaseFolder\MyProgram.exe
                 \MyLibrary.exe
                 \XX\MyProgram.resources.dll
                 \XX\MyLibrary.resources.dll

XX refers to the two-letter language code (such as “de” for German) or a language and region
code (such as “en-GB” for English in Great Britain). This naming system allows the CLR to
find and load the correct satellite assembly automatically.

Building satellite assemblies
Recall our previous .resx example, which included the following:

<root>
  ...
  <data name="Greeting"
    <value>hello</value>
  </data>
</root>

We then retrieved the greeting at runtime as follows:

ResourceManager r = new ResourceManager ("welcome",
                                         Assembly.GetExecutingAssembly());
Console.Write (r.GetString ("Greeting"));

Suppose we want this to instead write “Hallo” if running on the German version of Windows.
The first step is to add another .resx file named welcome.de.resx that substitutes hello for
hallo:



<root>
  <data name="Greeting">
    <value>hallo<value>
  </data>
</root>

In Visual Studio, this is all you need to do — when you rebuild, a satellite assembly called
MyApp.resources.dll is automatically created in a subdirectory called de.
If you’re using the command line, you call resgen to turn the .resx file into a .resources file:

resgen MyApp.de.resx

and then call al to build the satellite assembly:

al /culture:de /out:MyApp.resources.dll /embed:MyApp.de.resources /t:lib

You can specify /template:MyApp.exe to import the main assembly’s strong name.

Testing satellite assemblies
To simulate running on an operating system with a different language, you must change the
CurrentUICulture using the Thread class:

System.Threading.Thread.CurrentThread.CurrentUICulture
  = new System.Globalization.CultureInfo ("de");

CultureInfo.CurrentUICulture is a read-only version of the same property.

NOTE
A useful testing strategy is to ℓѻ¢αℓïʐɘ into words that can still be read as English, but do not
use the standard Roman Unicode characters.

Visual Studio designer support
The designers in Visual Studio provide extended support for localizing components and visual
elements. The WPF designer has its own workflow for localization; other Component-based
designers use a design-time–only property to make it appear that a component or Windows
Forms control has a Language property. To customize for another language, simply change the
Language property and then start modifying the component. All properties of controls that are
attributed as Localizable will be persisted to a .resx file for that language. You can switch
between languages at any time just by changing the Language property.

Cultures and Subcultures
Cultures are split into cultures and subcultures. A culture represents a particular language; a
subculture represents a regional variation of that language. The Framework follows the
RFC1766 standard, which represents cultures and subcultures with two-letter codes. Here are
the codes for English and German cultures:

en
de



Here are the codes for the Australian English and Austrian German subcultures:

en-AU
de-AT

A culture is represented in .NET with the System.Globalization.CultureInfo class. You
can examine the current culture of your application as follows:

Console.WriteLine (System.Threading.Thread.CurrentThread.CurrentCulture);
Console.WriteLine (System.Threading.Thread.CurrentThread.CurrentUICulture);

Running this on a computer localized for Australia illustrates the difference between the two:

EN-AU
EN-US

CurrentCulture reflects the regional settings of the Windows control panel, whereas
CurrentUICulture reflects the language of the operating system.
Regional settings include such things as time zone and the formatting of currency and dates.
CurrentCulture determines the default behavior of such functions as DateTime.Parse.
Regional settings can be customized to the point where they no longer resemble any particular
culture.
CurrentUICulture determines the language in which the computer communicates with the
user. Australia doesn’t need a separate version of English for this purpose, so it just uses the
US one. If I spent a couple of months working in Austria, I would go to the control panel and
change my CurrentCulture to Austrian-German. However, since I can’t speak German, my
CurrentUICulture would remain U.S. English.
ResourceManager, by default, uses the current thread’s CurrentUICulture property to
determine the correct satellite assembly to load. ResourceManager uses a fallback mechanism
when loading resources. If a subculture assembly is defined, that one is used; otherwise, it falls
back to the generic culture. If the generic culture is not present, it falls back to the default
culture in the main assembly.

Resolving and Loading Assemblies
A typical application comprises a main executable assembly plus a set of referenced library
assemblies. For example:

AdventureGame.exe
Terrain.dll
UIEngine.dll

Assembly resolution refers to the process of locating referenced assemblies. Assembly
resolution happens both at compile time and at runtime. The compile-time system is simple: the
compiler knows where to find referenced assemblies because it’s told where to look. You (or
Visual Studio) provide the full path to referenced assemblies that are not in the current
directory.
Runtime resolution is more complicated. The compiler writes the strong names of referenced
assemblies to the manifest — but not any hints as to where to find them. In the simple case



where you put all referenced assemblies in the same folder as the main executable, there’s no
issue because that’s (close to) the first place the CLR looks. The complexities arise:

When you deploy referenced assemblies in other places

When you dynamically load assemblies

WARNING
UWP apps are limited in what you can do in the way of customizing assembly loading and
resolution. In particular, loading an assembly from an arbitrary file location isn’t supported,
and there’s no AssemblyResolve event.

Assembly and Type Resolution Rules
All types are scoped to an assembly. An assembly is like an address for a type. To give an
analogy, we can refer to a person as “Joe” (type name without namespace), or “Joe Bloggs”
(full type name), or “Joe Bloggs of 100 Barker Ave, WA” (assembly-qualified type name).
During compilation, we don’t need to go further than a full type name for uniqueness, because
you can’t reference two assemblies that define the same full type name (at least not without
special tricks). At runtime, though, it’s possible to have many identically named types in
memory. This happens within the Visual Studio designer, for instance, whenever you rebuild
the components you’re designing. The only way to distinguish such types is by their assembly;
therefore, an assembly forms an essential part of a type’s runtime identity. An assembly is also
a type’s handle to its code and metadata.
The CLR loads assemblies at the point in execution when they’re first needed. This happens
when you refer to one of the assembly’s types. For example, suppose that AdventureGame.exe
instantiates a type called TerrainModel.Map. Assuming no additional configuration files, the
CLR answers the following questions:

What’s the fully qualified name of the assembly that contained TerrainModel .Map when
AdventureGame.exe was compiled?

Have I already loaded into memory an assembly with this fully qualified name, in the same
(resolution) context?

If the answer to the second question is yes, it uses the existing copy in memory; otherwise, it
goes looking for the assembly. The CLR first checks the GAC, then the probing paths
(generally the application base directory), and as a final resort, fires the
AppDomain.AssemblyResolve event. If none returns a match, the CLR throws an exception.

AssemblyResolve
The AssemblyResolve event allows you to intervene and manually load an assembly that the
CLR can’t find. If you handle this event, you can scatter referenced assemblies in a variety of
locations and still have them load.
Within the AssemblyResolve event handler, you locate the assembly and load it by calling one
of three static methods in the Assembly class: Load, LoadFrom, or LoadFile. These methods
return a reference to the newly loaded assembly, which you then return to the caller:



static void Main()
{
  AppDomain.CurrentDomain.AssemblyResolve += FindAssembly;
  ...
}

static Assembly FindAssembly (object sender, ResolveEventArgs args)
{
  string fullyQualifiedName = args.Name;
  Assembly a = Assembly.LoadFrom (...);
  return a;
}

The ResolveEventArgs event is unusual in that it has a return type. If there are multiple
handlers, the first one to return a nonnull Assembly wins.

Loading Assemblies
The Load methods in Assembly are useful both inside and outside an AssemblyResolve
handler. Outside the event handler, they can load and execute assemblies not referenced at
compilation. An example of when you might do this is to execute a plug-in.

WARNING
Think carefully before calling Load, LoadFrom, or LoadFile: these methods permanently load
an assembly into the current application domain — even if you do nothing with the resultant
Assembly object. Loading an assembly has side effects: it locks the assembly files as well as
affecting subsequent type resolution.
The only way to unload an assembly is to unload the whole application domain. (There’s also
a technique to avoid locking assemblies called shadow copying for assemblies in the probing
path — go to http://albahari.com/shadowcopy for the MSDN article.)
If you just want to examine an assembly without executing any of its code, you can instead
use the reflection-only context (see Chapter 19).

To load an assembly from a fully qualified name (without a location) call Assembly.Load.
This instructs the CLR to find the assembly using its normal automatic resolution system. The
CLR itself uses Load to find referenced assemblies.
To load an assembly from a filename, call LoadFrom or LoadFile.
To load an assembly from a URI, call LoadFrom.
To load an assembly from a byte array, call Load.

NOTE
You can see what assemblies are currently loaded in memory by calling AppDomain’s
GetAssemblies method:

foreach (Assembly a in
AppDomain.CurrentDomain.GetAssemblies())
{
  Console.WriteLine (a.Location);        // File path
  Console.WriteLine (a.CodeBase);        // URI
  Console.WriteLine (a.GetName().Name);  // Simple name
}

http://albahari.com/shadowcopy


Loading from a filename
LoadFrom and LoadFile can both load an assembly from a filename. They differ in two ways.
First, if an assembly with the same identity has already been loaded into memory from another
location, LoadFrom gives you the previous copy:

Assembly a1 = Assembly.LoadFrom (@"c:\temp1\lib.dll");
Assembly a2 = Assembly.LoadFrom (@"c:\temp2\lib.dll");
Console.WriteLine (a1 == a2);                            // true

LoadFile gives you a fresh copy:

Assembly a1 = Assembly.LoadFile (@"c:\temp1\lib.dll");
Assembly a2 = Assembly.LoadFile (@"c:\temp2\lib.dll");
Console.WriteLine (a1 == a2);                            // false

If you load twice from an identical location, however, both methods give you the previously
cached copy. (In contrast, loading an assembly twice from an identical byte array gives you
two distinct Assembly objects.)

WARNING
Types from two identical assemblies in memory are incompatible. This is the primary reason
to avoid loading duplicate assemblies, and hence a reason to favor LoadFrom over LoadFile.

The second difference between LoadFrom and LoadFile is that LoadFrom hints the CLR as to
the location of onward references, whereas LoadFile does not. To illustrate, suppose your
application in \folder1 loads an assembly in \folder2 called TestLib.dll, which references
\folder2\Another.dll:

\folder1\MyApplication.exe

\folder2\TestLib.dll
\folder2\Another.dll

If you load TestLib with LoadFrom, the CLR will find and load Another.dll.
If you load TestLib with LoadFile, the CLR will be unable to find Another.dll and will throw
an exception — unless you also handle the AssemblyResolve event.
In the following sections, we demonstrate these methods in the context of some practical
applications.

Statically referenced types and LoadFrom/LoadFile
When you refer to a type directly in your code, you’re statically referencing that type. The
compiler bakes a reference to that type into the assembly being compiled, as well as the name
of the assembly containing the type in question (but not any information on where to find it at
runtime).
For instance, suppose there’s a type called Foo in an assembly called foo.dll and your



application bar.exe includes the following code:

var foo = new Foo();

The bar.exe application statically references the Foo type in the foo assembly. We could
instead dynamically load foo as follows:

Type t = Assembly.LoadFrom (@"d:\temp\foo.dll").GetType ("Foo");
var foo = Activator.CreateInstance (t);

If you mix the two approaches, you will usually end up with two copies of the assembly in
memory, because the CLR considers each to be a different “resolution context.”
We said previously that when resolving static references, the CLR looks first in the GAC, then
in the probing path (normally the application base directory), and then fires the
AssemblyResolve event as a last resort. Before any of this, though, it checks whether the
assembly has already been loaded. However, it considers only assemblies that have either:

Been loaded from a path that it would otherwise have found on its own (probing path)

Been loaded in response to the AssemblyResolve event

Hence, if you’ve already loaded it from an unprobed path via LoadFrom or LoadFile, you’ll
end up with two copies of the assembly in memory (with incompatible types). To avoid this,
you must be careful, when calling LoadFrom/LoadFile, to first check whether the assembly
exists in the application base directory (unless you want to load multiple versions of an
assembly).
Loading in response to the AssemblyResolve event is immune to this problem (whether you
use LoadFrom, LoadFile — or load from a byte array as we’ll see later), because the event
fires only for assemblies outside the probing path.

NOTE
Whether you use LoadFrom or LoadFile, the CLR always looks first for the requested
assembly in the GAC. You can bypass the GAC with ReflectionOnlyLoadFrom (which loads
the assembly into a reflection-only context). Even loading from a byte array doesn’t bypass
the GAC, although it gets around the problem of locking assembly files:

byte[] image = File.ReadAllBytes (assemblyPath);
Assembly a = Assembly.Load (image);

If you do this, you must handle the AppDomain’s AssemblyResolve event in order to resolve
any assemblies that the loaded assembly itself references, and keep track of all loaded
assemblies (see “Packing a Single-File Executable”).

Location versus CodeBase
An Assembly’s Location property usually returns its physical location in the filesystem (if it
has one). The CodeBase property mirrors this in URI form except in special cases, such as if
loaded from the Internet, where CodeBase is the Internet URI and Location is the temporary
path to which it was downloaded. Another special case is with shadow copied assemblies,



where Location is blank and CodeBase is its unshadowed location. ASP.NET and the popular
NUnit testing framework employ shadow copying to allow assemblies to be updated while the
website or unit tests are running (for the MSDN reference, go to
http://albahari.com/shadowcopy). LINQPad does something similar when you reference
custom assemblies.
Hence relying solely on Location is dangerous if you’re looking for an assembly’s location on
disk. The better approach is to check both properties. The following method returns an
assembly’s containing folder (or null if it cannot be determined):

public static string GetAssemblyFolder (Assembly a)
{
  try
  {
    if (!string.IsNullOrEmpty (a.Location))
      return Path.GetDirectoryName (a.Location);   

    if (string.IsNullOrEmpty (a.CodeBase)) return null;

    var uri = new Uri (a.CodeBase);
    if (!uri.IsFile) return null;
   
    return Path.GetDirectoryName (uri.LocalPath);  
  }
  catch (NotSupportedException)
  {
    return null;  // Dynamic assembly generated with Reflection.Emit
  }
}

Note that because CodeBase returns a URI, we use the Uri class to obtain its local file path.

Deploying Assemblies Outside the Base Folder
Sometimes you might choose to deploy assemblies to locations other than the application base
directory, for instance:

..\MyProgram\Main.exe

..\MyProgram\Libs\V1.23\GameLogic.dll

..\MyProgram\Libs\V1.23\3DEngine.dll

..\MyProgram\Terrain\Map.dll

..\Common\TimingController.dll

To make this work, you must assist the CLR in finding the assemblies outside the base folder.
The easiest solution is to handle the AssemblyResolve event.
In the following example, we assume all additional assemblies are located in
c:\ExtraAssemblies:

using System;
using System.IO;
using System.Reflection;

class Loader
{
  static void Main()
  {
    AppDomain.CurrentDomain.AssemblyResolve += FindAssembly;

    // We must switch to another class before attempting to use
    // any of the types in c:\ExtraAssemblies:

http://albahari.com/shadowcopy


    Program.Go();
  }

  static Assembly FindAssembly (object sender, ResolveEventArgs args)
  {
    string simpleName = new AssemblyName (args.Name).Name;
    string path = @"c:\ExtraAssemblies\" + simpleName + ".dll";

    if (!File.Exists (path)) return null;     // Sanity check
    return Assembly.LoadFrom (path);          // Load it up!
  }
}

class Program
{
  internal static void Go()
  {
    // Now we can reference types defined in c:\ExtraAssemblies
  }
}

WARNING
It’s vitally important in this example not to reference types in c:\ExtraAssemblies directly
from the Loader class (e.g., as fields), because the CLR would then attempt to resolve the
type before hitting Main().

In this example, we could use either LoadFrom or LoadFile. In either case, the CLR verifies
that the assembly that we hand it has the exact identity it requested. This maintains the integrity
of strongly named references.
In Chapter 24, we describe another approach that can be used when creating new application
domains. This involves setting the application domain’s PrivateBinPath to include the
directories containing the additional assemblies — extending the standard assembly probing
locations. A limitation of this is that the additional directories must all be below the application
base directory.

Packing a Single-File Executable
Suppose you’ve written an application comprising 10 assemblies: 1 main executable file, plus
9 DLLs. Although such granularity can be great for design and debugging, it’s also good to be
able to pack the whole thing into a single “click and run” executable — without demanding the
user perform some setup or file extraction ritual. You can accomplish this by including the
compiled assembly DLLs in the main executable project as embedded resources, and then
writing an AssemblyResolve event handler to load their binary images on demand. Here’s
how it’s done:

using System;
using System.IO;
using System.Reflection;
using System.Collections.Generic;

public class Loader
{
  static Dictionary <string, Assembly> _libs
   = new Dictionary <string, Assembly>();

  static void Main()



  {
    AppDomain.CurrentDomain.AssemblyResolve += FindAssembly;
    Program.Go();
  }

  static Assembly FindAssembly (object sender, ResolveEventArgs args)
  {
    string shortName = new AssemblyName (args.Name).Name;
    if (_libs.ContainsKey (shortName)) return _libs [shortName];

    using (Stream s = Assembly.GetExecutingAssembly().
           GetManifestResourceStream ("Libs." + shortName + ".dll"))
    {
       byte[] data = new BinaryReader (s).ReadBytes ((int) s.Length);
       Assembly a = Assembly.Load (data);
       _libs [shortName] = a;
       return a;
    }
  }
}

public class Program
{
  public static void Go()
  {
    // Run main program...
  }
}

Because the Loader class is defined in the main executable, the call to
Assembly.GetExecutingAssembly will always return the main executable assembly, where
we’ve included the compiled DLLs as embedded resources. In this example, we prefix the
name of each embedded resource assembly with "Libs.". If the Visual Studio IDE was used,
you would change "Libs." to the project’s default namespace (go to Project
Properties→Application). You would also need to ensure that the “Build Action” IDE property
on each of the DLL files included in the main project was set to “Embedded Resource”.
The reason for caching requested assemblies in a dictionary is to ensure that if the CLR
requests the same assembly again, we return exactly the same object. Otherwise, an assembly’s
types will be incompatible with those loaded previously (despite their binary images being
identical).
A variation of this would be to compress the referenced assemblies at compilation, then
decompress them in FindAssembly using a DeflateStream.

Working with Unreferenced Assemblies
Sometimes it’s useful to explicitly load .NET assemblies that may not have been referenced in
compilation.
If the assembly in question is an executable and you simply want to run it, calling
ExecuteAssembly on the current application domain does the job. ExecuteAssembly loads
the executable using LoadFrom semantics, and then calls its entry method with optional
command-line arguments. For instance:

string dir = AppDomain.CurrentDomain.BaseDirectory;
AppDomain.CurrentDomain.ExecuteAssembly (Path.Combine (dir, "test.exe"));

ExecuteAssembly works synchronously, meaning the calling method is blocked until the
called assembly exits. To work asynchronously, you must call ExecuteAssembly on another



thread or task (see Chapter 14).
In most cases, though, the assembly you’ll want to load is a library. The approach then is to call
LoadFrom, and then use reflection to work with the assembly’s types. For example:

string ourDir = AppDomain.CurrentDomain.BaseDirectory;
string plugInDir = Path.Combine (ourDir, "plugins");
Assembly a = Assembly.LoadFrom (Path.Combine (plugInDir, "widget.dll"));
Type t = a.GetType ("Namespace.TypeName");
object widget = Activator.CreateInstance (t);    // (See Chapter 19)
...

We used LoadFrom rather than LoadFile to ensure that any private assemblies widget.dll
referenced in the same folder were also loaded. We then retrieved a type from the assembly by
name and instantiated it.
The next step could be to use reflection to dynamically call methods and properties on widget;
we describe how to do this in the following chapter. An easier — and faster — approach is to
cast the object to a type that both assemblies understand. This is often an interface defined in a
common assembly:

public interface IPluggable
{
  void ShowAboutBox();
  ...
}

This allows us to do this:

Type t = a.GetType ("Namespace.TypeName");
IPluggable widget = (IPluggable) Activator.CreateInstance (t);
widget.ShowAboutBox();

You can use a similar system for dynamically publishing services in a WCF or Remoting
Server. The following assumes the libraries we want to expose end in “server”:

using System.IO;
using System.Reflection;
...
string dir = AppDomain.CurrentDomain.BaseDirectory;
foreach (string assFile in Directory.GetFiles (dir, "*Server.dll"))
{
  Assembly a = Assembly.LoadFrom (assFile);
  foreach (Type t in a.GetTypes())
    if (typeof (MyBaseServerType).IsAssignableFrom (t))
    {
      // Expose type t
    }
}

This does make it very easy, though, for someone to add rogue assemblies, maybe even
accidentally! Assuming no compile-time references, the CLR has nothing against which to
check an assembly’s identity. If everything that you load is signed with a known public key, the
solution is to check that key explicitly. In the following example, we assume that all libraries
are signed with the same key pair as the executing assembly:

byte[] ourPK = Assembly.GetExecutingAssembly().GetName().GetPublicKey();

foreach (string assFile in Directory.GetFiles (dir, "*Server.dll"))



{
  byte[] targetPK = AssemblyName.GetAssemblyName (assFile).GetPublicKey();
  if (Enumerable.SequenceEqual (ourPK, targetPK))
  {
    Assembly a = Assembly.LoadFrom (assFile);
    ...

Notice how AssemblyName allows you to check the public key before loading the assembly. To
compare the byte arrays, we used LINQ’s SequenceEqual method (System.Linq).



Chapter 19. Reflection and Metadata

As we saw in the previous chapter, a C# program compiles into an assembly that includes
metadata, compiled code, and resources. Inspecting the metadata and compiled code at runtime
is called reflection.
The compiled code in an assembly contains almost all of the content of the original source
code. Some information is lost, such as local variable names, comments, and preprocessor
directives. However, reflection can access pretty much everything else, even making it
possible to write a decompiler.
Many of the services available in .NET and exposed via C# (such as dynamic binding,
serialization, data binding, and Remoting) depend on the presence of metadata. Your own
programs can also take advantage of this metadata, and even extend it with new information
using custom attributes. The System.Reflection namespace houses the reflection API. It is
also possible at runtime to dynamically create new metadata and executable instructions in IL
(Intermediate Language) via the classes in the System.Reflection.Emit namespace.
The examples in this chapter assume that you import the System and System .Reflection, as
well as System.Reflection.Emit namespaces.

NOTE
When we use the term “dynamically” in this chapter, we mean using reflection to perform
some task whose type safety is enforced only at runtime. This is similar in principle to
dynamic binding via C#’s dynamic keyword, although the mechanism and functionality is
different.
To compare the two, dynamic binding is much easier to use and leverages the DLR for
dynamic language interoperability. Reflection is relatively clumsy to use, is concerned with
the CLR only — but is more flexible in terms of what you can do with the CLR. For
instance, reflection lets you obtain lists of types and members, instantiate an object whose
name comes from a string, and build assemblies on the fly.

Reflecting and Activating Types
In this section, we examine how to obtain a Type, inspect its metadata, and use it to
dynamically instantiate an object.

Obtaining a Type
An instance of System.Type represents the metadata for a type. Since Type is widely used, it
lives in the System namespace rather than the System.Reflection namespace.
You can get an instance of a System.Type by calling GetType on any object or with C#’s
typeof operator:

Type t1 = DateTime.Now.GetType();     // Type obtained at runtime
Type t2 = typeof (DateTime);          // Type obtained at compile time



You can use typeof to obtain array types and generic types as follows:

Type t3 = typeof (DateTime[]);          // 1-d Array type
Type t4 = typeof (DateTime[,]);         // 2-d Array type
Type t5 = typeof (Dictionary<int,int>); // Closed generic type
Type t6 = typeof (Dictionary<,>);       // Unbound generic type

You can also retrieve a Type by name. If you have a reference to its Assembly, call
Assembly.GetType (we describe this further in the section “Reflecting Assemblies” later in
this chapter):

Type t = Assembly.GetExecutingAssembly().GetType ("Demos.TestProgram");

If you don’t have an Assembly object, you can obtain a type through its assembly qualified
name (the type’s full name followed by the assembly’s fully qualified name). The assembly
implicitly loads as if you called Assembly.Load(string):

Type t = Type.GetType ("System.Int32, mscorlib, Version=2.0.0.0, " +
                       "Culture=neutral, PublicKeyToken=b77a5c561934e089");

Once you have a System.Type object, you can use its properties to access the type’s name,
assembly, base type, visibility, and so on. For example:

Type stringType = typeof (string);
string name     = stringType.Name;          // String
Type baseType   = stringType.BaseType;      // typeof(Object)
Assembly assem  = stringType.Assembly;      // mscorlib.dll
bool isPublic   = stringType.IsPublic;      // true

A System.Type instance is a window into the entire metadata for the type — and the assembly
in which it’s defined.

NOTE
System.Type is abstract, so the typeof operator must actually give you a subclass of Type.
The subclass that the CLR uses is internal to mscorlib and is called RuntimeType.

TypeInfo and Windows Store applications
Should you be targeting an older Windows Store profile, you’ll find most of Type’s members
are missing. These missing members are exposed instead on a class called TypeInfo, which
you obtain by calling GetTypeInfo. So to get our previous example to run, you would do this:

Type stringType = typeof(string);
string name = stringType.Name;
Type baseType = stringType.GetTypeInfo().BaseType;
Assembly assem = stringType.GetTypeInfo().Assembly;
bool isPublic = stringType.GetTypeInfo().IsPublic;

WARNING
Many of the code listings in this chapter will require this modification in order to work in
older Windows Store profiles. So if an example won’t compile for lack of a member, add



.GetTypeInfo() to the Type expression.

TypeInfo also exists in the full .NET Framework, so code that works in Windows Store apps
also works in desktop apps that target Framework 4.5 or later. TypeInfo also includes
additional properties and methods for reflecting over members.
UWP and .NET Core applications are restricted in what they can do regarding reflection. Some
activities are prohibited, such as accessing nonpublic members or creating types with
Reflection.Emit.

Obtaining array types
As we just saw, typeof and GetType work with array types. You can also obtain an array type
by calling MakeArrayType on the element type:

Type simpleArrayType = typeof (int).MakeArrayType();
Console.WriteLine (simpleArrayType == typeof (int[]));     // True

MakeArrayType can be passed an integer argument to make multidimensional rectangular
arrays:

Type cubeType = typeof (int).MakeArrayType (3);       // cube shaped
Console.WriteLine (cubeType == typeof (int[,,]));     // True

GetElementType does the reverse — it retrieves an array type’s element type:

Type e = typeof (int[]).GetElementType();     // e == typeof (int)

GetArrayRank returns the number of dimensions of a rectangular array:

int rank = typeof (int[,,]).GetArrayRank();   // 3

Obtaining nested types
To retrieve nested types, call GetNestedTypes on the containing type. For example:

foreach (Type t in typeof (System.Environment).GetNestedTypes())
  Console.WriteLine (t.FullName);

OUTPUT: System.Environment+SpecialFolder

Or, in Windows Store:

foreach (TypeInfo t in typeof (System.Environment).GetTypeInfo()
                                                  .DeclaredNestedTypes)
  Debug.WriteLine (t.FullName);

The one caveat with nested types is that the CLR treats a nested type as having special “nested”
accessibility levels. For example:

Type t = typeof (System.Environment.SpecialFolder);
Console.WriteLine (t.IsPublic);                      // False
Console.WriteLine (t.IsNestedPublic);                // True



Type Names
A type has Namespace, Name, and FullName properties. In most cases, FullName is a
composition of the former two:

Type t = typeof (System.Text.StringBuilder);

Console.WriteLine (t.Namespace);      // System.Text
Console.WriteLine (t.Name);           // StringBuilder
Console.WriteLine (t.FullName);       // System.Text.StringBuilder

There are two exceptions to this rule: nested types and closed generic types.

NOTE
Type also has a property called AssemblyQualifiedName, which returns FullName followed by a
comma and then the full name of its assembly. This is the same string that you can pass to
Type.GetType, and it uniquely identifies a type within the default loading context.

Nested type names
With nested types, the containing type appears only in FullName:

Type t = typeof (System.Environment.SpecialFolder);

Console.WriteLine (t.Namespace);      // System
Console.WriteLine (t.Name);           // SpecialFolder
Console.WriteLine (t.FullName);       // System.Environment+SpecialFolder

The + symbol differentiates the containing type from a nested namespace.

Generic type names
Generic type names are suffixed with the ' symbol, followed by the number of type parameters.
If the generic type is unbound, this rule applies to both Name and FullName:

Type t = typeof (Dictionary<,>); // Unbound
Console.WriteLine (t.Name);      // Dictionary'2
Console.WriteLine (t.FullName);  // System.Collections.Generic.Dictionary'2

If the generic type is closed, however, FullName (only) acquires a substantial extra appendage.
Each type parameter’s full assembly qualified name is enumerated:

Console.WriteLine (typeof (Dictionary<int,string>).FullName);

// OUTPUT:
System.Collections.Generic.Dictionary'2[[System.Int32, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],
[System.String, mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089]]

This ensures that AssemblyQualifiedName (a combination of the type’s full name and
assembly name) contains enough information to fully identify both the generic type and its type
parameters.

Array and pointer type names



Arrays present with the same suffix that you use in a typeof expression:

Console.WriteLine (typeof ( int[]  ).Name);      // Int32[]
Console.WriteLine (typeof ( int[,] ).Name);      // Int32[,]
Console.WriteLine (typeof ( int[,] ).FullName);  // System.Int32[,]

Pointer types are similar:

Console.WriteLine (typeof (byte*).Name);     // Byte*

ref and out parameter type names
A Type describing a ref or out parameter has an & suffix:

Type t = typeof (bool).GetMethod ("TryParse").GetParameters()[1]
                                             .ParameterType;
Console.WriteLine (t.Name);    // Boolean&

More on this later, in the section “Reflecting and Invoking Members”.

Base Types and Interfaces
Type exposes a BaseType property:

Type base1 = typeof (System.String).BaseType;
Type base2 = typeof (System.IO.FileStream).BaseType;

Console.WriteLine (base1.Name);     // Object
Console.WriteLine (base2.Name);     // Stream

The GetInterfaces method returns the interfaces that a type implements:

foreach (Type iType in typeof (Guid).GetInterfaces())
  Console.WriteLine (iType.Name);

IFormattable
IComparable
IComparable'1
IEquatable'1

Reflection provides two dynamic equivalents to C#’s static is operator:

IsInstanceOfType

Accepts a type and instance

IsAssignableFrom

Accepts two types
Here’s an example of the first:

object obj  = Guid.NewGuid();
Type target = typeof (IFormattable);

bool isTrue   = obj is IFormattable;             // Static C# operator
bool alsoTrue = target.IsInstanceOfType (obj);   // Dynamic equivalent

IsAssignableFrom is more versatile:



Type target = typeof (IComparable), source = typeof (string);
Console.WriteLine (target.IsAssignableFrom (source));         // True

The IsSubclassOf method works on the same principle as IsAssignableFrom, but excludes
interfaces.

Instantiating Types
There are two ways to dynamically instantiate an object from its type:

Call the static Activator.CreateInstance method

Call Invoke on a ConstructorInfo object obtained from calling GetConstructor on a
Type (advanced scenarios)

Activator.CreateInstance accepts a Type and optional arguments that get passed to the
constructor:

int i = (int) Activator.CreateInstance (typeof (int));

DateTime dt = (DateTime) Activator.CreateInstance (typeof (DateTime),
                                                   2000, 1, 1);

CreateInstance lets you specify many other options, such as the assembly from which to load
the type, the target application domain, and whether to bind to a nonpublic constructor. A
MissingMethodException is thrown if the runtime can’t find a suitable constructor.
Calling Invoke on a ConstructorInfo is necessary when your argument values can’t
disambiguate between overloaded constructors. For example, suppose class X has two
constructors: one accepting a parameter of type string, and another accepting a parameter of
type StringBuilder. The target is ambiguous should you pass a null argument into
Activator.CreateInstance. This is when you need to use a ConstructorInfo instead:

// Fetch the constructor that accepts a single parameter of type string:
ConstructorInfo ci = typeof (X).GetConstructor (new[] { typeof (string) });

// Construct the object using that overload, passing in null:
object foo = ci.Invoke (new object[] { null });

Or, if you’re targeting an older Windows Store profile:

ConstructorInfo ci = typeof (X).GetTypeInfo().DeclaredConstructors
  .FirstOrDefault (c =>
     c.GetParameters().Length == 1 &&
     c.GetParameters()[0].ParameterType == typeof (string));

To obtain a nonpublic constructor, you need to specify BindingFlags — see “Accessing
Nonpublic Members” in the later section “Reflecting and Invoking Members”.

WARNING
Dynamic instantiation adds a few microseconds onto the time taken to construct the object.
This is quite a lot in relative terms because the CLR is ordinarily very fast in instantiating
objects (a simple new on a small class takes in the region of tens of nanoseconds).



To dynamically instantiate arrays based on just element type, first call MakeArrayType. You
can also instantiate generic types: we describe this in the following section.
To dynamically instantiate a delegate, call Delegate.CreateDelegate. The following
example demonstrates instantiating both an instance delegate and a static delegate:

class Program
{
  delegate int IntFunc (int x);

  static int Square (int x) { return x * x; }       // Static method
  int        Cube   (int x) { return x * x * x; }   // Instance method

  static void Main()
  {
    Delegate staticD = Delegate.CreateDelegate
      (typeof (IntFunc), typeof (Program), "Square");

    Delegate instanceD = Delegate.CreateDelegate
      (typeof (IntFunc), new Program(), "Cube");

    Console.WriteLine (staticD.DynamicInvoke (3));      // 9
    Console.WriteLine (instanceD.DynamicInvoke (3));    // 27
  }
}

You can invoke the Delegate object that’s returned by calling DynamicInvoke, as we did in
this example, or by casting to the typed delegate:

IntFunc f = (IntFunc) staticD;
Console.WriteLine (f(3));         // 9 (but much faster!)

You can pass a MethodInfo into CreateDelegate instead of a method name. We describe
MethodInfo shortly, in the section “Reflecting and Invoking Members”, along with the
rationale for casting a dynamically created delegate back to the static delegate type.

Generic Types
A Type can represent a closed or unbound generic type. Just as at compile time, a closed
generic type can be instantiated whereas an unbound type cannot:

Type closed = typeof (List<int>);
List<int> list = (List<int>) Activator.CreateInstance (closed);  // OK

Type unbound   = typeof (List<>);
object anError = Activator.CreateInstance (unbound);    // Runtime error

The MakeGenericType method converts an unbound into a closed generic type. Simply pass in
the desired type arguments:

Type unbound = typeof (List<>);
Type closed = unbound.MakeGenericType (typeof (int));

The GetGenericTypeDefinition method does the opposite:

Type unbound2 = closed.GetGenericTypeDefinition();  // unbound == unbound2

The IsGenericType property returns true if a Type is generic, and the



IsGenericTypeDefinition property returns true if the generic type is unbound. The
following tests whether a type is a nullable value type:

Type nullable = typeof (bool?);
Console.WriteLine (
  nullable.IsGenericType &&
  nullable.GetGenericTypeDefinition() == typeof (Nullable<>));   // True

GetGenericArguments returns the type arguments for closed generic types:

Console.WriteLine (closed.GetGenericArguments()[0]);     // System.Int32
Console.WriteLine (nullable.GetGenericArguments()[0]);   // System.Boolean

For unbound generic types, GetGenericArguments returns pseudotypes that represent the
placeholder types specified in the generic type definition:

Console.WriteLine (unbound.GetGenericArguments()[0]);      // T

NOTE
At runtime, all generic types are either unbound or closed. They’re unbound in the (relatively
unusual) case of an expression such as typeof(Foo<>); otherwise, they’re closed. There’s no
such thing as an open generic type at runtime: all open types are closed by the compiler. The
method in the following class always prints False:

class Foo<T>
{
  public void Test()
  {
    Console.Write (GetType().IsGenericTypeDefinition);
  }
}

Reflecting and Invoking Members
The GetMembers method returns the members of a type. Consider the following class:

class Walnut
{
  private bool cracked;
  public void Crack() { cracked = true; }
}

We can reflect on its public members as follows:

MemberInfo[] members = typeof (Walnut).GetMembers();
foreach (MemberInfo m in members)
  Console.WriteLine (m);

This is the result:

Void Crack()
System.Type GetType()
System.String ToString()
Boolean Equals(System.Object)



Int32 GetHashCode()
Void .ctor()

REFLECTING MEMBERS WITH TYPEINFO
TypeInfo exposes a different (and somewhat simpler) protocol for reflecting over members. Using
this API is optional in applications that target Framework 4.5 or later, but mandatory for older
Windows Store apps, since there’s no exact equivalent to the GetMembers method.
Instead of exposing methods like GetMembers that return arrays, TypeInfo exposes properties that
return IEnumerable<T>, upon which you typically run LINQ queries. The broadest is
DeclaredMembers:

IEnumerable<MemberInfo> members =
  typeof(Walnut).GetTypeInfo().DeclaredMembers;

Unlike with GetMembers(), the result excludes inherited members:

Void Crack()
Void .ctor()
Boolean cracked

There are also properties for returning specific kinds of members (DeclaredProperties,
DeclaredMethods, DeclaredEvents, and so on) and methods for returning a specific member by
name (e.g., GetDeclaredMethod). The latter cannot be used on overloaded methods (as there’s no
way to specify parameter types). Instead, you run a LINQ query over DeclaredMethods:

MethodInfo method = typeof (int).GetTypeInfo().DeclaredMethods
  .FirstOrDefault (m => m.Name == "ToString" &&
                        m.GetParameters().Length == 0);

When called with no arguments, GetMembers returns all the public members for a type (and its
base types). GetMember retrieves a specific member by name — although it still returns an
array because members can be overloaded:

MemberInfo[] m = typeof (Walnut).GetMember ("Crack");
Console.WriteLine (m[0]);                              // Void Crack()

MemberInfo also has a property called MemberType of type MemberTypes. This is a flags
enum with these values:

All           Custom        Field        NestedType     TypeInfo
Constructor   Event         Method       Property

When calling GetMembers, you can pass in a MemberTypes instance to restrict the kinds of
members that it returns. Alternatively, you can restrict the result set by calling GetMethods,
GetFields, GetProperties, GetEvents, GetConstructors, or GetNestedTypes. There are
also singular versions of each of these to hone in on a specific member.

NOTE
It pays to be as specific as possible when retrieving a type member, so your code doesn’t
break if additional members are added later. If retrieving a method by name, specifying all
parameter types ensures your code will still work if the method is later overloaded (we



provide examples shortly, in the section “Method Parameters”).

A MemberInfo object has a Name property and two Type properties:

DeclaringType

Returns the Type that defines the member

ReflectedType

Returns the Type upon which GetMembers was called
The two differ when called on a member that’s defined in a base type: DeclaringType returns
the base type whereas ReflectedType returns the subtype. The following example highlights
this:

class Program
{
  static void Main()
  {
    // MethodInfo is a subclass of MemberInfo; see Figure 19-1.

    MethodInfo test = typeof (Program).GetMethod ("ToString");
    MethodInfo obj  = typeof (object) .GetMethod ("ToString");

    Console.WriteLine (test.DeclaringType);      // System.Object
    Console.WriteLine (obj.DeclaringType);       // System.Object

    Console.WriteLine (test.ReflectedType);      // Program
    Console.WriteLine (obj.ReflectedType);       // System.Object

    Console.WriteLine (test == obj);             // False
  }
}

Because they have different ReflectedTypes, the test and obj objects are not equal. Their
difference, however, is purely a fabrication of the reflection API; our Program type has no
distinct ToString method in the underlying type system. We can verify that the two
MethodInfo objects refer to the same method in either of two ways:

Console.WriteLine (test.MethodHandle == obj.MethodHandle);    // True

Console.WriteLine (test.MetadataToken == obj.MetadataToken    // True
                   && test.Module == obj.Module);

A MethodHandle is unique to each (genuinely distinct) method within an application domain; a
MetadataToken is unique across all types and members within an assembly module.
MemberInfo also defines methods to return custom attributes (see the section “Retrieving
Attributes at Runtime” later in this chapter).

NOTE
You can obtain the MethodBase of the currently executing method by calling
MethodBase.GetCurrentMethod.

Member Types



MemberInfo itself is light on members because it’s an abstract base for the types shown in
Figure 19-1.

Figure 19-1. Member types

You can cast a MemberInfo to its subtype — based on its MemberType property. If you
obtained a member via GetMethod, GetField, GetProperty, GetEvent, GetConstructor, or
GetNestedType (or their plural versions), a cast isn’t necessary. Table 19-1 summarizes what
methods to use for each kind of C# construct.

Table 19-1. Retrieving member metadata

C# construct Method to use Name to use Result

Method GetMethod (method name) MethodInfo

Property GetProperty (property name) PropertyInfo

Indexer GetDefaultMembers  MemberInfo[] (containing PropertyInfo objects if compiled in
C#)

Field GetField (field name) FieldInfo

Enum
member

GetField (member name) FieldInfo

Event GetEvent (event name) EventInfo

Constructor GetConstructor  ConstructorInfo

Finalizer GetMethod "Finalize" MethodInfo

Operator GetMethod "op_" + operator
name

MethodInfo

Nested type GetNestedType (type name) Type

Each MemberInfo subclass has a wealth of properties and methods, exposing all aspects of the
member’s metadata. This includes such things as visibility, modifiers, generic type arguments,
parameters, return type, and custom attributes.
Here is an example of using GetMethod:

MethodInfo m = typeof (Walnut).GetMethod ("Crack");



Console.WriteLine (m);                             // Void Crack()
Console.WriteLine (m.ReturnType);                  // System.Void

All *Info instances are cached by the reflection API on first use:

MethodInfo method = typeof (Walnut).GetMethod ("Crack");
MemberInfo member = typeof (Walnut).GetMember ("Crack") [0];

Console.Write (method == member);       // True

As well as preserving object identity, caching improves the performance of what is otherwise a
fairly slow API.

C# Members Versus CLR Members
The preceding table illustrates that some of C#’s functional constructs don’t have a 1:1
mapping with CLR constructs. This makes sense because the CLR and reflection API were
designed with all .NET languages in mind — you can use reflection even from Visual Basic.
Some C# constructs — namely indexers, enums, operators, and finalizers — are contrivances
as far as the CLR is concerned. Specifically:

A C# indexer translates to a property accepting one or more arguments, marked as the type’s
[DefaultMember].

A C# enum translates to a subtype of System.Enum with a static field for each member.

A C# operator translates to a specially named static method, starting in “op_”; for example,
"op_Addition".

A C# finalizer translates to a method that overrides Finalize.

Another complication is that properties and events actually comprise two things:
Metadata describing the property or event (encapsulated by PropertyInfo or EventInfo)

One or two backing methods

In a C# program, the backing methods are encapsulated within the property or event definition.
But when compiled to IL, the backing methods present as ordinary methods that you can call
like any other. This means GetMethods returns property and event backing methods alongside
ordinary methods. To illustrate:

class Test { public int X { get { return 0; } set {} } }

void Demo()
{
  foreach (MethodInfo mi in typeof (Test).GetMethods())
    Console.Write (mi.Name + "  ");
}

// OUTPUT:
get_X  set_X  GetType  ToString  Equals  GetHashCode

You can identify these methods through the IsSpecialName property in MethodInfo.
IsSpecialName returns true for property, indexer, and event accessors — as well as



operators. It returns false only for conventional C# methods — and the Finalize method if a
finalizer is defined.
Here are the backing methods that C# generates:

C# construct Member type Methods in IL

Property Property get_XXX and set_XXX

Indexer Property get_Item and set_Item

Event Event add_XXX and remove_XXX

Each backing method has its own associated MethodInfo object. You can access these as
follows:

PropertyInfo pi = typeof (Console).GetProperty ("Title");
MethodInfo getter = pi.GetGetMethod();                   // get_Title
MethodInfo setter = pi.GetSetMethod();                   // set_Title
MethodInfo[] both = pi.GetAccessors();                   // Length==2

GetAddMethod and GetRemoveMethod perform a similar job for EventInfo.
To go in the reverse direction — from a MethodInfo to its associated PropertyInfo or
EventInfo — you need to perform a query. LINQ is ideal for this job:

PropertyInfo p = mi.DeclaringType.GetProperties()
                   .First (x => x.GetAccessors (true).Contains (mi));

Generic Type Members
You can obtain member metadata for both unbound and closed generic types:

PropertyInfo unbound = typeof (IEnumerator<>)  .GetProperty ("Current");
PropertyInfo closed = typeof (IEnumerator<int>).GetProperty ("Current");

Console.WriteLine (unbound);   // T Current
Console.WriteLine (closed);    // Int32 Current

Console.WriteLine (unbound.PropertyType.IsGenericParameter);  // True
Console.WriteLine (closed.PropertyType.IsGenericParameter);   // False

The MemberInfo objects returned from unbound and closed generic types are always distinct
— even for members whose signatures don’t feature generic type parameters:

PropertyInfo unbound = typeof (List<>)  .GetProperty ("Count");
PropertyInfo closed = typeof (List<int>).GetProperty ("Count");

Console.WriteLine (unbound);   // Int32 Count
Console.WriteLine (closed);    // Int32 Count

Console.WriteLine (unbound == closed);   // False

Console.WriteLine (unbound.DeclaringType.IsGenericTypeDefinition); // True
Console.WriteLine (closed.DeclaringType.IsGenericTypeDefinition); // False

Members of unbound generic types cannot be dynamically invoked.

Dynamically Invoking a Member



Once you have a MethodInfo, PropertyInfo or FieldInfo object, you can dynamically call
it or get/set its value. This is called dynamic binding or late binding, because you choose
which member to invoke at runtime rather than compile time.
To illustrate, the following uses ordinary static binding:

string s = "Hello";
int length = s.Length;

Here’s the same thing performed dynamically with reflection:

object s = "Hello";
PropertyInfo prop = s.GetType().GetProperty ("Length");
int length = (int) prop.GetValue (s, null);               // 5

GetValue and SetValue get and set the value of a PropertyInfo or FieldInfo. The first
argument is the instance, which can be null for a static member. Accessing an indexer is just
like accessing a property called “Item,” except that you provide indexer values as the second
argument when calling GetValue or SetValue.
To dynamically call a method, call Invoke on a MethodInfo, providing an array of arguments
to pass to that method. If you get any of the argument types wrong, an exception is thrown at
runtime. With dynamic invocation, you lose compile-time type safety, but still have runtime
type safety (just as with the dynamic keyword).

Method Parameters
Suppose we want to dynamically call string’s Substring method. Statically, this would be
done as follows:

Console.WriteLine ("stamp".Substring(2));                  // "amp"

Here’s the dynamic equivalent with reflection:

Type type = typeof (string);
Type[] parameterTypes = { typeof (int) };
MethodInfo method = type.GetMethod ("Substring", parameterTypes);

object[] arguments = { 2 };
object returnValue = method.Invoke ("stamp", arguments);
Console.WriteLine (returnValue);                           // "amp"

Because the Substring method is overloaded, we had to pass an array of parameter types to
GetMethod to indicate which version we wanted. Without the parameter types, GetMethod
would throw an AmbiguousMatchException.
The GetParameters method, defined on MethodBase (the base class for MethodInfo and
ConstructorInfo), returns parameter metadata. We can continue our previous example as
follows:

ParameterInfo[] paramList = method.GetParameters();
foreach (ParameterInfo x in paramList)
{
  Console.WriteLine (x.Name);                 // startIndex
  Console.WriteLine (x.ParameterType);        // System.Int32
}



Dealing with ref and out parameters
To pass ref or out parameters, call MakeByRefType on the type before obtaining the method.
For instance, this code:

int x;
bool successfulParse = int.TryParse ("23", out x);

can be dynamically executed as follows:

object[] args = { "23", 0 };
Type[] argTypes = { typeof (string), typeof (int).MakeByRefType() };
MethodInfo tryParse = typeof (int).GetMethod ("TryParse", argTypes);
bool successfulParse = (bool) tryParse.Invoke (null, args);

Console.WriteLine (successfulParse + " " + args[1]);       // True 23

This same approach works for both ref and out parameter types.

Retrieving and invoking generic methods
Explicitly specifying parameter types when calling GetMethod can be essential in
disambiguating overloaded methods. However, it’s impossible to specify generic parameter
types. For instance, consider the System.Linq.Enumerable class, which overloads the Where
method as follows:

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource, bool> predicate);

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource, int, bool> predicate);

To retrieve a specific overload, we must retrieve all methods and then manually find the
desired overload. The following query retrieves the former overload of Where:

from m in typeof (Enumerable).GetMethods()
where m.Name == "Where" && m.IsGenericMethod
let parameters = m.GetParameters()
where parameters.Length == 2
let genArg = m.GetGenericArguments().First()
let enumerableOfT = typeof (IEnumerable<>).MakeGenericType (genArg)
let funcOfTBool = typeof (Func<,>).MakeGenericType (genArg, typeof (bool))
where parameters[0].ParameterType == enumerableOfT
   && parameters[1].ParameterType == funcOfTBool
select m

Calling .Single() on this query gives the correct MethodInfo object with unbound type
parameters. The next step is to close the type parameters by calling MakeGenericMethod:

var closedMethod = unboundMethod.MakeGenericMethod (typeof (int));

In this case, we’ve closed TSource with int, allowing us to call Enumerable.Where with a
source of type IEnumerable<int>, and a predicate of type Func<int,bool>:

int[] source = { 3, 4, 5, 6, 7, 8 };
Func<int, bool> predicate = n => n % 2 == 1;   // Odd numbers only

We can now invoke the closed generic method as follows:



var query = (IEnumerable<int>) closedMethod.Invoke
  (null, new object[] { source, predicate });

foreach (int element in query) Console.Write (element + "|");  // 3|5|7|

NOTE
If you’re using the System.Linq.Expressions API to dynamically build expressions
(Chapter 8), you don’t need to go to this trouble to specify a generic method. The
Expression.Call method is overloaded to let you specify the closed type arguments of the
method you wish to call:

int[] source = { 3, 4, 5, 6, 7, 8 };
Func<int, bool> predicate = n => n % 2 == 1;

var sourceExpr = Expression.Constant (source);
var predicateExpr = Expression.Constant (predicate);

var callExpression = Expression.Call (
  typeof (Enumerable), "Where",
  new[] { typeof (int) },  // Closed generic arg type.
  sourceExpr, predicateExpr);

Using Delegates for Performance
Dynamic invocations are relatively inefficient, with an overhead typically in the few-
microseconds region. If you’re calling a method repeatedly in a loop, you can shift the per-call
overhead into the nanoseconds region by instead calling a dynamically instantiated delegate
that targets your dynamic method. In the following example, we dynamically call string’s
Trim method a million times without significant overhead:

delegate string StringToString (string s);

static void Main()
{
  MethodInfo trimMethod = typeof (string).GetMethod ("Trim", new Type[0]);
  var trim = (StringToString) Delegate.CreateDelegate
                                    (typeof (StringToString), trimMethod);
  for (int i = 0; i < 1000000; i++)
    trim ("test");
}

This is faster because the costly dynamic binding (shown in bold) happens just once.

Accessing Nonpublic Members
All of the methods on types used to probe metadata (e.g., GetProperty, GetField, etc.) have
overloads that take a BindingFlags enum. This enum serves as a metadata filter and allows
you to change the default selection criteria. The most common use for this is to retrieve
nonpublic members (this works only in desktop apps).
For instance, consider the following class:

class Walnut
{
  private bool cracked;
  public void Crack() { cracked = true; }



  public override string ToString() { return cracked.ToString(); }
}

We can uncrack the walnut as follows:

Type t = typeof (Walnut);
Walnut w = new Walnut();
w.Crack();
FieldInfo f = t.GetField ("cracked", BindingFlags.NonPublic |
                                     BindingFlags.Instance);
f.SetValue (w, false);
Console.WriteLine (w);         // False

Using reflection to access nonpublic members is powerful, but it is also dangerous, since you
can bypass encapsulation, creating an unmanageable dependency on the internal implementation
of a type.

The BindingFlags enum
BindingFlags is intended to be bitwise-combined. In order to get any matches at all, you need
to start with one of the following four combinations:

BindingFlags.Public    | BindingFlags.Instance
BindingFlags.Public    | BindingFlags.Static
BindingFlags.NonPublic | BindingFlags.Instance
BindingFlags.NonPublic | BindingFlags.Static

NonPublic includes internal, protected, protected internal, and private.
The following example retrieves all the public static members of type object:

BindingFlags publicStatic = BindingFlags.Public | BindingFlags.Static;
MemberInfo[] members = typeof (object).GetMembers (publicStatic);

The following example retrieves all the nonpublic members of type object, both static and
instance:

BindingFlags nonPublicBinding =
  BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance;

MemberInfo[] members = typeof (object).GetMembers (nonPublicBinding);

The DeclaredOnly flag excludes functions inherited from base types, unless they are
overridden.

NOTE
The DeclaredOnly flag is somewhat confusing in that it restricts the result set (whereas all the
other binding flags expand the result set).

Generic Methods
Generic methods cannot be invoked directly; the following throws an exception:

class Program
{



  public static T Echo<T> (T x) { return x; }

  static void Main()
  {
    MethodInfo echo = typeof (Program).GetMethod ("Echo");
    Console.WriteLine (echo.IsGenericMethodDefinition);    // True
    echo.Invoke (null, new object[] { 123 } );             // Exception
  }
}

An extra step is required, which is to call MakeGenericMethod on the MethodInfo, specifying
concrete generic type arguments. This returns another MethodInfo, which you can then invoke
as follows:

MethodInfo echo = typeof (Program).GetMethod ("Echo");
MethodInfo intEcho = echo.MakeGenericMethod (typeof (int));
Console.WriteLine (intEcho.IsGenericMethodDefinition);            // False
Console.WriteLine (intEcho.Invoke (null, new object[] { 3 } ));   // 3

Anonymously Calling Members of a Generic Interface
Reflection is useful when you need to invoke a member of a generic interface and you don’t
know the type parameters until runtime. In theory, the need for this arises rarely if types are
perfectly designed; of course, types are not always perfectly designed.
For instance, suppose we want to write a more powerful version of ToString that could
expand the result of LINQ queries. We could start out as follows:

public static string ToStringEx <T> (IEnumerable<T> sequence)
{
  ...
}

This is already quite limiting. What if sequence contained nested collections that we also
want to enumerate? We’d have to overload the method to cope:

public static string ToStringEx <T> (IEnumerable<IEnumerable<T>> sequence)

And then what if sequence contained groupings, or projections of nested sequences? The
static solution of method overloading becomes impractical — we need an approach that can
scale to handle an arbitrary object graph, such as the following:

public static string ToStringEx (object value)
{
  if (value == null) return "<null>";
  StringBuilder sb = new StringBuilder();

  if (value is List<>)                                            // Error
    sb.Append ("List of " + ((List<>) value).Count + " items");   // Error

  if (value is IGrouping<,>)                                      // Error
    sb.Append ("Group with key=" + ((IGrouping<,>) value).Key);   // Error

  // Enumerate collection elements if this is a collection,
  // recursively calling ToStringEx()
  // ...

  return sb.ToString();
}



Unfortunately, this won’t compile: you cannot invoke members of an unbound generic type such
as List<> or IGrouping<>. In the case of List<>, we can solve the problem by using the
nongeneric IList interface instead:

  if (value is IList)
    sb.AppendLine ("A list with " + ((IList) value).Count + " items");

NOTE
We can do this because the designers of List<> had the foresight to implement IList classic
(as well as IList generic). The same principle is worthy of consideration when writing your
own generic types: having a nongeneric interface or base class upon which consumers can fall
back can be extremely valuable.

The solution is not as simple for IGrouping<,>. Here’s how the interface is defined:

public interface IGrouping <TKey,TElement> : IEnumerable <TElement>,
                                             IEnumerable
{
  TKey Key { get; }
}

There’s no nongeneric type we can use to access the Key property, so here we must use
reflection. The solution is not to invoke members of an unbound generic type (which is
impossible), but to invoke members of a closed generic type, whose type arguments we
establish at runtime.

NOTE
In the following chapter, we solve this more simply with C#’s dynamic keyword. A good
indication for dynamic binding is when you would otherwise have to perform type
gymnastics — as we are doing right now.

The first step is to determine whether value implements IGrouping<,>, and if so, obtain its
closed generic interface. We can do this most easily with a LINQ query. Then we retrieve and
invoke the Key property:

public static string ToStringEx (object value)
{
  if (value == null) return "<null>";
  if (value.GetType().IsPrimitive) return value.ToString();

  StringBuilder sb = new StringBuilder();

  if (value is IList)
    sb.Append ("List of " + ((IList)value).Count + " items: ");

  Type closedIGrouping = value.GetType().GetInterfaces()
    .Where (t => t.IsGenericType &&
                 t.GetGenericTypeDefinition() == typeof (IGrouping<,>))
    .FirstOrDefault();

  if (closedIGrouping != null)   // Call the Key property on IGrouping<,>
  {



    PropertyInfo pi = closedIGrouping.GetProperty ("Key");
    object key = pi.GetValue (value, null);
    sb.Append ("Group with key=" + key + ": ");
  }

  if (value is IEnumerable)
    foreach (object element in ((IEnumerable)value))
      sb.Append (ToStringEx (element) + " ");

  if (sb.Length == 0) sb.Append (value.ToString());

  return "\r\n" + sb.ToString();
}

This approach is robust: it works whether IGrouping<,> is implemented implicitly or
explicitly. The following demonstrates this method:

Console.WriteLine (ToStringEx (new List<int> { 5, 6, 7 } ));
Console.WriteLine (ToStringEx ("xyyzzz".GroupBy (c => c) ));

List of 3 items: 5 6 7

Group with key=x: x
Group with key=y: y y
Group with key=z: z z z

Reflecting Assemblies
You can dynamically reflect an assembly by calling GetType or GetTypes on an Assembly
object. The following retrieves from the current assembly, the type called TestProgram in the
Demos namespace:

Type t = Assembly.GetExecutingAssembly().GetType ("Demos.TestProgram");

You can also obtain an assembly from an existing type:

typeof (Foo).GetTypeInfo().Assembly.GetType ("Demos.TestProgram");

The next example lists all the types in the assembly mylib.dll in e:\demo:

Assembly a = Assembly.LoadFrom (@"e:\demo\mylib.dll");

foreach (Type t in a.GetTypes())
  Console.WriteLine (t);

Or:

Assembly a = typeof (Foo).GetTypeInfo().Assembly;

foreach (Type t in a.ExportedTypes)
  Console.WriteLine (t);

GetTypes and ExportedTypes return only top-level and not nested types.

Loading an Assembly into a Reflection-Only Context
In the preceding example, we loaded an assembly into the current application domain in order
to list its types. This can have undesirable side effects, such as executing static constructors or



upsetting subsequent type resolution. The solution, if you just need to inspect type information
(and not instantiate or invoke types), is to load the assembly into a reflection-only context
(desktop apps only):

Assembly a = Assembly.ReflectionOnlyLoadFrom (@"e:\demo\mylib.dll");
Console.WriteLine (a.ReflectionOnly);   // True

foreach (Type t in a.GetTypes())
  Console.WriteLine (t);

This is the starting point for writing a class browser.
There are three methods for loading an assembly into the reflection-only context:

ReflectionOnlyLoad (byte[])

ReflectionOnlyLoad (string)

ReflectionOnlyLoadFrom (string)

NOTE
Even in a reflection-only context, it is not possible to load multiple versions of mscorlib.dll. A
workaround is to use Microsoft’s CCI libraries (http://cciast.codeplex.com) or Mono.Cecil
(www.mono-project.com/Cecil).

Modules
Calling GetTypes on a multimodule assembly returns all types in all modules. As a result, you
can ignore the existence of modules and treat an assembly as a type’s container. There is one
case, though, where modules are relevant — and that’s when dealing with metadata tokens.
A metadata token is an integer that uniquely refers to a type, member, string, or resource within
the scope of a module. IL uses metadata tokens, so if you’re parsing IL, you’ll need to be able
to resolve them. The methods for doing this are defined in the Module type and are called
ResolveType, ResolveMember, ResolveString, and ResolveSignature. We revisit this in
the final section of this chapter, on writing a disassembler.
You can obtain a list of all the modules in an assembly by calling GetModules. You can also
access an assembly’s main module directly — via its ManifestModule property.

Working with Attributes
The CLR allows additional metadata to be attached to types, members, and assemblies through
attributes. This is the mechanism by which many CLR functions such as serialization and
security are directed, making attributes an indivisible part of an application.
A key characteristic of attributes is that you can write your own, and then use them just as you
would any other attribute to “decorate” a code element with additional information. This
additional information is compiled into the underlying assembly and can be retrieved at runtime
using reflection to build services that work declaratively, such as automated unit testing.

http://cciast.codeplex.com
http://www.mono-project.com/Cecil


Attribute Basics
There are three kinds of attributes:

Bit-mapped attributes

Custom attributes

Pseudocustom attributes

Of these, only custom attributes are extensible.

NOTE
The term attributes by itself can refer to any of the three, although in the C# world, it most
often refers to custom attributes or pseudocustom attributes.

Bit-mapped attributes (our terminology) map to dedicated bits in a type’s metadata. Most of
C#’s modifier keywords, such as public, abstract, and sealed, compile to bit-mapped
attributes. These attributes are very efficient because they consume minimal space in the
metadata (usually just one bit), and the CLR can locate them with little or no indirection. The
reflection API exposes them via dedicated properties on Type (and other MemberInfo
subclasses), such as IsPublic, IsAbstract, and IsSealed. The Attributes property returns
a flags enum that describes most of them in one hit:

static void Main()
{
  TypeAttributes ta = typeof (Console).Attributes;
  MethodAttributes ma = MethodInfo.GetCurrentMethod().Attributes;
  Console.WriteLine (ta + "\r\n" + ma);
}

Here’s the result:

AutoLayout, AnsiClass, Class, Public, Abstract, Sealed, BeforeFieldInit
PrivateScope, Private, Static, HideBySig

In contrast, custom attributes compile to a blob that hangs off the type’s main metadata table.
All custom attributes are represented by a subclass of System.Attribute and, unlike bit-
mapped attributes, are extensible. The blob in the metadata identifies the attribute class, and
also stores the values of any positional or named argument that was specified when the
attribute was applied. Custom attributes that you define yourself are architecturally identical to
those defined in the .NET Framework.
Chapter 4 describes how to attach custom attributes to a type or member in C#. Here, we attach
the predefined Obsolete attribute to the Foo class:

[Obsolete] public class Foo {...}

This instructs the compiler to incorporate an instance of ObsoleteAttribute into the metadata
for Foo, which can then be reflected at runtime by calling GetCustom Attributes on a Type or
MemberInfo object.



Pseudocustom attributes look and feel just like standard custom attributes. They are
represented by a subclass of System.Attribute and are attached in the standard manner:

[Serializable] public class Foo {...}

The difference is that the compiler or CLR internally optimizes pseudocustom attributes by
converting them to bit-mapped attributes. Examples include [Serializable] (Chapter 17),
StructLayout, In, and Out (Chapter 25). Reflection exposes pseudocustom attributes through
dedicated properties such as IsSerializable, and in many cases they are also returned as
System.Attribute objects when you call GetCustomAttributes
(SerializableAttribute included). This means you can (almost) ignore the difference
between pseudo- and nonpseudocustom attributes (a notable exception is when using
Reflection.Emit to generate types dynamically at runtime; see “Emitting Assemblies and
Types” later in this chapter).

The AttributeUsage Attribute
AttributeUsage is an attribute applied to attribute classes. It tells the compiler how the target
attribute should be used:

public sealed class AttributeUsageAttribute : Attribute
{
  public AttributeUsageAttribute (AttributeTargets validOn);

  public bool AllowMultiple        { get; set; }
  public bool Inherited            { get; set; }
  public AttributeTargets ValidOn  { get; }
}

AllowMultiple controls whether the attribute being defined can be applied more than once to
the same target; Inherited controls whether an attribute applied to a base class also applies
to derived classes (or in the case of methods, whether an attribute applied to a virtual method
also applies to overriding methods). ValidOn determines the set of targets (classes, interfaces,
properties, methods, parameters, etc.) to which the attribute can be attached. It accepts any
combination of values from the AttributeTargets enum, which has the following members:

All Delegate GenericParameter Parameter

Assembly Enum Interface Property

Class Event Method ReturnValue

Constructor Field Module Struct

To illustrate, here’s how the authors of the .NET Framework have applied AttributeUsage to
the Serializable attribute:

[AttributeUsage (AttributeTargets.Delegate |
                 AttributeTargets.Enum     |
                 AttributeTargets.Struct   |
                 AttributeTargets.Class,     Inherited = false)
]
public sealed class SerializableAttribute : Attribute { }

This is, in fact, almost the complete definition of the Serializable attribute. Writing an
attribute class that has no properties or special constructors is this simple.



Defining Your Own Attribute
Here’s how you write your own attribute:

1. Derive a class from System.Attribute or a descendant of System.Attribute. By
convention, the class name should end with the word attributes, although this isn’t
required.

2. Apply the AttributeUsage attribute, described in the preceding section. 
If the attribute requires no properties or arguments in its constructor, the job is done.

3. Write one or more public constructors. The parameters to the constructor define the
positional parameters of the attribute and will become mandatory when using the
attribute.

4. Declare a public field or property for each named parameter you wish to support. Named
parameters are optional when using the attribute.

NOTE
Attribute properties and constructor parameters must be of the following types:

A sealed primitive type: in other words, bool, byte, char, double, float, int, long, short,
or string

The Type type

An enum type

A one-dimensional array of any of these

When an attribute is applied, it must also be possible for the compiler to statically evaluate
each of the properties or constructor arguments.

The following class defines an attribute for assisting an automated unit-testing system. It
indicates that a method should be tested, the number of test repetitions, and a message in case
of failure:

[AttributeUsage (AttributeTargets.Method)]
public sealed class TestAttribute : Attribute
{
  public int     Repetitions;
  public string  FailureMessage;

  public TestAttribute () : this (1)     { }
  public TestAttribute (int repetitions) { Repetitions = repetitions; }
}

Here’s a Foo class with methods decorated in various ways with the Test attribute:

class Foo
{
  [Test]
  public void Method1() { ... }

  [Test(20)]



  public void Method2() { ... }

  [Test(20, FailureMessage="Debugging Time!")]
  public void Method3() { ... }
}

Retrieving Attributes at Runtime
There are two standard ways to retrieve attributes at runtime:

Call GetCustomAttributes on any Type or MemberInfo object.

Call Attribute.GetCustomAttribute or Attribute.GetCustomAttributes.

These latter two methods are overloaded to accept any reflection object that corresponds to a
valid attribute target (Type, Assembly, Module, MemberInfo, or ParameterInfo).

NOTE
From Framework 4.0, you can also call GetCustomAttributesData() on a type or member to
obtain attribute information. The difference between this and GetCustomAttributes() is that
the former tells you how the attribute was instantiated: it reports the constructor overload that
was used, and the value of each constructor argument and named parameter. This is useful
when you want to emit code or IL to reconstruct the attribute to the same state (see “Emitting
Type Members” later in this chapter).

Here’s how we can enumerate each method in the preceding Foo class that has a
TestAttribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
  TestAttribute att = (TestAttribute) Attribute.GetCustomAttribute
    (mi, typeof (TestAttribute));

  if (att != null)
    Console.WriteLine ("Method {0} will be tested; reps={1}; msg={2}",
                        mi.Name, att.Repetitions, att.FailureMessage);
}

Or:

foreach (MethodInfo mi in typeof (Foo).GetTypeInfo().DeclaredMethods)
...

Here’s the output:

Method Method1 will be tested; reps=1; msg=
Method Method2 will be tested; reps=20; msg=
Method Method3 will be tested; reps=20; msg=Debugging Time!

To complete the illustration on how we could use this to write a unit-testing system, here’s the
same example expanded so that it actually calls the methods decorated with the Test attribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
  TestAttribute att = (TestAttribute) Attribute.GetCustomAttribute



    (mi, typeof (TestAttribute));

  if (att != null)
    for (int i = 0; i < att.Repetitions; i++)
      try
      {
        mi.Invoke (new Foo(), null);    // Call method with no arguments
      }
      catch (Exception ex)       // Wrap exception in att.FailureMessage
      {
        throw new Exception ("Error: " + att.FailureMessage, ex);
      }
}

Returning to attribute reflection, here’s an example that lists the attributes present on a specific
type:

[Serializable, Obsolete]
class Test
{
  static void Main()
  {
    object[] atts = Attribute.GetCustomAttributes (typeof (Test));
    foreach (object att in atts) Console.WriteLine (att);
  }
}

Output:

System.ObsoleteAttribute
System.SerializableAttribute

Retrieving Attributes in the Reflection-Only Context
Calling GetCustomAttributes on a member loaded in the reflection-only context is
prohibited because it would require instantiating arbitrarily typed attributes (remember that
object instantiation isn’t allowed in the reflection-only context). To work around this, there’s a
special type called CustomAttributeData for reflecting over such attributes. Here’s an
example of how it’s used:

IList<CustomAttributeData> atts = CustomAttributeData.GetCustomAttributes
                                  (myReflectionOnlyType);
foreach (CustomAttributeData att in atts)
{
  Console.Write (att.GetType());               // Attribute type

  Console.WriteLine (" " + att.Constructor);   // ConstructorInfo object

  foreach (CustomAttributeTypedArgument arg in att.ConstructorArguments)
    Console.WriteLine ("  " +arg.ArgumentType + "=" + arg.Value);

  foreach (CustomAttributeNamedArgument arg in att.NamedArguments)
    Console.WriteLine ("  " + arg.MemberInfo.Name + "=" + arg.TypedValue);
}

In many cases, the attribute types will be in a different assembly from the one you’re reflecting.
One way to cope with this is to handle the ReflectionOnlyAssembly Resolve event on the
current application domain:

ResolveEventHandler handler = (object sender, ResolveEventArgs args)
                            => Assembly.ReflectionOnlyLoad (args.Name);



AppDomain.CurrentDomain.ReflectionOnlyAssemblyResolve += handler;

// Reflect over attributes...

AppDomain.CurrentDomain.ReflectionOnlyAssemblyResolve -= handler;

Dynamic Code Generation
The System.Reflection.Emit namespace contains classes for creating metadata and IL at
runtime. Generating code dynamically is useful for certain kinds of programming tasks. An
example is the regular expressions API, which emits performant types tuned to specific regular
expressions. Other uses of Reflection.Emit in the Framework include dynamically
generating transparent proxies for Remoting and generating types that perform specific XSLT
transforms with minimum runtime overhead. LINQPad uses Reflection.Emit to dynamically
generate typed DataContext classes.
Reflection.Emit is not supported with Windows Store or .NET Core apps.

Generating IL with DynamicMethod
The DynamicMethod class is a lightweight tool in the System.Reflection.Emit namespace
for generating methods on the fly. Unlike TypeBuilder, it doesn’t require that you first set up a
dynamic assembly, module, and type in which to contain the method. This makes it suitable for
simple tasks — as well as serving as a good introduction to Reflection.Emit.

NOTE
A DynamicMethod and the associated IL are garbage-collected when no longer referenced. This
means you can repeatedly generate dynamic methods without filling up memory. (To do the
same with dynamic assemblies, you must apply the AssemblyBuilderAccess.RunAndCollect
flag when creating the assembly.)

Here is a simple use of DynamicMethod to create a method that writes Hello world to the
console:

public class Test
{
  static void Main()
  {
    var dynMeth = new DynamicMethod ("Foo", null, null, typeof (Test));
    ILGenerator gen = dynMeth.GetILGenerator();
    gen.EmitWriteLine ("Hello world");
    gen.Emit (OpCodes.Ret);
    dynMeth.Invoke (null, null);                    // Hello world
  }
}

OpCodes has a static read-only field for every IL opcode. Most of the functionality is exposed
through various opcodes, although ILGenerator also has specialized methods for generating
labels and local variables and for exception handling. A method always ends in Opcodes.Ret,
which means “return,” or some kind of branching/throwing instruction. The EmitWriteLine
method on ILGenerator is a shortcut for Emitting a number of lower-level opcodes. We could
have replaced the call to EmitWriteLine with this, and we would have gotten the same result:



MethodInfo writeLineStr = typeof (Console).GetMethod ("WriteLine",
                           new Type[] { typeof (string) });
gen.Emit (OpCodes.Ldstr, "Hello world");     // Load a string
gen.Emit (OpCodes.Call, writeLineStr);       // Call a method

Note that we passed typeof(Test) into DynamicMethod’s constructor. This gives the dynamic
method access to the nonpublic methods of that type, allowing us to do this:

public class Test
{
  static void Main()
  {
    var dynMeth = new DynamicMethod ("Foo", null, null, typeof (Test));
    ILGenerator gen = dynMeth.GetILGenerator();

    MethodInfo privateMethod = typeof(Test).GetMethod ("HelloWorld",
      BindingFlags.Static | BindingFlags.NonPublic);

    gen.Emit (OpCodes.Call, privateMethod);     // Call HelloWorld
    gen.Emit (OpCodes.Ret);

    dynMeth.Invoke (null, null);                // Hello world
  }

  static void HelloWorld()       // private method, yet we can call it
  {
    Console.WriteLine ("Hello world");
  }
}

Understanding IL requires a considerable investment of time. Rather than understand all the
opcodes, it’s much easier to compile a C# program, and then examine, copy, and tweak the IL.
LINQPad displays the IL for any method or code snippet that you type, and assembly viewing
tools such as ildasm or .NET Reflector are useful for examining existing assemblies.

The Evaluation Stack
Central to IL is the concept of the evaluation stack. To call a method with arguments, you first
push (“load”) the arguments onto the evaluation stack, and then call the method. The method
then pops the arguments it needs from the evaluation stack. We demonstrated this previously, in
calling Console.WriteLine. Here’s a similar example with an integer:

var dynMeth = new DynamicMethod ("Foo", null, null, typeof(void));
ILGenerator gen = dynMeth.GetILGenerator();
MethodInfo writeLineInt = typeof (Console).GetMethod ("WriteLine",
                                        new Type[] { typeof (int) });

// The Ldc* op-codes load numeric literals of various types and sizes.

gen.Emit (OpCodes.Ldc_I4, 123);        // Push a 4-byte integer onto stack
gen.Emit (OpCodes.Call, writeLineInt);

gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null);           // 123

To add two numbers together, you first load each number onto the evaluation stack, and then
call Add. The Add opcode pops two values from the evaluation stack and pushes the result back
on. The following adds 2 and 2, and then writes the result using the writeLine method
obtained previously:

gen.Emit (OpCodes.Ldc_I4, 2);           // Push a 4-byte integer, value=2



gen.Emit (OpCodes.Ldc_I4, 2);           // Push a 4-byte integer, value=2
gen.Emit (OpCodes.Add);                 // Add the result together
gen.Emit (OpCodes.Call, writeLineInt);

To calculate 10 / 2 + 1, you can do either this:

gen.Emit (OpCodes.Ldc_I4, 10);
gen.Emit (OpCodes.Ldc_I4, 2);
gen.Emit (OpCodes.Div);
gen.Emit (OpCodes.Ldc_I4, 1);
gen.Emit (OpCodes.Add);
gen.Emit (OpCodes.Call, writeLineInt);

or this:

gen.Emit (OpCodes.Ldc_I4, 1);
gen.Emit (OpCodes.Ldc_I4, 10);
gen.Emit (OpCodes.Ldc_I4, 2);
gen.Emit (OpCodes.Div);
gen.Emit (OpCodes.Add);
gen.Emit (OpCodes.Call, writeLineInt);

Passing Arguments to a Dynamic Method
You can load an argument passed into a dynamic method onto the stack with the Ldarg and
Ldarg_XXX opcodes. To return a value, leave exactly one value on the stack upon finishing. For
this to work, you must specify the return type and argument types when calling
DynamicMethod’s constructor. The following creates a dynamic method that returns the sum of
two integers:

DynamicMethod dynMeth = new DynamicMethod ("Foo",
  typeof (int),                              // Return type = int
  new[] { typeof (int), typeof (int) },      // Parameter types = int, int
  typeof (void));

ILGenerator gen = dynMeth.GetILGenerator();

gen.Emit (OpCodes.Ldarg_0);      // Push first arg onto eval stack
gen.Emit (OpCodes.Ldarg_1);      // Push second arg onto eval stack
gen.Emit (OpCodes.Add);          // Add them together (result on stack)
gen.Emit (OpCodes.Ret);          // Return with stack having 1 value

int result = (int) dynMeth.Invoke (null, new object[] { 3, 4 } );   // 7

WARNING
When you exit, the evaluation stack must have exactly 0 or 1 item (depending on whether
your method returns a value). If you violate this, the CLR will refuse to execute your
method. You can remove an item from the stack without processing it with OpCodes.Pop.

Rather than calling Invoke, it can be more convenient to work with a dynamic method as a
typed delegate. The CreateDelegate method achieves just this. To illustrate, suppose we
define a delegate called BinaryFunction:

delegate int BinaryFunction (int n1, int n2);

We could then replace the last line of our preceding example with this:



BinaryFunction f = (BinaryFunction) dynMeth.CreateDelegate
                                           (typeof (BinaryFunction));
int result = f (3, 4);      // 7

NOTE
A delegate also eliminates the overhead of dynamic method invocation — saving a few
microseconds per call.

We demonstrate how to pass by reference later in the section “Emitting Type Members”.

Generating Local Variables
You can declare a local variable by calling DeclareLocal on an ILGenerator. This returns a
LocalBuilder object, which can be used in conjunction with opcodes such as Ldloc (load a
local variable) or Stloc (store a local variable). Ldloc pushes the evaluation stack; Stloc
pops it. For example, consider the following C# code:

int x = 6;
int y = 7;
x *= y;
Console.WriteLine (x);

The following generates the preceding code dynamically:

var dynMeth = new DynamicMethod ("Test", null, null, typeof (void));
ILGenerator gen = dynMeth.GetILGenerator();

LocalBuilder localX = gen.DeclareLocal (typeof (int));    // Declare x
LocalBuilder localY = gen.DeclareLocal (typeof (int));    // Declare y

gen.Emit (OpCodes.Ldc_I4, 6);        // Push literal 6 onto eval stack
gen.Emit (OpCodes.Stloc, localX);    // Store in localX
gen.Emit (OpCodes.Ldc_I4, 7);        // Push literal 7 onto eval stack
gen.Emit (OpCodes.Stloc, localY);    // Store in localY

gen.Emit (OpCodes.Ldloc, localX);    // Push localX onto eval stack
gen.Emit (OpCodes.Ldloc, localY);    // Push localY onto eval stack
gen.Emit (OpCodes.Mul);              // Multiply values together
gen.Emit (OpCodes.Stloc, localX);    // Store the result to localX

gen.EmitWriteLine (localX);          // Write the value of localX
gen.Emit (OpCodes.Ret);

dynMeth.Invoke (null, null);         // 42

NOTE
Redgate’s .NET Reflector is great for examining dynamic methods for errors: if you
decompile to C#, it’s usually quite obvious where you’ve gone wrong! We explain how to
save dynamic emissions to disk in the section “Emitting Assemblies and Types”. Another
useful tool is Microsoft’s IL visualizer for Visual Studio (http://albahari.com/ilvisualizer).

Branching
In IL, there are no while, do, and for loops; it’s all done with labels and the equivalent of

http://albahari.com/ilvisualizer


goto and conditional goto statements. These are the branching opcodes, such as Br (branch
unconditionally), Brtrue (branch if the value on the evaluation stack is true), and Blt (branch
if the first value is less than the second value).
To set a branch target, first call DefineLabel (this returns a Label object), and then call
MarkLabel at the place where you want to anchor the label. For example, consider the
following C# code:

int x = 5;
while (x <= 10) Console.WriteLine (x++);

We can emit this as follows:

ILGenerator gen = ...

Label startLoop = gen.DefineLabel();                  // Declare labels
Label endLoop = gen.DefineLabel();

LocalBuilder x = gen.DeclareLocal (typeof (int));     // int x
gen.Emit (OpCodes.Ldc_I4, 5);                         //
gen.Emit (OpCodes.Stloc, x);                          // x = 5
gen.MarkLabel (startLoop);
  gen.Emit (OpCodes.Ldc_I4, 10);              // Load 10 onto eval stack
  gen.Emit (OpCodes.Ldloc, x);                // Load x onto eval stack

  gen.Emit (OpCodes.Blt, endLoop);            // if (x > 10) goto endLoop

  gen.EmitWriteLine (x);                      // Console.WriteLine (x)

  gen.Emit (OpCodes.Ldloc, x);                // Load x onto eval stack
  gen.Emit (OpCodes.Ldc_I4, 1);               // Load 1 onto the stack
  gen.Emit (OpCodes.Add);                     // Add them together
  gen.Emit (OpCodes.Stloc, x);                // Save result back to x

  gen.Emit (OpCodes.Br, startLoop);           // return to start of loop
gen.MarkLabel (endLoop);

gen.Emit (OpCodes.Ret);

Instantiating Objects and Calling Instance Methods
The IL equivalent of new is the Newobj opcode. This takes a constructor and loads the
constructed object onto the evaluation stack. For instance, the following constructs a
StringBuilder:

var dynMeth = new DynamicMethod ("Test", null, null, typeof (void));
ILGenerator gen = dynMeth.GetILGenerator();

ConstructorInfo ci = typeof (StringBuilder).GetConstructor (new Type[0]);
gen.Emit (OpCodes.Newobj, ci);

Once an object is on the evaluation stack, you can call its instance methods using the Call or
Callvirt opcode. Extending this example, we’ll query the StringBuilder’s MaxCapacity
property by calling the property’s get accessor, and then write out the result:

gen.Emit (OpCodes.Callvirt, typeof (StringBuilder)
                            .GetProperty ("MaxCapacity").GetGetMethod());

gen.Emit (OpCodes.Call, typeof (Console).GetMethod ("WriteLine",
                                         new[] { typeof (int) } ));
gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null);              // 2147483647



To emulate C# calling semantics:
Use Call to invoke static methods and value type instance methods.

Use Callvirt to invoke reference type instance methods (whether or not they’re declared
virtual).

In our example, we used Callvirt on the StringBuilder instance — even though
MaxProperty is not virtual. This doesn’t cause an error: it simply performs a nonvirtual call
instead. Always invoking reference type instance methods with Callvirt avoids risking the
opposite condition: invoking a virtual method with Call. (The risk is real. The author of the
target method may later change its declaration.) Callvirt also has the benefit of checking that
the receiver is non-null.

WARNING
Invoking a virtual method with Call bypasses virtual calling semantics, and calls that method
directly. This is rarely desirable and, in effect, violates type safety.

In the following example, we construct a StringBuilder passing in two arguments, append ",
world!" to the StringBuilder, and then call ToString on it:

// We will call:   new StringBuilder ("Hello", 1000)

ConstructorInfo ci = typeof (StringBuilder).GetConstructor (
                     new[] { typeof (string), typeof (int) } );

gen.Emit (OpCodes.Ldstr, "Hello");   // Load a string onto the eval stack
gen.Emit (OpCodes.Ldc_I4, 1000);     // Load an int onto the eval stack
gen.Emit (OpCodes.Newobj, ci);       // Construct the StringBuilder

Type[] strT = { typeof (string) };
gen.Emit (OpCodes.Ldstr, ", world!");
gen.Emit (OpCodes.Call, typeof (StringBuilder).GetMethod ("Append", strT));
gen.Emit (OpCodes.Callvirt, typeof (object).GetMethod ("ToString"));
gen.Emit (OpCodes.Call, typeof (Console).GetMethod ("WriteLine", strT));
gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null);        // Hello, world!

For fun we called GetMethod on typeof(object), and then used Callvirt to perform a
virtual method call on ToString. We could have gotten the same result by calling ToString on
the StringBuilder type itself:

gen.Emit (OpCodes.Callvirt, typeof (StringBuilder).GetMethod ("ToString",
                                                          new Type[0] ));

(The empty type array is required in calling GetMethod because StringBuilder overloads
ToString with another signature.)

NOTE
Had we called object’s ToString method nonvirtually:

gen.Emit (OpCodes.Call,
          typeof (object).GetMethod ("ToString"));



the result would have been “System.Text.StringBuilder.” In other words, we would have
circumvented StringBuilder’s ToString override and called object’s version directly.

Exception Handling
ILGenerator provides dedicated methods for exception handling. The translation for the
following C# code:

try                               { throw new NotSupportedException(); }
catch (NotSupportedException ex)  { Console.WriteLine (ex.Message);    }
finally                           { Console.WriteLine ("Finally");     }

is this:

MethodInfo getMessageProp = typeof (NotSupportedException)
                            .GetProperty ("Message").GetGetMethod();

MethodInfo writeLineString = typeof (Console).GetMethod ("WriteLine",
                                             new[] { typeof (object) } );
gen.BeginExceptionBlock();
  ConstructorInfo ci = typeof (NotSupportedException).GetConstructor (
                                                        new Type[0] );
  gen.Emit (OpCodes.Newobj, ci);
  gen.Emit (OpCodes.Throw);
gen.BeginCatchBlock (typeof (NotSupportedException));
  gen.Emit (OpCodes.Callvirt, getMessageProp);
  gen.Emit (OpCodes.Call, writeLineString);
gen.BeginFinallyBlock();
  gen.EmitWriteLine ("Finally");
gen.EndExceptionBlock();

Just as in C#, you can include multiple catch blocks. To rethrow the same exception, emit the
Rethrow opcode.

WARNING
ILGenerator provides a helper method called ThrowException. This contains a bug, however,
preventing it from being used with a DynamicMethod. It works only with a MethodBuilder (see
the next section).

Emitting Assemblies and Types
Although DynamicMethod is convenient, it can generate only methods. If you need to emit any
other construct — or a complete type — you need to use the full “heavyweight” API. This
means dynamically building an assembly and module. The assembly need not have a disk
presence, however; it can live entirely in memory.
Let’s assume we want to dynamically build a type. Since a type must live in a module within an
assembly, we must first create the assembly and module before we can create the type. This is
the job of the AssemblyBuilder and ModuleBuilder types:

AppDomain appDomain = AppDomain.CurrentDomain;

AssemblyName aname = new AssemblyName ("MyDynamicAssembly");



AssemblyBuilder assemBuilder =
  appDomain.DefineDynamicAssembly (aname, AssemblyBuilderAccess.Run);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule ("DynModule");

NOTE
You can’t add a type to an existing assembly, because an assembly is immutable once
created.
Dynamic assemblies are not garbage collected, and remain in memory until the application
domain ends, unless you specify AssemblyBuilderAccess.RunAndCollect when defining the
assembly. Various restrictions apply to collectible assemblies (see
http://albahari.com/dynamiccollect).

Once we have a module where the type can live, we can use TypeBuilder to create the type.
The following defines a class called Widget:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

The TypeAttributes flags enum supports the CLR type modifiers you see when
disassembling a type with ildasm. As well as member visibility flags, this includes type
modifiers such as Abstract and Sealed — and Interface for defining a .NET interface. It
also includes Serializable, which is equivalent to applying the [Serializable] attribute in
C#, and Explicit, which is equivalent to applying
[StructLayout(LayoutKind.Explicit)]. We describe how to apply other kinds of
attributes later in this chapter, in the section “Attaching Attributes”.

NOTE
The DefineType method also accepts an optional base type:

To define a struct, specify a base type of System.ValueType.

To define a delegate, specify a base type of System.MulticastDelegate.

To implement an interface, use the constructor that accepts an array of interface types.

To define an interface, specify TypeAttributes.Interface | TypeAttributes.Abstract.

Defining a delegate type requires a number of extra steps. In his weblog at
http://blogs.msdn.com/joelpob/, Joel Pobar demonstrates how this is done in his article titled
“Creating delegate types via Reflection.Emit.”

We can now create members within the type:

MethodBuilder methBuilder = tb.DefineMethod ("SayHello",
                                             MethodAttributes.Public,
                                             null, null);
ILGenerator gen = methBuilder.GetILGenerator();
gen.EmitWriteLine ("Hello world");
gen.Emit (OpCodes.Ret);

http://albahari.com/dynamiccollect
http://blogs.msdn.com/joelpob/


We’re now ready to create the type, which finalizes its definition:

Type t = tb.CreateType();

Once the type is created, we use ordinary reflection to inspect and perform dynamic binding:

object o = Activator.CreateInstance (t);
t.GetMethod ("SayHello").Invoke (o, null);        // Hello world

Saving Emitted Assemblies
The Save method on AssemblyBuilder writes a dynamically generated assembly to a
specified filename. For this to work, though, you must do two things:

Specify an AssemblyBuilderAccess of Save or RunAndSave when constructing the
AssemblyBuilder.

Specify a filename when constructing the ModuleBuilder (this should match the assembly
filename unless you want to create a multimodule assembly).

You can also optionally set properties of the AssemblyName object, such as Version or
KeyPair (for signing).
For example:

AppDomain domain = AppDomain.CurrentDomain;

AssemblyName aname = new AssemblyName ("MyEmissions");
aname.Version = new Version (2, 13, 0, 1);

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
  aname, AssemblyBuilderAccess.RunAndSave);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule (
  "MainModule", "MyEmissions.dll");

// Create types as we did previously...
// ...

assemBuilder.Save ("MyEmissions.dll");

This writes the assembly to the application’s base directory. To save to a different location,
you must provide the alternative directory when constructing AssemblyBuilder:

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
  aname, AssemblyBuilderAccess.RunAndSave, @"d:\assemblies" );

A dynamic assembly, once written to a file, becomes an ordinary assembly just like any other.
A program could statically reference the assembly we just built and do this:

Widget w = new Widget();
w.SayHello();

The Reflection.Emit Object Model
Figure 19-2 illustrates the essential types in System.Reflection.Emit. Each type describes a
CLR construct and is based on a counterpart in the System.Reflection namespace. This



allows you to use emitted constructs in place of normal constructs when building a type. For
example, we previously called Console.WriteLine as follows:

MethodInfo writeLine = typeof(Console).GetMethod ("WriteLine",
                                       new Type[] { typeof (string) });
gen.Emit (OpCodes.Call, writeLine);

We could just as easily call a dynamically generated method by calling gen.Emit with a
MethodBuilder instead of a MethodInfo. This is essential — otherwise, you couldn’t write
one dynamic method that called another in the same type.

Figure 19-2. System.Reflection.Emit

Recall that you must call CreateType on a TypeBuilder when you’ve finished populating it.
Calling CreateType seals the TypeBuilder and all its members — so nothing more can be
added or changed — and gives you back a real Type that you can instantiate.
Before you call CreateType, the TypeBuilder and its members are in an “uncreated” state.
There are significant restrictions on what you can do with uncreated constructs. In particular,
you cannot call any of the members that return MemberInfo objects, such as GetMembers,
GetMethod, or GetProperty — these all throw an exception. If you want to refer to members
of an uncreated type, you must use the original emissions:

TypeBuilder tb = ...

MethodBuilder method1 = tb.DefineMethod ("Method1", ...);
MethodBuilder method2 = tb.DefineMethod ("Method2", ...);

ILGenerator gen1 = method1.GetILGenerator();

// Suppose we want method1 to call method2:

gen1.Emit (OpCodes.Call, method2);                    // Right
gen1.Emit (OpCodes.Call, tb.GetMethod ("Method2"));   // Wrong

After calling CreateType, you can reflect on and activate not only the Type returned, but also
the original TypeBuilder object. The TypeBuilder, in fact, morphs into a proxy for the real



Type. We’ll see why this feature is important later in this chapter in the section “Awkward
Emission Targets”.

Emitting Type Members
All the examples in this section assume a TypeBuilder, tb, has been instantiated as follows:

AppDomain domain = AppDomain.CurrentDomain;
AssemblyName aname = new AssemblyName ("MyEmissions");

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
  aname, AssemblyBuilderAccess.RunAndSave);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule (
  "MainModule", "MyEmissions.dll");

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

Emitting Methods
You can specify a return type and parameter types when calling DefineMethod, in the same
manner as when instantiating a DynamicMethod. For instance, the following method:

public static double SquareRoot (double value)
{
  return Math.Sqrt (value);
}

can be generated like this:

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
  MethodAttributes.Static | MethodAttributes.Public,
  CallingConventions.Standard,
  typeof (double),                     // Return type
  new[]  { typeof (double) } );        // Parameter types

mb.DefineParameter (1, ParameterAttributes.None, "value");  // Assign name

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);                                // Load 1st arg
gen.Emit (OpCodes.Call, typeof(Math).GetMethod ("Sqrt"));
gen.Emit (OpCodes.Ret);

Type realType = tb.CreateType();
double x = (double) tb.GetMethod ("SquareRoot").Invoke (null,
                                                new object[] { 10.0 });
Console.WriteLine (x);   // 3.16227766016838

Calling DefineParameter is optional and is typically done to assign the parameter a name.
The number 1 refers to the first parameter (0 refers to the return value). If you call
DefineParameter, the parameter is implicitly named __p1, __p2, and so on. Assigning names
makes sense if you will write the assembly to disk; it makes your methods friendly to
consumers.

NOTE
DefineParameter returns a ParameterBuilder object upon which you can call
SetCustomAttribute to attach attributes (see “Attaching Attributes” later in this chapter).



To emit pass-by-reference parameters, such as in the following C# method:

public static void SquareRoot (ref double value)
{
  value = Math.Sqrt (value);
}

call MakeByRefType on the parameter type(s):

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
  MethodAttributes.Static | MethodAttributes.Public,
  CallingConventions.Standard,
  null,
  new Type[] { typeof (double).MakeByRefType() } );

mb.DefineParameter (1, ParameterAttributes.None, "value");

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ldind_R8);
gen.Emit (OpCodes.Call, typeof (Math).GetMethod ("Sqrt"));
gen.Emit (OpCodes.Stind_R8);
gen.Emit (OpCodes.Ret);

Type realType = tb.CreateType();
object[] args = { 10.0 };
tb.GetMethod ("SquareRoot").Invoke (null, args);
Console.WriteLine (args[0]);                     // 3.16227766016838

The opcodes here were copied from a disassembled C# method. Notice the difference in
semantics for accessing parameters passed by reference: Ldind and Stind mean “load
indirectly” and “store indirectly,” respectively. The R8 suffix means an 8-byte floating-point
number.
The process for emitting out parameters is identical, except that you call DefineParameter as
follows:

mb.DefineParameter (1, ParameterAttributes.Out, "value");

Generating instance methods
To generate an instance method, specify MethodAttributes.Instance when calling
DefineMethod:

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
  MethodAttributes.Instance | MethodAttributes.Public
  ...

With instance methods, argument zero is implicitly this; the remaining arguments start at 1. So,
Ldarg_0 loads this onto the evaluation stack; Ldarg_1 loads the first real method argument.

Overriding methods
Overriding a virtual method in a base class is easy: simply define a method with an identical
name, signature, and return type, specifying MethodAttributes.Virtual when calling
DefineMethod. The same applies when implementing interface methods.
TypeBuilder also exposes a method called DefineMethodOverride, which overrides a



method with a different name. This makes sense only with explicit interface implementation; in
other scenarios, use DefineMethod.

HideBySig
If you’re subclassing another type, it’s nearly always worth specifying
MethodAttributes.HideBySig when defining methods. HideBySig ensures that C#-style
method hiding semantics are applied, which is that a base method is hidden only if a subtype
defines a method with an identical signature. Without HideBySig, method hiding considers
only the name, so Foo(string) in the subtype will hide Foo() in the base type, which is
generally undesirable.

Emitting Fields and Properties
To create a field, you call DefineField on a TypeBuilder, telling it the desired field name,
type, and visibility. The following creates a private integer field called “length”:

FieldBuilder field = tb.DefineField ("length", typeof (int),
                                      FieldAttributes.Private);

Creating a property or indexer requires a few more steps. First, call DefineProperty on a
TypeBuilder, telling it the name and type of the property:

PropertyBuilder prop = tb.DefineProperty (
                         "Text",                      // Name of property
                         PropertyAttributes.None,
                         typeof (string),             // Property type
                         new Type[0]                  // Indexer types
                       );

(If you’re writing an indexer, the final argument is an array of indexer types.) Note that we
haven’t specified the property visibility: this is done individually on the accessor methods.
The next step is to write the get and set methods. By convention, their names are prefixed
with “get_” or “set_”. You then attach them to the property by calling SetGetMethod and
SetSetMethod on the PropertyBuilder.
To give a complete example, we’ll take the following field and property declaration:

string _text;
public string Text
{
  get          { return _text; }
  internal set { _text = value; }
}

and generate it dynamically:

FieldBuilder field = tb.DefineField ("_text", typeof (string),
                                      FieldAttributes.Private);
PropertyBuilder prop = tb.DefineProperty (
                         "Text",                      // Name of property
                         PropertyAttributes.None,
                         typeof (string),             // Property type
                         new Type[0]);                // Indexer types

MethodBuilder getter = tb.DefineMethod (
  "get_Text",                                         // Method name
  MethodAttributes.Public | MethodAttributes.SpecialName,



  typeof (string),                                    // Return type
  new Type[0]);                                       // Parameter types

ILGenerator getGen = getter.GetILGenerator();
getGen.Emit (OpCodes.Ldarg_0);        // Load "this" onto eval stack
getGen.Emit (OpCodes.Ldfld, field);   // Load field value onto eval stack
getGen.Emit (OpCodes.Ret);            // Return

MethodBuilder setter = tb.DefineMethod (
  "set_Text",
  MethodAttributes.Assembly | MethodAttributes.SpecialName,
  null,                                                 // Return type
  new Type[] { typeof (string) } );                     // Parameter types

ILGenerator setGen = setter.GetILGenerator();
setGen.Emit (OpCodes.Ldarg_0);        // Load "this" onto eval stack
setGen.Emit (OpCodes.Ldarg_1);        // Load 2nd arg, i.e., value
setGen.Emit (OpCodes.Stfld, field);   // Store value into field
setGen.Emit (OpCodes.Ret);            // return

prop.SetGetMethod (getter);           // Link the get method and property
prop.SetSetMethod (setter);           // Link the set method and property

We can test the property as follows:

Type t = tb.CreateType();
object o = Activator.CreateInstance (t);
t.GetProperty ("Text").SetValue (o, "Good emissions!", new object[0]);
string text = (string) t.GetProperty ("Text").GetValue (o, null);

Console.WriteLine (text);             // Good emissions!

Notice that in defining the accessor MethodAttributes, we included SpecialName. This
instructs compilers to disallow direct binding to these methods when statically referencing the
assembly. It also ensures that the accessors are handled appropriately by reflection tools and
Visual Studio’s IntelliSense.

NOTE
You can emit events in a similar manner, by calling DefineEvent on a TypeBuilder. You then
write explicit event accessor methods, and attach them to the EventBuilder by calling
SetAddOnMethod and SetRemoveOnMethod.

Emitting Constructors
You can define your own constructors by calling DefineConstructor on a type builder.
You’re not obliged to do so — a default parameterless constructor is provided automatically if
you don’t. The default constructor calls the base class constructor if subtyping, just like in C#.
Defining one or more constructors displaces this default constructor.
If you need to initialize fields, the constructor’s a good spot. In fact, it’s the only spot: C#’s
field initializers don’t have special CLR support — they are simply a syntactic shortcut for
assigning values to fields in the constructor.
So, to reproduce this:

class Widget
{
  int _capacity = 4000;



}

you would define a constructor as follows:

FieldBuilder field = tb.DefineField ("_capacity", typeof (int),
                                      FieldAttributes.Private);
ConstructorBuilder c = tb.DefineConstructor (
  MethodAttributes.Public,
  CallingConventions.Standard,
  new Type[0]);                  // Constructor parameters

ILGenerator gen = c.GetILGenerator();

gen.Emit (OpCodes.Ldarg_0);             // Load "this" onto eval stack
gen.Emit (OpCodes.Ldc_I4, 4000);        // Load 4000 onto eval stack
gen.Emit (OpCodes.Stfld, field);        // Store it to our field
gen.Emit (OpCodes.Ret);

Calling base constructors
If subclassing another type, the constructor we just wrote would circumvent the base class
constructor. This is unlike C#, where the base class constructor is always called, whether
directly or indirectly. For instance, given the following code:

class A     { public A() { Console.Write ("A"); } }
class B : A { public B() {} }

the compiler, in effect, will translate the second line into this:

class B : A { public B() : base() {} }

This is not the case when generating IL: you must explicitly call the base constructor if you
want it to execute (which nearly always, you do). Assuming the base class is called A, here’s
how to do it:

gen.Emit (OpCodes.Ldarg_0);
ConstructorInfo baseConstr = typeof (A).GetConstructor (new Type[0]);
gen.Emit (OpCodes.Call, baseConstr);

Calling constructors with arguments is just the same as with methods.

Attaching Attributes
You can attach custom attributes to a dynamic construct by calling SetCustomAttribute with
a CustomAttributeBuilder. For example, suppose we want to attach the following attribute
declaration to a field or property:

[XmlElement ("FirstName", Namespace="http://test/", Order=3)]

This relies on the XmlElementAttribute constructor that accepts a single string. To use
CustomAttributeBuilder, we must retrieve this constructor, as well as the two additional
properties we wish to set (Namespace and Order):

Type attType = typeof (XmlElementAttribute);

ConstructorInfo attConstructor = attType.GetConstructor (
  new Type[] { typeof (string) } );



var att = new CustomAttributeBuilder (
  attConstructor,                        // Constructor
  new object[] { "FirstName" },          // Constructor arguments
  new PropertyInfo[]
  {
    attType.GetProperty ("Namespace"),   // Properties
    attType.GetProperty ("Order")
  },
  new object[] { "http://test/", 3 }     // Property values
);

myFieldBuilder.SetCustomAttribute (att);
// or propBuilder.SetCustomAttribute (att);
// or typeBuilder.SetCustomAttribute (att);  etc

Emitting Generic Methods and Types
All the examples in this section assume that modBuilder has been instantiated as follows:

AppDomain domain = AppDomain.CurrentDomain;
AssemblyName aname = new AssemblyName ("MyEmissions");

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
  aname, AssemblyBuilderAccess.RunAndSave);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule (
  "MainModule", "MyEmissions.dll");

Defining Generic Methods
To emit a generic method:

1. Call DefineGenericParameters on a MethodBuilder to obtain an array of
GenericTypeParameterBuilder objects.

2. Call SetSignature on a MethodBuilder using these generic type parameters.

3. Optionally, name the parameters as you would otherwise.

For example, the following generic method:

public static T Echo<T> (T value)
{
  return value;
}

can be emitted like this:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

MethodBuilder mb = tb.DefineMethod ("Echo", MethodAttributes.Public |
                                            MethodAttributes.Static);
GenericTypeParameterBuilder[] genericParams
  = mb.DefineGenericParameters ("T");

mb.SetSignature (genericParams[0],     // Return type
                 null, null,
                 genericParams,        // Parameter types
                 null, null);

mb.DefineParameter (1, ParameterAttributes.None, "value");   // Optional



ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ret);

The DefineGenericParameters method accepts any number of string arguments — these
correspond to the desired generic type names. In this example, we needed just one generic type
called T. GenericTypeParameterBuilder is based on System.Type, so it can be used in
place of a TypeBuilder when emitting opcodes.
GenericTypeParameterBuilder also lets you specify a base type constraint:

genericParams[0].SetBaseTypeConstraint (typeof (Foo));

and interface constraints:

genericParams[0].SetInterfaceConstraints (typeof (IComparable));

To replicate this:

public static T Echo<T> (T value) where T : IComparable<T>

you would write:

genericParams[0].SetInterfaceConstraints (
  typeof (IComparable<>).MakeGenericType (genericParams[0]) );

For other kinds of constraints, call SetGenericParameterAttributes. This accepts a
member of the GenericParameterAttributes enum, which includes the following values:

DefaultConstructorConstraint
NotNullableValueTypeConstraint
ReferenceTypeConstraint
Covariant
Contravariant

The last two are equivalent to applying the out and in modifiers to the type parameters.

Defining Generic Types
You can define generic types in a similar fashion. The difference is that you call
DefineGenericParameters on the TypeBuilder rather than the MethodBuilder. So, to
reproduce this:

public class Widget<T>
{
  public T Value;
}

you would do the following:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

GenericTypeParameterBuilder[] genericParams
  = tb.DefineGenericParameters ("T");

tb.DefineField ("Value", genericParams[0], FieldAttributes.Public);



Generic constraints can be added just as with a method.

Awkward Emission Targets
All the examples in this section assume that a modBuilder has been instantiated as in previous
sections.

Uncreated Closed Generics
Suppose you want to emit a method that uses a closed generic type:

public class Widget
{
  public static void Test() { var list = new List<int>(); }
}

The process is fairly straightforward:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

MethodBuilder mb = tb.DefineMethod ("Test", MethodAttributes.Public |
                                            MethodAttributes.Static);
ILGenerator gen = mb.GetILGenerator();

Type variableType = typeof (List<int>);

ConstructorInfo ci = variableType.GetConstructor (new Type[0]);

LocalBuilder listVar = gen.DeclareLocal (variableType);
gen.Emit (OpCodes.Newobj, ci);
gen.Emit (OpCodes.Stloc, listVar);
gen.Emit (OpCodes.Ret);

Now suppose that instead of a list of integers, we want a list of widgets:

public class Widget
{
  public static void Test() { var list = new List<Widget>(); }
}

In theory, this is a simple modification; all we do is replace this line:

Type variableType = typeof (List<int>);

with this:

Type variableType = typeof (List<>).MakeGenericType (tb);

Unfortunately, this causes a NotSupportedException to be thrown when we then call
GetConstructor. The problem is that you cannot call GetConstructor on a generic type
closed with an uncreated type builder. The same goes for GetField and GetMethod.
The solution is unintuitive. TypeBuilder provides three static methods as follows:

public static ConstructorInfo GetConstructor (Type, ConstructorInfo);
public static FieldInfo       GetField       (Type, FieldInfo);
public static MethodInfo      GetMethod      (Type, MethodInfo);



Although it doesn’t appear so, these methods exist specifically to obtain members of generic
types closed with uncreated type builders! The first parameter is the closed generic type; the
second parameter is the member you want on the unbound generic type. Here’s the corrected
version of our example:

MethodBuilder mb = tb.DefineMethod ("Test", MethodAttributes.Public |
                                            MethodAttributes.Static);
ILGenerator gen = mb.GetILGenerator();

Type variableType = typeof (List<>).MakeGenericType (tb);

ConstructorInfo unbound = typeof (List<>).GetConstructor (new Type[0]);
ConstructorInfo ci = TypeBuilder.GetConstructor (variableType, unbound);

LocalBuilder listVar = gen.DeclareLocal (variableType);
gen.Emit (OpCodes.Newobj, ci);
gen.Emit (OpCodes.Stloc, listVar);
gen.Emit (OpCodes.Ret);

Circular Dependencies
Suppose you want to build two types that reference each other. For instance:

class A { public B Bee; }
class B { public A Aye; }

You can generate this dynamically as follows:

var publicAtt = FieldAttributes.Public;

TypeBuilder aBuilder = modBuilder.DefineType ("A");
TypeBuilder bBuilder = modBuilder.DefineType ("B");

FieldBuilder bee = aBuilder.DefineField ("Bee", bBuilder, publicAtt);
FieldBuilder aye = bBuilder.DefineField ("Aye", aBuilder, publicAtt);

Type realA = aBuilder.CreateType();
Type realB = bBuilder.CreateType();

Notice that we didn’t call CreateType on aBuilder or bBuilder until we populated both
objects. The principle is: first hook everything up, and then call CreateType on each type
builder.
Interestingly, the realA type is valid but dysfunctional until you call CreateType on
bBuilder. (If you started using aBuilder prior to this, an exception would be thrown when
you tried to access field Bee.)
You might wonder how bBuilder knows to “fix up” realA after creating realB. The answer is
that it doesn’t: realA can fix itself the next time it’s used. This is possible because after calling
CreateType, a TypeBuilder morphs into a proxy for the real runtime type. So, realA, with its
references to bBuilder, can easily obtain the metadata it needs for the upgrade.
This system works when the type builder demands simple information of the unconstructed type
— information that can be predetermined — such as type, member, and object references. In
creating realA, the type builder doesn’t need to know, for instance, how many bytes realB
will eventually occupy in memory. This is just as well, because realB has not yet been
created! But now imagine that realB was a struct. The final size of realB is now critical
information in creating realA.



If the relationship is noncyclical — for instance:

struct A { public B Bee; }
struct B {               }

you can solve this by first creating struct B, and then struct A. But consider this:

struct A { public B Bee; }
struct B { public A Aye; }

We won’t try to emit this because it’s nonsensical to have two structs contain each other (C#
generates a compile-time error if you try). But the following variation is both legal and useful:

public struct S<T> { ... }    // S can be empty and this demo will work.

class A { S<B> Bee; }
class B { S<A> Aye; }

In creating A, a TypeBuilder now needs to know the memory footprint of B, and vice versa. To
illustrate, we’ll assume that struct S is defined statically. Here’s the code to emit classes A and
B:

var pub = FieldAttributes.Public;

TypeBuilder aBuilder = modBuilder.DefineType ("A");
TypeBuilder bBuilder = modBuilder.DefineType ("B");

aBuilder.DefineField ("Bee", typeof(S<>).MakeGenericType (bBuilder), pub);
bBuilder.DefineField ("Aye", typeof(S<>).MakeGenericType (aBuilder), pub);

Type realA = aBuilder.CreateType();    // Error: cannot load type B
Type realB = bBuilder.CreateType();

CreateType now throws a TypeLoadException no matter in which order you go:
Call aBuilder.CreateType first and it says “cannot load type B”.

Call bBuilder.CreateType first and it says “cannot load type A”!

WARNING
You’ll run into this problem if you emit typed LINQ to SQL DataContexts dynamically. The
generic EntityRef type is a struct, equivalent to S in our examples. The circular reference
happens when two tables in the database link to each other through reciprocal parent/child
relationships.

To solve this, you must allow the type builder to create realB partway through creating realA.
This is done by handling the TypeResolve event on the current application domain just before
calling CreateType. So, in our example, we replace the last two lines with this:

TypeBuilder[] uncreatedTypes = { aBuilder, bBuilder };

ResolveEventHandler handler = delegate (object o, ResolveEventArgs args)
{
  var type = uncreatedTypes.FirstOrDefault (t => t.FullName == args.Name);
  return type == null ? null : type.CreateType().Assembly;



};

AppDomain.CurrentDomain.TypeResolve += handler;

Type realA = aBuilder.CreateType();
Type realB = bBuilder.CreateType();

AppDomain.CurrentDomain.TypeResolve -= handler;

The TypeResolve event fires during the call to aBuilder.CreateType, at the point when it
needs you to call CreateType on bBuilder.

NOTE
Handling the TypeResolve event as in this example is also necessary when defining a nested
type, when the nested and parent types refer to each other.

Parsing IL
You can obtain information about the content of an existing method by calling GetMethodBody
on a MethodBase object. This returns a MethodBody object that has properties for inspecting a
method’s local variables, exception handling clauses, stack size — as well as the raw IL.
Rather like the reverse of Reflection.Emit!
Inspecting a method’s raw IL can be useful in profiling code. A simple use would be to
determine which methods in an assembly have changed, when an assembly is updated.
To illustrate parsing IL, we’ll write an application that disassembles IL in the style of ildasm.
This could be used as the starting point for a code analysis tool or a higher-level language
disassembler.

NOTE
Remember that in the reflection API, all of C#’s functional constructs are either represented
by a MethodBase subtype, or (in the case of properties, events, and indexers) have MethodBase
objects attached to them.

Writing a Disassembler

NOTE
You can download the source code for this at http://www.albahari.com/nutshell/.

Here is a sample of the output our disassembler will produce:

IL_00EB:  ldfld        Disassembler._pos
IL_00F0:  ldloc.2
IL_00F1:  add
IL_00F2:  ldelema      System.Byte
IL_00F7:  ldstr        "Hello world"
IL_00FC:  call         System.Byte.ToString

http://www.albahari.com/nutshell/


IL_0101:  ldstr        " "
IL_0106:  call         System.String.Concat

To obtain this output, we must parse the binary tokens that make up the IL. The first step is to
call the GetILAsByteArray method on MethodBody to obtain the IL as a byte array. In order to
make the rest of the job easier, we will write this into a class as follows:

public class Disassembler
{
  public static string Disassemble (MethodBase method)
    => new Disassembler (method).Dis();

  StringBuilder _output;    // The result to which we'll keep appending
  Module _module;           // This will come in handy later
  byte[] _il;               // The raw byte code
  int _pos;                 // The position we're up to in the byte code

  Disassembler (MethodBase method)
  {
    _module = method.DeclaringType.Module;
    _il = method.GetMethodBody().GetILAsByteArray();
  }

  string Dis()
  {
    _output = new StringBuilder();
    while (_pos < _il.Length) DisassembleNextInstruction();
    return _output.ToString();
  }
}

The static Disassemble method will be the only public member of this class. All other
members will be private to the disassembly process. The Dis method contains the “main” loop
where we process each instruction.
With this skeleton in place, all that remains is to write DisassembleNextInstruction. But
before doing so, it will help to load all the opcodes into a static dictionary, so we can access
them by their 8- or 16-bit value. The easiest way to accomplish this is to use reflection to
retrieve all the static fields whose type is OpCode in the OpCodes class:

static Dictionary<short,OpCode> _opcodes = new Dictionary<short,OpCode>();

static Disassembler()
{
  Dictionary<short, OpCode> opcodes = new Dictionary<short, OpCode>();
    foreach (FieldInfo fi in typeof (OpCodes).GetFields
                             (BindingFlags.Public | BindingFlags.Static))
      if (typeof (OpCode).IsAssignableFrom (fi.FieldType))
      {
        OpCode code = (OpCode) fi.GetValue (null);   // Get field's value
        if (code.OpCodeType != OpCodeType.Nternal)
          _opcodes.Add (code.Value, code);
      }
}

We’ve written it in a static constructor so that it executes just once.
Now we can write DisassembleNextInstruction. Each IL instruction consists of a 1- or 2-
byte opcode, followed by an operand of zero, 1, 2, 4, or 8 bytes. (An exception is inline switch
opcodes, which are followed by a variable number of operands.) So, we read the opcode, then
the operand, and then write out the result:



void DisassembleNextInstruction()
{
  int opStart = _pos;

  OpCode code = ReadOpCode();
  string operand = ReadOperand (code);

  _output.AppendFormat ("IL_{0:X4}:  {1,-12} {2}",
                        opStart, code.Name, operand);
  _output.AppendLine();
}

To read an opcode, we advance one byte and see whether we have a valid instruction. If not,
we advance another byte and look for a 2-byte instruction:

OpCode ReadOpCode()
{
  byte byteCode = _il [_pos++];
  if (_opcodes.ContainsKey (byteCode)) return _opcodes [byteCode];

  if (_pos == _il.Length)  throw new Exception ("Unexpected end of IL");

  short shortCode = (short) (byteCode * 256 + _il [_pos++]);

  if (!_opcodes.ContainsKey (shortCode))
    throw new Exception ("Cannot find opcode " + shortCode);

  return _opcodes [shortCode];
}

To read an operand, we first must establish its length. We can do this based on the operand
type. Because most are 4 bytes long, we can filter out the exceptions fairly easily in a
conditional clause.
The next step is to call FormatOperand, which will attempt to format the operand:

string ReadOperand (OpCode c)
{
  int operandLength =
    c.OperandType == OperandType.InlineNone
      ? 0 :
    c.OperandType == OperandType.ShortInlineBrTarget ||
    c.OperandType == OperandType.ShortInlineI ||
    c.OperandType == OperandType.ShortInlineVar
      ? 1 :
    c.OperandType == OperandType.InlineVar
      ? 2 :
    c.OperandType == OperandType.InlineI8 ||
    c.OperandType == OperandType.InlineR
      ? 8 :
    c.OperandType == OperandType.InlineSwitch
      ? 4 * (BitConverter.ToInt32 (_il, _pos) + 1) :
      4;  // All others are 4 bytes

  if (_pos + operandLength > _il.Length)
    throw new Exception ("Unexpected end of IL");

  string result = FormatOperand (c, operandLength);
  if (result == null)
  {                        // Write out operand bytes in hex
    result = "";
    for (int i = 0; i < operandLength; i++)
      result += _il [_pos + i].ToString ("X2") + " ";
  }
  _pos += operandLength;
  return result;
}



If the result of calling FormatOperand is null, it means the operand needs no special
formatting, so we simply write it out in hexadecimal. We could test the disassembler at this
point by writing a FormatOperand method that always returns null. Here’s what the output
would look like:

IL_00A8:  ldfld        98 00 00 04
IL_00AD:  ldloc.2
IL_00AE:  add
IL_00AF:  ldelema      64 00 00 01
IL_00B4:  ldstr        26 04 00 70
IL_00B9:  call         B6 00 00 0A
IL_00BE:  ldstr        11 01 00 70
IL_00C3:  call         91 00 00 0A
...

Although the opcodes are correct, the operands are not much use. Instead of hexadecimal
numbers, we want member names and strings. The FormatOperand method, once written, will
address this — identifying the special cases that benefit from such formatting. These comprise
most 4-byte operands and the short branch instructions:

string FormatOperand (OpCode c, int operandLength)
{
  if (operandLength == 0) return "";

  if (operandLength == 4)
    return Get4ByteOperand (c);
  else if (c.OperandType == OperandType.ShortInlineBrTarget)
    return GetShortRelativeTarget();
  else if (c.OperandType == OperandType.InlineSwitch)
    return GetSwitchTarget (operandLength);
  else
    return null;
}

There are three kinds of 4-byte operands that we treat specially. The first is references to
members or types — with these, we extract the member or type name by calling the defining
module’s ResolveMember method. The second case is strings — these are stored in the
assembly module’s metadata and can be retrieved by calling ResolveString. The final case is
branch targets, where the operand refers to a byte offset in the IL. We format these by working
out the absolute address after the current instruction (+ 4 bytes):

string Get4ByteOperand (OpCode c)
{
  int intOp = BitConverter.ToInt32 (_il, _pos);

  switch (c.OperandType)
  {
    case OperandType.InlineTok:
    case OperandType.InlineMethod:
    case OperandType.InlineField:
    case OperandType.InlineType:
      MemberInfo mi;
      try   { mi = _module.ResolveMember (intOp); }
      catch { return null; }
      if (mi == null) return null;

      if (mi.ReflectedType != null)
        return mi.ReflectedType.FullName + "." + mi.Name;
      else if (mi is Type)
        return ((Type)mi).FullName;
      else
        return mi.Name;



    case OperandType.InlineString:
      string s = _module.ResolveString (intOp);
      if (s != null) s = "'" + s + "'";
      return s;

    case OperandType.InlineBrTarget:
      return "IL_" + (_pos + intOp + 4).ToString ("X4");

    default:
      return null;
  }

NOTE
The point where we call ResolveMember is a good window for a code analysis tool that reports
on method dependencies.

For any other 4-byte opcode, we return null (this will cause ReadOperand to format the
operand as hex digits).
The final kinds of operand that need special attention are short branch targets and inline
switches. A short branch target describes the destination offset as a single signed byte, as at the
end of the current instruction (i.e., + 1 byte). A switch target is followed by a variable number
of 4-byte branch destinations:

string GetShortRelativeTarget()
{
  int absoluteTarget = _pos + (sbyte) _il [_pos] + 1;
  return "IL_" + absoluteTarget.ToString ("X4");
}

string GetSwitchTarget (int operandLength)
{
  int targetCount = BitConverter.ToInt32 (_il, _pos);
  string [] targets = new string [targetCount];
  for (int i = 0; i < targetCount; i++)
  {
    int ilTarget = BitConverter.ToInt32 (_il, _pos + (i + 1) * 4);
    targets [i] = "IL_" + (_pos + ilTarget + operandLength).ToString ("X4");
  }
  return "(" + string.Join (", ", targets) + ")";
}

This completes the disassembler. We can test it by disassembling one of its own methods:

MethodInfo mi = typeof (Disassembler).GetMethod (
  "ReadOperand", BindingFlags.Instance | BindingFlags.NonPublic);

Console.WriteLine (Disassembler.Disassemble (mi));



Chapter 20. Dynamic Programming

In Chapter 4, we explained how dynamic binding works in the C# language. In this chapter, we
look briefly at the DLR, and then explore the following dynamic programming patterns:

Numeric type unification

Dynamic member overload resolution

Custom binding (implementing dynamic objects)

Dynamic language interoperability

NOTE
In Chapter 25, we’ll describe how dynamic can improve COM interoperability.

The types in this chapter live in the System.Dynamic namespace, except for CallSite<>,
which lives in System.Runtime.CompilerServices.

The Dynamic Language Runtime
C# relies on the Dynamic Language Runtime (DLR) to perform dynamic binding.
Contrary to its name, the DLR is not a dynamic version of the CLR. Rather, it’s a library that
sits atop the CLR — just like any other library such as System.Xml.dll. Its primary role is to
provide runtime services to unify dynamic programming — in both statically and dynamically
typed languages. Hence languages such as C#, VB, IronPython, and IronRuby all use the same
protocol for calling functions dynamically. This allows them to share libraries and call code
written in other languages.
The DLR also makes it relatively easy to write new dynamic languages in .NET. Instead of
having to emit IL, dynamic language authors work at the level of expression trees (the same
expression trees in System.Linq.Expressions that we talked about in Chapter 8).
The DLR further ensures that all consumers get the benefit of call-site caching, an optimization
whereby the DLR avoids unnecessarily repeating the potentially expensive member resolution
decisions made during dynamic binding.

NOTE
Framework 4.0 was the first Framework version to ship with the DLR. Prior to that, the
DLR existed as a separate download on Codeplex. That site still contains some additional
useful resources for language developers.

WHAT ARE CALL SITES?



When the compiler encounters a dynamic expression, it has no idea who will evaluate that
expression at runtime. For instance, consider the following method:

public dynamic Foo (dynamic x, dynamic y)
{
  return x / y;   // Dynamic expression
}

The x and y variables could be any CLR object, a COM object, or even an object hosted in a
dynamic language. The compiler cannot, therefore, take its usual static approach of emitting a call
to a known method of a known type. Instead, the compiler emits code that eventually results in an
expression tree that describes the operation, managed by a call site that the DLR will bind at
runtime. The call site essentially acts as an intermediary between caller and callee.
A call site is represented by the CallSite<> class in System.Core.dll. We can see this by
disassembling the preceding method — the result is something like this:

static CallSite<Func<CallSite,object,object,object>> divideSite;

[return: Dynamic]
public object Foo ([Dynamic] object x, [Dynamic] object y)
{
  if (divideSite == null)
    divideSite =
      CallSite<Func<CallSite,object,object,object>>.Create (
        Microsoft.CSharp.RuntimeBinder.Binder.BinaryOperation (
          CSharpBinderFlags.None,
          ExpressionType.Divide,
          /* Remaining arguments omitted for brevity */ ));

  return divideSite.Target (divideSite, x, y);
}

As you can see, the call site is cached in a static field to avoid the cost of re-creating it on each call.
The DLR further caches the result of the binding phase and the actual method targets. (There may
be multiple targets depending on the types of x and y.)
The actual dynamic call then happens by calling the site’s Target (a delegate), passing in the x and y
operands.
Notice that the Binder class is specific to C#. Every language with support for dynamic binding
provides a language-specific binder to help the DLR interpret expressions in a manner specific to
that language, so as not to surprise the programmer. For instance, if we called Foo with integer
values of 5 and 2, the C# binder would ensure that we got back 2. In contrast, a VB.NET binder
would give us 2.5.

Numeric Type Unification
We saw in Chapter 4 how dynamic lets us write a single method that works across all numeric
types:

static dynamic Mean (dynamic x, dynamic y) => (x + y) / 2;

static void Main()
{
  int x = 3, y = 5;
  Console.WriteLine (Mean (x, y));
}

NOTE



It’s a humorous reflection on C# that the keywords static and dynamic can appear
adjacently! The same applies to the keywords internal and extern.

However, this (unnecessarily) sacrifices static type safety. The following compiles without
error, but then fails at runtime:

string s = Mean (3, 5);   // Runtime error!

We can fix this by introducing a generic type parameter, and then casting to dynamic within the
calculation itself:

static T Mean<T> (T x, T y)
{
  dynamic result = ((dynamic) x + y) / 2;
  return (T) result;
}

Notice that we explicitly cast the result back to T. If we omitted this cast, we’d be relying on an
implicit cast, which might at first appear to work correctly. The implicit cast would fail at
runtime, though, upon calling the method with an 8- or 16-bit integral type. To understand why,
consider what happens with ordinary static typing when you sum two 8-bit numbers together:

byte b = 3;
Console.WriteLine ((b + b).GetType().Name);  // Int32

We get an Int32 — because the compiler “promotes” 8- or 16-bit numbers to Int32 prior to
performing arithmetic operations. For consistency, the C# binder tells the DLR to do exactly
the same thing, and we end up with an Int32 that requires an explicit cast to the smaller
numeric type. Of course, this could create the possibility of overflow if we were, say, summing
rather than averaging the values.
Dynamic binding incurs a small performance hit — even with call-site caching. You can
mitigate this by adding statically typed overloads that cover just the most commonly used types.
For example, if subsequent performance profiling showed that calling Mean with doubles was
a bottleneck, you could add the following overload:

static double Mean (double x, double y) => (x + y) / 2;

The compiler will favor that overload when Mean is called with arguments that are known at
compile time to be of type double.

Dynamic Member Overload Resolution
Calling a statically known method with dynamically typed arguments defers member overload
resolution from compile time to runtime. This is useful in simplifying certain programming
tasks — such as simplifying the Visitor design pattern. It’s also useful in working around
limitations imposed by C#’s static typing.

Simplifying the Visitor Pattern
In essence, the Visitor pattern allows you to “add” a method to a class hierarchy without



altering existing classes. Although useful, this pattern in its static incarnation is subtle and
unintuitive compared to most other design patterns. It also requires that visited classes be made
“Visitor-friendly” by exposing an Accept method, which can be impossible if the classes are
not under your control.
With dynamic binding, you can achieve the same goal more easily — and without needing to
modify existing classes. To illustrate, consider the following class hierarchy:

class Person
{
  public string FirstName { get; set; }
  public string LastName  { get; set; }

  // The Friends collection may contain Customers & Employees:
  public readonly IList<Person> Friends = new Collection<Person> ();
}

class Customer : Person { public decimal CreditLimit { get; set; } }
class Employee : Person { public decimal Salary      { get; set; } }

Suppose we want to write a method that programmatically exports a Person’s details to an
XML XElement. The most obvious solution is to write a virtual method called ToXElement()
in the Person class that returns an XElement populated with a Person’s properties. We would
then override it in Customer and Employee classes such that the XElement was also populated
with CreditLimit and Salary. This pattern can be problematic, however, for two reasons:

You might not own the Person, Customer, and Employee classes, making it impossible to
add methods to them. (And extension methods wouldn’t give polymorphic behavior.)

The Person, Customer, and Employee classes might already be quite big. A frequent anti-
pattern is the “God Object,” where a class such as Person attracts so much functionality
that it becomes a nightmare to maintain. A good antidote is to avoid adding functions to
Person that don’t need to access Person’s private state. A ToXElement method might be an
excellent candidate.

With dynamic member overload resolution, we can write the ToXElement functionality in a
separate class, without resorting to ugly switches based on type:

class ToXElementPersonVisitor
{
  public XElement DynamicVisit (Person p) => Visit ((dynamic)p);

  XElement Visit (Person p)
  {
    return new XElement ("Person",
      new XAttribute ("Type", p.GetType().Name),
      new XElement ("FirstName", p.FirstName),
      new XElement ("LastName", p.LastName),
      p.Friends.Select (f => DynamicVisit (f))
    );
  }

  XElement Visit (Customer c)   // Specialized logic for customers
  {
    XElement xe = Visit ((Person)c);   // Call "base" method
    xe.Add (new XElement ("CreditLimit", c.CreditLimit));
    return xe;
  }

  XElement Visit (Employee e)   // Specialized logic for employees
  {



    XElement xe = Visit ((Person)e);   // Call "base" method
    xe.Add (new XElement ("Salary", e.Salary));
    return xe;
  }
}

The DynamicVisit method performs a dynamic dispatch — calling the most specific version
of Visit as determined at runtime. Notice the line in boldface, where we call DynamicVisit
on each person in the Friends collection. This ensures that if a friend is a Customer or
Employee, the correct overload is called.
We can demonstrate this class as follows:

var cust = new Customer
{
  FirstName = "Joe", LastName = "Bloggs", CreditLimit = 123
};
cust.Friends.Add (
  new Employee { FirstName = "Sue", LastName = "Brown", Salary = 50000 }
);

Console.WriteLine (new ToXElementPersonVisitor().DynamicVisit (cust));

Here’s the result:

<Person Type="Customer">
  <FirstName>Joe</FirstName>
  <LastName>Bloggs</LastName>
  <Person Type="Employee">
    <FirstName>Sue</FirstName>
    <LastName>Brown</LastName>
    <Salary>50000</Salary>
  </Person>
  <CreditLimit>123</CreditLimit>
</Person>

Variations
If you plan more than one visitor class, a useful variation is to define an abstract base class for
visitors:

abstract class PersonVisitor<T>
{
  public T DynamicVisit (Person p) { return Visit ((dynamic)p); }

  protected abstract T Visit (Person p);
  protected virtual T Visit (Customer c) { return Visit ((Person) c); }
  protected virtual T Visit (Employee e) { return Visit ((Person) e); }
}

Subclasses then don’t need to define their own DynamicVisit method: all they do is override
the versions of Visit whose behavior they want to specialize. This also has the advantages of
centralizing the methods that encompass the Person hierarchy, and allowing implementers to
call base methods more naturally:

class ToXElementPersonVisitor : PersonVisitor<XElement>
{
  protected override XElement Visit (Person p)
  {
    return new XElement ("Person",
      new XAttribute ("Type", p.GetType().Name),
      new XElement ("FirstName", p.FirstName),



      new XElement ("LastName", p.LastName),
      p.Friends.Select (f => DynamicVisit (f))
    );
  }

  protected override XElement Visit (Customer c)
  {
    XElement xe = base.Visit (c);
    xe.Add (new XElement ("CreditLimit", c.CreditLimit));
    return xe;
  }

  protected override XElement Visit (Employee e)
  {
    XElement xe = base.Visit (e);
    xe.Add (new XElement ("Salary", e.Salary));
    return xe;
  }
}

You can even then subclass ToXElementPersonVisitor itself.

MULTIPLE DISPATCH
C# and the CLR have always supported a limited form of dynamism in the form of virtual method
calls. This differs from C#’s dynamic binding in that for virtual method calls, the compiler must
commit to a particular virtual member at compile time — based on the name and signature of a
member you called. This means that:

The calling expression must be fully understood by the compiler (e.g., it must decide at
compile time whether a target member is a field or property).

Overload resolution must be completed entirely by the compiler, based on the compile-time
argument types.

A consequence of that last point is that the ability to perform virtual method calls is known as single
dispatch. To see why, consider the following method call (where Walk is a virtual method):

animal.Walk (owner);

The runtime decision of whether to invoke a dog’s Walk method or a cat’s Walk method depends
only on the type of the receiver, animal (hence “single”). If many overloads of Walk accept
different kinds of owner, an overload will be selected at compile time without regard to the actual
runtime type of the owner object. In other words, only the runtime type of the receiver can vary
which method gets called.
In contrast, a dynamic call defers overload resolution until runtime:

animal.Walk ((dynamic) owner);

The final choice of which Walk method to call now depends on the types of both animal and owner
— this is called multiple dispatch since the runtime types of arguments, in addition to the receiver
type, contribute to the determination of which Walk method to call.

Anonymously Calling Members of a Generic Type
The strictness of C#’s static typing is a two-edged sword. On the one hand, it enforces a degree
of correctness at compile time. On the other hand, it occasionally makes certain kinds of code
difficult or impossible to express, at which point you have to resort to reflection. In these



situations, dynamic binding is a cleaner and faster alternative to reflection.
An example is when you need to work with an object of type G<T> where T is unknown. We can
illustrate this by defining the following class:

public class Foo<T> { public T Value; }

Suppose we then write a method as follows:

static void Write (object obj)
{
  if (obj is Foo<>)                           // Illegal
    Console.WriteLine ((Foo<>) obj).Value);   // Illegal
}

This method won’t compile: you can’t invoke members of unbound generic types.
Dynamic binding offers two means by which we can work around this. The first is to access the
Value member dynamically as follows:

static void Write (dynamic obj)
{
  try { Console.WriteLine (obj.Value); }
  catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException) {...}
}

This has the (potential) advantage of working with any object that defines a Value field or
property. However, there are a couple of problems. First, catching an exception in this manner
is somewhat messy and inefficient (and there’s no way to ask the DLR in advance, “Will this
operation succeed?”). Second, this approach wouldn’t work if Foo was an interface (say,
IFoo<T>), and either of the following conditions was true:

Value was implemented explicitly.

The type that implemented IFoo<T> was inaccessible (more on this soon).

A better solution is to write an overloaded helper method called GetFooValue and to call it
using dynamic member overload resolution:

static void Write (dynamic obj)
{
  object result = GetFooValue (obj);
  if (result != null) Console.WriteLine (result);
}

static T GetFooValue<T> (Foo<T> foo) => foo.Value;
static object GetFooValue (object foo) => null;

Notice that we overloaded GetFooValue to accept an object parameter, which acts as a
fallback for any type. At runtime, the C# dynamic binder will pick the best overload when
calling GetFooValue with a dynamic argument. If the object in question is not based on
Foo<T>, it will choose the object-parameter overload instead of throwing an exception.

NOTE
An alternative is to write just the first GetFooValue overload, and then catch the



RuntimeBinderException. The advantage is that it distinguishes the case of foo.Value being
null. The disadvantage is that it incurs the performance overhead of throwing and catching an
exception.

In Chapter 19, we solved the same problem with an interface using reflection — with a lot
more effort (see “Anonymously Calling Members of a Generic Interface”). The example we
used was to design a more powerful version of ToString() that could understand objects such
as IEnumerable and IGrouping<,>. Here’s the same example solved more elegantly with
dynamic binding:

static string GetGroupKey<TKey,TElement> (IGrouping<TKey,TElement> group)
  => "Group with key=" + group.Key + ": ";

static string GetGroupKey (object source) => null;

public static string ToStringEx (object value)
{
  if (value == null) return "<null>";
  if (value is string) return (string) value;
  if (value.GetType().IsPrimitive) return value.ToString();

  StringBuilder sb = new StringBuilder();

  string groupKey = GetGroupKey ((dynamic)value);   // Dynamic dispatch
  if (groupKey != null) sb.Append (groupKey);

  if (value is IEnumerable)
    foreach (object element in ((IEnumerable)value))
      sb.Append (ToStringEx (element) + " ");

  if (sb.Length == 0) sb.Append (value.ToString());

  return "\r\n" + sb.ToString();
}

In action:

Console.WriteLine (ToStringEx ("xyyzzz".GroupBy (c => c) ));

Group with key=x: x
Group with key=y: y y
Group with key=z: z z z

Notice that we used dynamic member overload resolution to solve this problem. If we did the
following instead:

dynamic d = value;
try { groupKey = d.Value); }
catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException) {...}

it would fail, because LINQ’s GroupBy operator returns a type implementing IGrouping<,>
which itself is internal, and therefore inaccessible:

internal class Grouping : IGrouping<TKey,TElement>, ...
{
  public TKey Key;
  ...
}



Even though the Key property is declared public, its containing class caps it at internal,
making it accessible only via the IGrouping<,> interface. And as we explained in Chapter 4,
there’s no way to tell the DLR to bind to that interface when invoking the Value member
dynamically.

Implementing Dynamic Objects
An object can provide its binding semantics by implementing IDynamicMetaObjectProvider
— or more easily by subclassing DynamicObject, which provides a default implementation of
this interface. We demonstrated this briefly in Chapter 4, with the following example:

static void Main()
{
  dynamic d = new Duck();
  d.Quack();                  // Quack method was called
  d.Waddle();                 // Waddle method was called
}

public class Duck : DynamicObject
{
  public override bool TryInvokeMember (
    InvokeMemberBinder binder, object[] args, out object result)
  {
    Console.WriteLine (binder.Name + " method was called");
    result = null;
    return true;
  }
}

DynamicObject
In the preceding example, we overrode TryInvokeMember, which allows the consumer to
invoke a method on the dynamic object — such as a Quack or Waddle. DynamicObject
exposes other virtual methods that enable consumers to use other programming constructs as
well. The following correspond to constructs that have representations in C#:

Method Programming construct

TryInvokeMember Method

TryGetMember, TrySetMember Property or field

TryGetIndex, TrySetIndex Indexer

TryUnaryOperation Unary operator such as !

TryBinaryOperation Binary operator such as ==

TryConvert Conversion (cast) to another type

TryInvoke Invocation on the object itself — e.g., d("foo")

These methods should return true if successful. If they return false, then the DLR will fall
back to the language binder, looking for a matching member on the DynamicObject (subclass)
itself. If this fails, then a RuntimeBinderException is thrown.
We can illustrate TryGetMember and TrySetMember with a class that lets us dynamically
access an attribute in an XElement (System.Xml.Linq):

static class XExtensions
{



  public static dynamic DynamicAttributes (this XElement e)
    => new XWrapper (e);
 
  class XWrapper : DynamicObject
  {
    XElement _element;
    public XWrapper (XElement e) { _element = e; }

    public override bool TryGetMember (GetMemberBinder binder,
                                       out object result)
    {
      result = _element.Attribute (binder.Name).Value;
      return true;
    }

    public override bool TrySetMember (SetMemberBinder binder,
                                       object value)
    {
      _element.SetAttributeValue (binder.Name, value);
      return true;
    }
  }
}

Here’s how to use it:

XElement x = XElement.Parse (@"<Label Text=""Hello"" Id=""5""/>");
dynamic da = x.DynamicAttributes();
Console.WriteLine (da.Id);           // 5
da.Text = "Foo";
Console.WriteLine (x.ToString());    // <Label Text="Foo" Id="5" />

The following does a similar thing for System.Data.IDataRecord, making it easier to use
data readers:

public class DynamicReader : DynamicObject
{
  readonly IDataRecord _dataRecord;
  public DynamicReader (IDataRecord dr) { _dataRecord = dr; }

  public override bool TryGetMember (GetMemberBinder binder,
                                     out object result)
  {
    result = _dataRecord [binder.Name];
    return true;
  }
}
...
using (IDataReader reader = someDbCommand.ExecuteReader())
{
  dynamic dr = new DynamicReader (reader);
  while (reader.Read())
  {
    int id = dr.ID;
    string firstName = dr.FirstName;
    DateTime dob = dr.DateOfBirth;
    ...
  }
}

The following demonstrates TryBinaryOperation and TryInvoke:

static void Main()
{
  dynamic d = new Duck();
  Console.WriteLine (d + d);          // foo
  Console.WriteLine (d (78, 'x'));    // 123



}

public class Duck : DynamicObject
{
  public override bool TryBinaryOperation (BinaryOperationBinder binder,
                                           object arg, out object result)
  {
    Console.WriteLine (binder.Operation);   // Add
    result = "foo";
    return true;
  }

  public override bool TryInvoke (InvokeBinder binder,
                                  object[] args, out object result)
  {
    Console.WriteLine (args[0]);    // 78
    result = 123;
    return true;
  }
}

DynamicObject also exposes some virtual methods for the benefit of dynamic languages. In
particular, overriding GetDynamicMemberNames allows you to return a list of all member
names that your dynamic object provides.

NOTE
Another reason to implement GetDynamicMemberNames is that Visual Studio’s debugger makes
use of this method to display a view of a dynamic object.

ExpandoObject
Another simple application of DynamicObject would be to write a dynamic class that stored
and retrieved objects in a dictionary, keyed by string. However, this functionality is already
provided via the ExpandoObject class:

dynamic x = new ExpandoObject();
x.FavoriteColor = ConsoleColor.Green;
x.FavoriteNumber = 7;
Console.WriteLine (x.FavoriteColor);    // Green
Console.WriteLine (x.FavoriteNumber);   // 7

ExpandoObject implements IDictionary<string,object> — so we can continue our
example and do this:

var dict = (IDictionary<string,object>) x;
Console.WriteLine (dict ["FavoriteColor"]);    // Green
Console.WriteLine (dict ["FavoriteNumber"]);   // 7
Console.WriteLine (dict.Count);                // 2

Interoperating with Dynamic Languages
Although C# supports dynamic binding via the dynamic keyword, it doesn’t go as far as
allowing you to execute an expression described in a string at runtime:

string expr = "2 * 3";
// We can't "execute" expr



NOTE
This is because the code to translate a string into an expression tree requires a lexical and
semantic parser. These features are built into the C# compiler and are not available as a
runtime service. At runtime, C# merely provides a binder — which tells the DLR how to
interpret an already-built expression tree.

True dynamic languages such as IronPython and IronRuby do allow you to execute an arbitrary
string and this is useful in tasks such as scripting, dynamic configuration, and implementing
dynamic rules engines. So although you may write most of your application in C#, it can be
useful to call out to a dynamic language for such tasks. In addition, you might want to leverage
an API that is written in a dynamic language where no equivalent functionality is available in a
.NET library.
In the following example, we use IronPython to evaluate an expression created at runtime from
within C#. This script could be used to write a calculator.

NOTE
To run this code, download IronPython (search the Internet for IronPython), and then
reference the IronPython, Microsoft.Scripting, and Microsoft.Scripting.Core assemblies
from your C# application.

using System;
using IronPython.Hosting;
using Microsoft.Scripting;
using Microsoft.Scripting.Hosting;

class Calculator
{
  static void Main()
  {
    int result = (int) Calculate ("2 * 3");
    Console.WriteLine (result);              // 6
  }

  static object Calculate (string expression)
  {
    ScriptEngine engine = Python.CreateEngine();
    return engine.Execute (expression);
  }
}

Because we’re passing a string into Python, the expression will be evaluated according to
Python’s rules and not C#’s. It also means we can use Python’s language features, such as lists:

var list = (IEnumerable) Calculate ("[1, 2, 3] + [4, 5]");
foreach (int n in list) Console.Write (n);  // 12345

Passing State Between C# and a Script
To pass variables from C# to Python, a few more steps are required. The following example
illustrates those steps, and could be the basis of a rules engine:

// The following string could come from a file or database:



string auditRule = "taxPaidLastYear / taxPaidThisYear > 2";

ScriptEngine engine = Python.CreateEngine ();   

ScriptScope scope = engine.CreateScope ();       
scope.SetVariable ("taxPaidLastYear", 20000m);
scope.SetVariable ("taxPaidThisYear", 8000m);

ScriptSource source = engine.CreateScriptSourceFromString (
                      auditRule, SourceCodeKind.Expression);

bool auditRequired = (bool) source.Execute (scope);
Console.WriteLine (auditRequired);   // True

You can also get variables back by calling GetVariable:

string code = "result = input * 3";

ScriptEngine engine = Python.CreateEngine();

ScriptScope scope = engine.CreateScope();
scope.SetVariable ("input", 2);

ScriptSource source = engine.CreateScriptSourceFromString (code,
                                  SourceCodeKind.SingleStatement);
source.Execute (scope);
Console.WriteLine (scope.GetVariable ("result"));   // 6

Notice that we specified SourceCodeKind.SingleStatement in the second example (rather
than Expression) to tell the engine that we want to execute a statement.
Types are automatically marshaled between the .NET and Python worlds. You can even access
members of .NET objects from the scripting side:

string code = @"sb.Append (""World"")";

ScriptEngine engine = Python.CreateEngine ();

ScriptScope scope = engine.CreateScope ();
var sb = new StringBuilder ("Hello");
scope.SetVariable ("sb", sb);

ScriptSource source = engine.CreateScriptSourceFromString (
                      code, SourceCodeKind.SingleStatement);
source.Execute (scope);
Console.WriteLine (sb.ToString());   // HelloWorld



Chapter 21. Security

In this chapter, we discuss the two main components of .NET security:
Identity and role security (authorization)

Cryptography

Identity and role security lets you write applications that limit who can do what.
The cryptography APIs are for storing/exchanging high-value data, preventing eavesdropping,
detecting message tampering, generating one-way hashes for storing passwords, and creating
digital signatures.
We also discuss how to deal with operating system security, and the legacy Code Access
Security (CAS), which limits the operations that your code can perform.
The types covered in this chapter are defined in the following namespaces:

System.Security;
System.Security.Permissions;
System.Security.Principal;
System.Security.Cryptography;

Code Access Security
Code Access Security (CAS) allows the CLR to create a locked-down or sandboxed
environment that prevents code from performing certain kinds of operations (such as reading
operating system files, performing reflection, or creating a user interface). The sandboxed
environment created by CAS is referred to as a partial trust environment, whereas the normal
unrestricted environment is referred to as full trust.
CAS was considered strategic in the early days of .NET, as it enabled the following:

Running C# ActiveX controls inside a web browser (like Java applets)

Lowering the cost of shared web hosting by allowing multiple websites to run inside the
same .NET process

Deploying permission-restricted ClickOnce applications via the Internet

The first two are no longer relevant, and the third was always of dubious value, because end
users are unlikely to know or understand the consequences of restricted permission sets prior
to installation. And while there are other use cases for CAS, they are more specialized. A
further problem is that the sandbox created by CAS is not entirely robust: Microsoft stated in
2015 that CAS should not be relied upon as a mechanism for enforcing security boundaries
(and CAS has been largely excluded from .NET Standard 2.0). This is in spite of the
improvements to CAS introduced with CLR 4 in 2010.
Sandboxing that does not rely on CAS is still well and alive: UWP applications run in a
sandbox, as do SQL CLR libraries. These sandboxes are enforced by the operating system or
hosted CLR, and are more robust than CAS sandboxes, as well as being simpler to understand
and manage. Operating system security also works with unmanaged code, so a UWP app cannot



read/write arbitrary files, whether written in C# or C++.
For these reasons, we’re no longer covering CAS in C# 7.0 in a Nutshell. However, we’ve
published the material from the previous edition online at http://www.albahari.com/nutshell.
(If you’re a library author, you may still need to cater for partial trust environments to support
older platforms.)

Identity and Role Security
Identity and role-based security is used for authorization, typically in a middle tier server or
ASP.NET application: it lets you restrict functionality according to the authenticated user’s
name (identity) or role (group).
Identity and role security rely on permissions, which we’ll look at now.

Permissions
A permission acts as a gate that conditionally prevents code from executing. For authorization,
we use the PrincipalPermission class, which describes an identity and/or role (e.g., “Mary”
or “Human Resources”). Here’s its constructor:

public PrincipalPermission (string name, string role);

The important methods on PrincipalPermission are captured by the IPermission interface
that it implements:

public interface IPermission
{
  void Demand();
  IPermission Intersect (IPermission target);
  IPermission Union (IPermission target);
  bool IsSubsetOf (IPermission target);
  IPermission Copy();
}

The crucial method here is Demand. It performs a spot-check to see whether the permission is
currently granted, and it throws a SecurityException if not. For example, to ensure that only
Mary can run management reports, you could write this:

new PrincipalPermission ("Mary", null).Demand();
// ... run management reports

The Intersect and Union methods combine two same-typed permission objects into one. The
purpose of Intersect is to create a “smaller” permission object, whereas the purpose of
Union is to create a “larger” permission object.
With principle permissions, a “larger” permission object is less restrictive when Demanded,
because only one of the principles or identities is enough to satisfy the demand.
IsSubsetOf returns true if the given target contains at least its permissions:

PrincipalPermission jay = new PrincipalPermission ("Jay", null);
PrincipalPermission sue = new PrincipalPermission ("Sue", null);

PrincipalPermission jayOrSue = (PrincipalPermission) jay.Union (sue);
Console.WriteLine (jay.IsSubsetOf (jayOrSue));  // True

http://www.albahari.com/nutshell


In this example, calling Intersect on jay and sue would generate an empty permission,
because they don’t overlap.

Declarative Versus Imperative Security
So far, we manually instantiated permission objects and called Demand on them. This is
imperative security. You can achieve the same result by adding attributes to a method,
constructor, class, struct, or assembly — this is declarative security. Although imperative
security is more flexible, declarative security has three advantages:

It can mean less coding.

It allows the CLR to determine in advance what permissions your assembly requires.

It can improve performance.

For example:

[PrincipalPermission (SecurityAction.Demand, Name="Mary")]
public ReportData GetReports()
{
  ...
}

This works because every permission type has a sister attribute type in the .NET Framework.
PrincipalPermission has a PrincipalPermissionAttribute sister. The first argument of
the attribute’s constructor is always a SecurityAction, which indicates what security method
to call once the permission object is constructed (usually Demand). The remaining named
parameters mirror the properties on the corresponding permission object.

Implementing Identity and Role Security
In a typical application server, you demand a PrincipalPermission on all methods exposed
to the client for which you want to enforce security. For example, the following requires that
the caller be a member of the “finance” role:

[PrincipalPermission (SecurityAction.Demand, Role = "finance")]
public decimal GetGrossTurnover (int year)
{
  ...
}

To enforce that only a particular user can call a method, you can specify a Name instead:

[PrincipalPermission (SecurityAction.Demand, Name = "sally")]

(Of course, the necessity to hardcode names makes this hard to manage.) To allow a
combination of identities or roles, you have to use imperative security instead. This means
instantiating PrincipalPermission objects, calling Union to combine them, and then calling
Demand on the end result.

Assigning Users and Roles
Before a PrincipalPermission demand can succeed, you must attach an IPrincipal object



to the current thread.
You can instruct that the current Windows user be used as an identity in either of two ways,
depending on whether you want to impact the whole application domain or just the current
thread:

AppDomain.CurrentDomain.SetPrincipalPolicy (PrincipalPolicy.
                                            WindowsPrincipal);

or:

Thread.CurrentPrincipal = new WindowsPrincipal (WindowsIdentity.
                                                GetCurrent());

If you’re using WCF or ASP.NET, their infrastructures can help with impersonating the client’s
identity. You can also do this yourself with the GenericPrincipal and GenericIdentity
classes. The following creates a user called “Jack” and assigns him three roles:

GenericIdentity id = new GenericIdentity ("Jack");
GenericPrincipal p = new GenericPrincipal
  (id, new string[] { "accounts", "finance", "management" } );

For this to take effect, you’d assign it to the current thread as follows:

Thread.CurrentPrincipal = p;

A principal is thread-based because an application server typically processes many client
requests concurrently — each on its own thread. As each request may come from a different
client, it needs a different principal.
You can subclass GenericIdentity and GenericPrincipal — or implement the IIdentity
and IPrincipal interfaces directly in your own types. Here’s how the interfaces are defined:

public interface IIdentity
{
  string Name { get; }
  string AuthenticationType { get; }
  bool IsAuthenticated { get; }
}

public interface IPrincipal
{
  IIdentity Identity { get; }
  bool IsInRole (string role);
}

The key method is IsInRole. Notice that there’s no method returning a list of roles, so you’re
obliged only to rule on whether a particular role is valid for that principal. This can be the
basis for more elaborate authorization systems.

Operating System Security
The operating system can further restrict what an application can do, based on the user’s login
privileges. In Windows, there are two types of accounts:

An administrative account that imposes no restrictions in accessing the local computer



A limited permissions account that restricts administrative functions and visibility of other
users’ data

A feature called User Account Control (UAC) introduced in Windows Vista means that
administrators receive two tokens or “hats” when logging in: an administrative hat and an
ordinary user hat. By default, programs run wearing the ordinary user hat — with restricted
permissions — unless the program requests administrative elevation. The user must then
approve the request in the dialog box that’s presented.
For application developers, UAC means that by default, your application will run with
restricted user privileges. This means you must either:

Write your application such that it can run without administrative privileges.

Demand administrative elevation in the application manifest.

The first option is safer and more convenient to the user. Designing your program to run without
administrative privileges is easy in most cases: the restrictions are much less draconian than
those of a typical code access security sandbox.

NOTE
You can find out whether you’re running under an administrative account with the following
method:

[DllImport ("shell32.dll", EntryPoint = "#680")]
static extern bool IsUserAnAdmin();

With UAC enabled, this returns true only if the current process has administrative elevation.

Running in a Standard User Account
Here are the key things that you cannot do in a standard Windows user account:

Write to the following directories:
The operating system folder (typically \Windows) and subdirectories

The program files folder (\Program Files) and subdirectories

The root of the operating system drive (e.g., C:\)

Write to the HKEY_LOCAL_MACHINE branch of the Registry

Read performance monitoring (WMI) data

Additionally, as an ordinary user (or even as an administrator), you may be refused access to
files or resources that belong to other users. Windows uses a system of Access Control Lists
(ACLs) to protect such resources — you can query and assert your own rights in the ACLs via
types in System.Security.AccessControl. ACLs can also be applied to cross-process wait
handles, described in Chapter 22.
If you’re refused access to anything as a result of operating system security, the CLR detects the



failure and throws an UnauthorizedAccessException (rather than failing silently).

NOTE
The now-deprecated Code Access Security (CAS) provides another level of security,
enforced by the CLR rather than the operating system. Because CAS and ACLs are
independent, you can successfully clear CAS security (e.g., by Demanding a
FileIOPermission), but still get an UnauthorizedAccessException due to ACL restrictions
when trying to access a file.

In most cases, you can deal with standard user restrictions as follows:
Write files to their recommended locations.

Avoid using the Registry for information that can be stored in files (aside from the
HKEY_CURRENT_USER hive, which you will have read/write access to).

Register ActiveX or COM components during setup.

The recommended location for user documents is SpecialFolder.MyDocuments:

string docsFolder = Environment.GetFolderPath
                    (Environment.SpecialFolder.MyDocuments);

string path = Path.Combine (docsFolder, "test.txt");

The recommended location for configuration files that a user might need to modify outside of
your application is SpecialFolder.ApplicationData (current user only) or
SpecialFolder.CommonApplicationData (all users). You typically create subdirectories
within these folders, based on your organization and product name.

Administrative Elevation and Virtualization
In Chapter 18, we described how to deploy an application manifest. With an application
manifest, you can request that Windows prompt the user for administrative elevation whenever
running your program:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
  <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
    <security>
      <requestedPrivileges>
        <requestedExecutionLevel level="requireAdministrator" />
      </requestedPrivileges>
    </security>
  </trustInfo>
</assembly>

If you replace requireAdministrator with asInvoker, it instructs Windows that
administrative elevation is not required. The effect is almost the same as not having an
application manifest at all — except that virtualization is disabled. Virtualization is a
temporary measure introduced with Windows Vista to help old applications run correctly
without administrative privileges. The absence of an application manifest with a



requestedExecutionLevel element activates this backward-compatibility feature.
Virtualization comes into play when an application writes to the Program Files or Windows
directory, or the HKEY_LOCAL_MACHINE area of the Registry. Instead of throwing an
exception, changes are redirected to a separate location on the hard disk where they can’t
impact the original data. This prevents the application from interfering with the operating
system — or other well-behaved applications.

Cryptography Overview
Table 21-1 summarizes the cryptography options in .NET. In the remaining sections, we explore
each of these.

Table 21-1. Encryption and hashing options in .NET

Option Keys to
manage

Speed Strength Notes

File.Encrypt 0 Fast Depends on
user’s
password

Protects files transparently with filesystem support. A key is derived
implicitly from the logged-in user’s credentials.

Windows
Data
Protection

0 Fast Depends on
user’s
password

Encrypts and decrypts byte arrays using an implicitly derived key.

Hashing 0 Fast High One-way (irreversible) transformation. Used for storing passwords,
comparing files, and checking for data corruption.

Symmetric
Encryption

1 Fast High For general-purpose encryption/decryption. The same key encrypts and
decrypts. Can be used to secure messages in transit.

Public Key
Encryption

2 Slow High Encryption and decryption use different keys. Used for exchanging a
symmetric key in message transmission and for digitally signing files.

The Framework also provides more specialized support for creating and validating XML-
based signatures in System.Security.Cryptography.Xml and types for working with digital
certificates in System.Security.Cryptography.X509Certificates.

Windows Data Protection
In the section “File and Directory Operations”, we described how you could use
File.Encrypt to request that the operating system transparently encrypt a file:

File.WriteAllText ("myfile.txt", "");
File.Encrypt ("myfile.txt");
File.AppendAllText ("myfile.txt", "sensitive data");

The encryption in this case uses a key derived from the logged-in user’s password. You can use
this same implicitly derived key to encrypt a byte array with the Windows Data Protection API.
The Data Protection API is exposed through the ProtectedData class — a simple type with
two static methods:

public static byte[] Protect (byte[] userData, byte[] optionalEntropy,
                              DataProtectionScope scope);

public static byte[] Unprotect (byte[] encryptedData, byte[] optionalEntropy,



                                DataProtectionScope scope);

NOTE
Most types in System.Security.Cryptography live in mscorlib.dll and System.dll.
ProtectedData is an exception: it lives in System.Security.dll.

Whatever you include in optionalEntropy is added to the key, thereby increasing its security.
The DataProtectionScope enum argument allows two options: Current User or
LocalMachine. With CurrentUser, a key is derived from the logged-in user’s credentials;
with LocalMachine, a machine-wide key is used, common to all users. A LocalMachine key
provides less protection, but works under a Windows Service or a program needing to operate
under a variety of accounts.
Here’s a simple encryption and decryption demo:

byte[] original = {1, 2, 3, 4, 5};
DataProtectionScope scope = DataProtectionScope.CurrentUser;

byte[] encrypted = ProtectedData.Protect (original, null, scope);
byte[] decrypted = ProtectedData.Unprotect (encrypted, null, scope);
// decrypted is now {1, 2, 3, 4, 5}

Windows Data Protection provides moderate security against an attacker with full access to the
computer, depending on the strength of the user’s password. With LocalMachine scope, it’s
effective only against those with restricted physical and electronic access.

Hashing
Hashing provides one-way encryption. This is ideal for storing passwords in a database, as
you might never need (or want) to see a decrypted version. To authenticate, simply hash what
the user types in and compare it to what’s stored in the database.
A hash code is always a small fixed size regardless of the source data length. This makes it
good for comparing files or detecting errors in a data stream (rather like a checksum). A single-
bit change anywhere in the source data results in a significantly different hash code.
To hash, you call ComputeHash on one of the HashAlgorithm subclasses such as SHA256 or
MD5:

byte[] hash;
using (Stream fs = File.OpenRead ("checkme.doc"))
  hash = MD5.Create().ComputeHash (fs);           // hash is 16 bytes long

The ComputeHash method also accepts a byte array, which is convenient for hashing
passwords:

byte[] data = System.Text.Encoding.UTF8.GetBytes ("stRhong%pword");
byte[] hash = SHA256.Create().ComputeHash (data);

NOTE



The GetBytes method on an Encoding object converts a string to a byte array; the GetString
method converts it back. An Encoding object cannot, however, convert an encrypted or
hashed byte array to a string, because scrambled data usually violates text encoding rules.
Instead, use Convert.ToBase64String and Convert.FromBase64String: these convert between
any byte array and a legal (and XML-friendly) string.

MD5 and SHA256 are two of the HashAlgorithm subtypes provided by the .NET Framework.
Here are all the major algorithms, in ascending order of security (and hash length, in bytes):

MD5(16) → SHA1(20) → SHA256(32) → SHA384(48) → SHA512(64)

The shorter the algorithm, the faster it executes. MD5 is more than 20 times faster than SHA512
and is well suited to calculating file checksums. You can hash hundreds of megabytes per
second with MD5, and then store its result in a Guid. (A Guid happens to be exactly 16 bytes
long, and as a value type it is more tractable than a byte array; you can meaningfully compare
Guids with the simple equality operator, for instance.) However, shorter hashes increase the
possibility of collision (two distinct files yielding the same hash).

WARNING
Use at least SHA256 when hashing passwords or other security-sensitive data. MD5 and SHA1
are considered insecure for this purpose, and are suitable to protect only against accidental
corruption, not deliberate tampering.

NOTE
SHA384 is no faster than SHA512, so if you want more security than SHA256, you may as well
use SHA512.

The longer SHA algorithms are suitable for password hashing, but they require that you enforce
a strong password policy to mitigate a dictionary attack — a strategy whereby an attacker
builds a password lookup table by hashing every word in a dictionary. You can provide
additional protection against this by “stretching” your password hashes — repeatedly
rehashing to obtain more computationally intensive byte sequences. If you rehash 100 times, a
dictionary attack that might otherwise take 1 month would take 8 years. The
Rfc2898DeriveBytes and PasswordDeriveBytes classes perform exactly this kind of
stretching.
Another technique to avoid dictionary attacks is to incorporate “salt” — a long series of bytes
that you initially obtain via a random number generator, and then combine with each password
before hashing. This frustrates hackers in two ways: hashes take longer to compute, and they
may not have access to the salt bytes.
The Framework also provides a 160-bit RIPEMD hashing algorithm, slightly above SHA1 in
security. It suffers an inefficient .NET implementation, though, making it slower to execute than
even SHA512.



Symmetric Encryption
Symmetric encryption uses the same key for encryption as for decryption. The Framework
provides four symmetric algorithms, of which Rijndael is the premium (pronounced “Rhine
Dahl” or “Rain Doll”). Rijndael is both fast and secure and has two implementations:

The Rijndael class, which was available since Framework 1.0

The Aes class, which was introduced in Framework 3.5

The two are almost identical, except that Aes does not let you weaken the cipher by changing
the block size. Aes is recommended by the CLR’s security team.
Rijndael and Aes allow symmetric keys of length 16, 24, or 32 bytes: all are currently
considered secure. Here’s how to encrypt a series of bytes as they’re written to a file, using a
16-byte key:

byte[] key = {145,12,32,245,98,132,98,214,6,77,131,44,221,3,9,50};
byte[] iv  = {15,122,132,5,93,198,44,31,9,39,241,49,250,188,80,7};

byte[] data = { 1, 2, 3, 4, 5 };   // This is what we're encrypting.

using (SymmetricAlgorithm algorithm = Aes.Create())
using (ICryptoTransform encryptor = algorithm.CreateEncryptor (key, iv))
using (Stream f = File.Create ("encrypted.bin"))
using (Stream c = new CryptoStream (f, encryptor, CryptoStreamMode.Write))
  c.Write (data, 0, data.Length);

The following code decrypts the file:

byte[] key = {145,12,32,245,98,132,98,214,6,77,131,44,221,3,9,50};
byte[] iv  = {15,122,132,5,93,198,44,31,9,39,241,49,250,188,80,7};

byte[] decrypted = new byte[5];

using (SymmetricAlgorithm algorithm = Aes.Create())
using (ICryptoTransform decryptor = algorithm.CreateDecryptor (key, iv))
using (Stream f = File.OpenRead ("encrypted.bin"))
using (Stream c = new CryptoStream (f, decryptor, CryptoStreamMode.Read))
  for (int b; (b = c.ReadByte()) > −1;)
    Console.Write (b + " ");                            // 1 2 3 4 5

In this example, we made up a key of 16 randomly chosen bytes. If the wrong key was used in
decryption, CryptoStream would throw a CryptographicException. Catching this exception
is the only way to test whether a key is correct.
As well as a key, we made up an IV, or Initialization Vector. This 16-byte sequence forms part
of the cipher — much like the key — but is not considered secret. If transmitting an encrypted
message, you would send the IV in plain text (perhaps in a message header) and then change it
with every message. This would render each encrypted message unrecognizable from any
previous one — even if their unencrypted versions were similar or identical.

NOTE
If you don’t need — or want — the protection of an IV, you can defeat it by using the same
16-byte value for both the key and the IV. Sending multiple messages with the same IV,
though, weakens the cipher and might even make it possible to crack.



The cryptography work is divided among the classes. Aes is the mathematician; it applies the
cipher algorithm, along with its encryptor and decryptor transforms. CryptoStream is the
plumber; it takes care of stream plumbing. You can replace Aes with a different symmetric
algorithm, yet still use CryptoStream.
CryptoStream is bidirectional, meaning you can read or write to the stream depending on
whether you choose CryptoStreamMode.Read or CryptoStreamMode.Write. Both
encryptors and decryptors are read- and write-savvy, yielding four combinations — the choice
can have you staring at a blank screen for a while! It can be helpful to model reading as
“pulling” and writing as “pushing.” If in doubt, start with Write for encryption and Read for
decryption; this is often the most natural.
To generate a random key or IV, use RandomNumberGenerator in System.Cryptography. The
numbers it produces are genuinely unpredictable, or cryptographically strong (the
System.Random class does not offer the same guarantee). Here’s an example:

byte[] key = new byte [16];
byte[] iv  = new byte [16];
RandomNumberGenerator rand = RandomNumberGenerator.Create();
rand.GetBytes (key);
rand.GetBytes (iv);

If you don’t specify a key and IV, cryptographically strong random values are generated
automatically. You can query these through the Aes object’s Key and IV properties.

Encrypting in Memory
With a MemoryStream, you can encrypt and decrypt entirely in memory. Here are helper
methods that do just this, with byte arrays:

public static byte[] Encrypt (byte[] data, byte[] key, byte[] iv)
{
  using (Aes algorithm = Aes.Create())
  using (ICryptoTransform encryptor = algorithm.CreateEncryptor (key, iv))
    return Crypt (data, encryptor);
}

public static byte[] Decrypt (byte[] data, byte[] key, byte[] iv)
{
  using (Aes algorithm = Aes.Create())
  using (ICryptoTransform decryptor = algorithm.CreateDecryptor (key, iv))
    return Crypt (data, decryptor);
}

static byte[] Crypt (byte[] data, ICryptoTransform cryptor)
{
  MemoryStream m = new MemoryStream();
  using (Stream c = new CryptoStream (m, cryptor, CryptoStreamMode.Write))
    c.Write (data, 0, data.Length);
  return m.ToArray();
}

Here, CryptoStreamMode.Write works best for both encryption and decryption, since in both
cases we’re “pushing” into a fresh memory stream.
Here are overloads that accept and return strings:

public static string Encrypt (string data, byte[] key, byte[] iv)
{
  return Convert.ToBase64String (



    Encrypt (Encoding.UTF8.GetBytes (data), key, iv));
}

public static string Decrypt (string data, byte[] key, byte[] iv)
{
  return Encoding.UTF8.GetString (
    Decrypt (Convert.FromBase64String (data), key, iv));
}

The following demonstrates their use:

byte[] kiv = new byte[16];
RandomNumberGenerator.Create().GetBytes (kiv);

string encrypted = Encrypt ("Yeah!", kiv, kiv);
Console.WriteLine (encrypted);                 // R1/5gYvcxyR2vzPjnT7yaQ==

string decrypted = Decrypt (encrypted, kiv, kiv);
Console.WriteLine (decrypted);                 // Yeah!

Chaining Encryption Streams
CryptoStream is a decorator, meaning it can be chained with other streams. In the following
example, we write compressed encrypted text to a file, and then read it back:

// Use default key/iv for demo.
using (Aes algorithm = Aes.Create())
{
  using (ICryptoTransform encryptor = algorithm.CreateEncryptor())
  using (Stream f = File.Create ("serious.bin"))
  using (Stream c = new CryptoStream (f,encryptor,CryptoStreamMode.Write))
  using (Stream d = new DeflateStream (c, CompressionMode.Compress))
  using (StreamWriter w = new StreamWriter (d))
    await w.WriteLineAsync ("Small and secure!");

  using (ICryptoTransform decryptor = algorithm.CreateDecryptor())
  using (Stream f = File.OpenRead ("serious.bin"))
  using (Stream c = new CryptoStream (f, decryptor, CryptoStreamMode.Read))
  using (Stream d = new DeflateStream (c, CompressionMode.Decompress))
  using (StreamReader r = new StreamReader (d))
    Console.WriteLine (await r.ReadLineAsync());     // Small and secure!
}

(As a final touch, we make our program asynchronous by calling WriteLineAsync and
ReadLineAsync, and awaiting the result.)
In this example, all one-letter variables form part of a chain. The mathematicians —
algorithm, encryptor, and decryptor — are there to assist CryptoStream in the cipher
work. The diagram in Figure 21-1 shows this.



Figure 21-1. Chaining encryption and compression streams

Chaining streams in this manner demands little memory, regardless of the ultimate stream sizes.

NOTE
As an alternative to nesting multiple using statements, you can construct a chain as follows:

using (ICryptoTransform encryptor = algorithm.CreateEncryptor())
using
  (StreamWriter w = new StreamWriter (
    new DeflateStream (
      new CryptoStream (
        File.Create ("serious.bin"),
        encryptor,
        CryptoStreamMode.Write
      ),
      CompressionMode.Compress)
    )
  )

This is less robust than the previous approach, however, because should an exception be
thrown in an object’s constructor (e.g., DeflateStream), any objects already instantiated (e.g.,
FileStream) would not be disposed.

Disposing Encryption Objects
Disposing a CryptoStream ensures that its internal cache of data is flushed to the underlying
stream. Internal caching is necessary for encryption algorithms because they process data in
blocks, rather than one byte at a time.
CryptoStream is unusual in that its Flush method does nothing. To flush a stream (without
disposing it) you must call FlushFinalBlock. In contrast to Flush, FlushFinalBlock can be
called only once, and then no further data can be written.



In our examples, we also disposed the mathematicians — the Aes algorithm and
ICryptoTransform objects (encryptor and decryptor). Disposal is actually optional with
the Rijndael transforms, because their implementations are purely managed. Disposal still
serves a useful role, however: it wipes the symmetric key and related data from memory,
preventing subsequent discovery by other software running on the computer (we’re talking
malware). You can’t rely on the garbage collector for this job because it merely flags sections
of memory as available; it doesn’t write zeros over every byte.
The easiest way to dispose an Aes object outside of a using statement is to call Clear. Its
Dispose method is hidden via explicit implementation (to signal its unusual disposal
semantics).

Key Management
It is inadvisable to hardcode encryption keys because popular tools exist to decompile
assemblies with little expertise. A better option is to manufacture a random key for each
installation, storing it securely with Windows Data Protection (or encrypt the entire message
with Windows Data Protection). If you’re encrypting a message stream, public key encryption
provides the best option still.

Public Key Encryption and Signing
Public key cryptography is asymmetric, meaning that encryption and decryption use different
keys.
Unlike symmetric encryption, where any arbitrary series of bytes of appropriate length can
serve as a key, asymmetric cryptography requires specially crafted key pairs. A key pair
contains a public key and private key component that work together as follows:

The public key encrypts messages.

The private key decrypts messages.

The party “crafting” a key pair keeps the private key secret while distributing the public key
freely. A special feature of this type of cryptography is that you cannot calculate a private key
from a public key. So, if the private key is lost, encrypted data cannot be recovered;
conversely, if a private key is leaked, the encryption system becomes useless.
A public key handshake allows two computers to communicate securely over a public network,
with no prior contact and no existing shared secret. To see how this works, suppose computer
Origin wants to send a confidential message to computer Target:

1. Target generates a public/private key pair, and then sends its public key to Origin.

2. Origin encrypts the confidential message using Target’s public key, then sends it to
Target.

3. Target decrypts the confidential message using its private key.

An eavesdropper will see the following:
Target’s public key



The secret message, encrypted with Target’s public key

But without Target’s private key, the message cannot be decrypted.

NOTE
This doesn’t prevent against a man-in-the-middle attack: in other words, Origin cannot know
that Target isn’t some malicious party. In order to authenticate the recipient, the originator
needs to already know the recipient’s public key, or be able to validate its key through a
digital site certificate.

The secret message sent from Origin to Target typically contains a fresh key for subsequent
symmetric encryption. This allows public key encryption to be abandoned for the remainder of
the session, in favor of a symmetric algorithm capable of handling larger messages. This
protocol is particularly secure if a fresh public/private key pair is generated for each session,
as no keys then need to be stored on either computer.

WARNING
The public key encryption algorithms rely on the message being smaller than the key. This
makes them suitable for encrypting only small amounts of data, such as a key for subsequent
symmetric encryption. If you try to encrypt a message much larger than half the key size, the
provider will throw an exception.

The RSA Class
The .NET Framework provides a number of asymmetric algorithms, of which RSA is the most
popular. Here’s how to encrypt and decrypt with RSA:

byte[] data = { 1, 2, 3, 4, 5 };   // This is what we're encrypting.

using (var rsa = new RSACryptoServiceProvider())
{
  byte[] encrypted = rsa.Encrypt (data, true);
  byte[] decrypted = rsa.Decrypt (encrypted, true);
}

Because we didn’t specify a public or private key, the cryptographic provider automatically
generated a key pair, using the default length of 1,024 bits; you can request longer keys in
increments of eight bytes, through the constructor. For security-critical applications, it’s
prudent to request 2,048 bits:

var rsa = new RSACryptoServiceProvider (2048);

Generating a key pair is computationally intensive — taking perhaps 100ms. For this reason,
the RSA implementation delays this until a key is actually needed, such as when calling
Encrypt. This gives you the chance to load in an existing key — or key pair, should it exist.
The methods ImportCspBlob and ExportCspBlob load and save keys in byte array format.
FromXmlString and ToXmlString do the same job in a string format, the string containing an



XML fragment. A bool flag lets you indicate whether to include the private key when saving.
Here’s how to manufacture a key pair and save it to disk:

using (var rsa = new RSACryptoServiceProvider())
{
  File.WriteAllText ("PublicKeyOnly.xml", rsa.ToXmlString (false));
  File.WriteAllText ("PublicPrivate.xml", rsa.ToXmlString (true));
}

Since we didn’t provide existing keys, ToXmlString forced the manufacture of a fresh key pair
(on the first call). In the next example, we read back these keys and use them to encrypt and
decrypt a message:

byte[] data = Encoding.UTF8.GetBytes ("Message to encrypt");

string publicKeyOnly = File.ReadAllText ("PublicKeyOnly.xml");
string publicPrivate = File.ReadAllText ("PublicPrivate.xml");

byte[] encrypted, decrypted;

using (var rsaPublicOnly = new RSACryptoServiceProvider())
{
  rsaPublicOnly.FromXmlString (publicKeyOnly);
  encrypted = rsaPublicOnly.Encrypt (data, true);

  // The next line would throw an exception because you need the private
  // key in order to decrypt:
  // decrypted = rsaPublicOnly.Decrypt (encrypted, true);
}

using (var rsaPublicPrivate = new RSACryptoServiceProvider())
{
  // With the private key we can successfully decrypt:
  rsaPublicPrivate.FromXmlString (publicPrivate);
  decrypted = rsaPublicPrivate.Decrypt (encrypted, true);
}

Digital Signing
Public key algorithms can also be used to digitally sign messages or documents. A signature is
like a hash, except that its production requires a private key and so cannot be forged. The
public key is used to verify the signature. Here’s an example:

byte[] data = Encoding.UTF8.GetBytes ("Message to sign");
byte[] publicKey;
byte[] signature;
object hasher = SHA1.Create();         // Our chosen hashing algorithm.

// Generate a new key pair, then sign the data with it:
using (var publicPrivate = new RSACryptoServiceProvider())
{
  signature = publicPrivate.SignData (data, hasher);
  publicKey = publicPrivate.ExportCspBlob (false);    // get public key
}

// Create a fresh RSA using just the public key, then test the signature.
using (var publicOnly = new RSACryptoServiceProvider())
{
  publicOnly.ImportCspBlob (publicKey);
  Console.Write (publicOnly.VerifyData (data, hasher, signature)); // True

  // Let's now tamper with the data, and recheck the signature:
  data[0] = 0;
  Console.Write (publicOnly.VerifyData (data, hasher, signature)); // False



  // The following throws an exception as we're lacking a private key:
  signature = publicOnly.SignData (data, hasher);
}

Signing works by first hashing the data, and then applying the asymmetric algorithm to the
resultant hash. Because hashes are of a small fixed size, large documents can be signed
relatively quickly (public key encryption is much more CPU-intensive than hashing). If you
want, you can do the hashing yourself, and then call SignHash instead of SignData:

using (var rsa = new RSACryptoServiceProvider())
{
  byte[] hash = SHA1.Create().ComputeHash (data);
  signature = rsa.SignHash (hash, CryptoConfig.MapNameToOID ("SHA1"));
  ...
}

SignHash still needs to know what hash algorithm you used; CryptoConfig.Map NameToOID
provides this information in the correct format from a friendly name such as “SHA1”.
RSACryptoServiceProvider produces signatures whose size matches that of the key.
Currently, no mainstream algorithm produces secure signatures significantly smaller than 128
bytes (suitable for product activation codes, for instance).

NOTE
For signing to be effective, the recipient must know, and trust, the sender’s public key. This
can happen via prior communication, preconfiguration, or a site certificate. A site certificate is
an electronic record of the originator’s public key and name — itself signed by an
independent trusted authority. The namespace
System.Security.Cryptography.X509Certificates defines the types for working with
certificates.



Chapter 22. Advanced Threading

We started Chapter 14 with the basics of threading as a precursor to tasks and asynchrony.
Specifically, we showed how to start/configure a thread, and covered essential concepts such
as thread pooling, blocking, spinning, and synchronization contexts. We also introduced locking
and thread safety, and demonstrated the simplest signaling construct, ManualResetEvent.
This chapter resumes where we left off on the topic of threading. In the first three sections, we
flesh out synchronization, locking, and thread safety in greater detail. We then cover:

Nonexclusive locking (Semaphore and reader/writer locks)

All of the signaling constructs (AutoResetEvent, ManualResetEvent, Countdown Event,
and Barrier)

Lazy initialization (Lazy<T> and LazyInitializer)

Thread-local storage (ThreadStaticAttribute, ThreadLocal<T>, and
GetData/SetData)

Preemptive threading methods (Interrupt, Abort, Suspend, and Resume)

Timers

Threading is such a vast topic that we’ve put additional material online to complete the picture.
Visit http://albahari.com/threading/ for a discussion on the following, more arcane, topics:

Monitor.Wait and Monitor.Pulse for specialized signaling scenarios

Nonblocking synchronization techniques for micro-optimization (Interlocked, memory
barriers, volatile)

SpinLock and SpinWait for high-concurrency scenarios

Synchronization Overview
Synchronization is the act of coordinating concurrent actions for a predictable outcome.
Synchronization is particularly important when multiple threads access the same data; it’s
surprisingly easy to run aground in this area.
The simplest and most useful synchronization tools are arguably the continuations and task
combinators we described in Chapter 14. By formulating concurrent programs into
asynchronous operations strung together with continuations and combinators, you lessen the
need for locking and signaling. However, there are still times when the lower-level constructs
come into play.
The synchronization constructs can be divided into three categories:

Exclusive locking
Exclusive locking constructs allow just one thread to perform some activity or execute a
section of code at a time. Their primary purpose is to let threads access shared writing

http://albahari.com/threading/


state without interfering with one other. The exclusive locking constructs are lock, Mutex,
and SpinLock.

Nonexclusive locking
Nonexclusive locking lets you limit concurrency. The nonexclusive locking constructs are
Semaphore(Slim) and ReaderWriterLock(Slim).

Signaling
These allow a thread to block until receiving one or more notifications from other
thread(s). The signaling constructs include ManualReset Event(Slim), AutoResetEvent,
CountdownEvent, and Barrier. The former three are referred to as event wait handles.

It’s also possible (and tricky) to perform certain concurrent operations on shared state without
locking, through the use of nonblocking synchronization constructs. These are
Thread.MemoryBarrier, Thread.VolatileRead, Thread.VolatileWrite, the volatile
keyword, and the Interlocked class. We cover this topic online, along with Monitor’s
Wait/Pulse methods, which can be used to write custom signaling logic — see
http://albahari.com/threading/.

Exclusive Locking
There are three exclusive locking constructs: the lock statement, Mutex, and SpinLock. The
lock construct is the most convenient and widely used, whereas the other two target niche
scenarios:

Mutex lets you span multiple processes (computer-wide locks).

SpinLock implements a micro-optimization that can lessen context switches in high-
concurrency scenarios (see http://albahari.com/threading/).

The lock Statement
To illustrate the need for locking, consider the following class:

class ThreadUnsafe
{
  static int _val1 = 1, _val2 = 1;

  static void Go()
  {
    if (_val2 != 0) Console.WriteLine (_val1 / _val2);
    _val2 = 0;
  }
}

This class is not thread-safe: if Go was called by two threads simultaneously, it would be
possible to get a division-by-zero error, because _val2 could be set to zero in one thread right
as the other thread was in between executing the if statement and Console.WriteLine.
Here’s how lock fixes the problem:

class ThreadSafe
{
  static readonly object _locker = new object();
  static int _val1 = 1, _val2 = 1;

http://albahari.com/threading/
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  static void Go()
  {
    lock (_locker)
    {
      if (_val2 != 0) Console.WriteLine (_val1 / _val2);
      _val2 = 0;
    }
  }
}

Only one thread can lock the synchronizing object (in this case, _locker) at a time, and any
contending threads are blocked until the lock is released. If more than one thread contends the
lock, they are queued on a “ready queue” and granted the lock on a first-come, first-served
basis.1 Exclusive locks are sometimes said to enforce serialized access to whatever’s
protected by the lock, because one thread’s access cannot overlap with that of another. In this
case, we’re protecting the logic inside the Go method, as well as the fields _val1 and _val2.

Monitor.Enter and Monitor.Exit
C#’s lock statement is in fact a syntactic shortcut for a call to the methods Monitor .Enter and
Monitor.Exit, with a try/finally block. Here’s (a simplified version of) what’s actually
happening within the Go method of the preceding example:

Monitor.Enter (_locker);
try
{
  if (_val2 != 0) Console.WriteLine (_val1 / _val2);
  _val2 = 0;
}
finally { Monitor.Exit (_locker); }

Calling Monitor.Exit without first calling Monitor.Enter on the same object throws an
exception.

The lockTaken overloads
The code that we just demonstrated is exactly what the C# 1.0, 2.0, and 3.0 compilers produce
in translating a lock statement.
There’s a subtle vulnerability in this code, however. Consider the (unlikely) event of an
exception being thrown between the call to Monitor.Enter and the try block (due, perhaps,
to Abort being called on that thread — or an OutOfMemoryException being thrown). In such a
scenario, the lock may or may not be taken. If the lock is taken, it won’t be released — because
we’ll never enter the try/finally block. This will result in a leaked lock. To avoid this
danger, CLR 4.0’s designers added the following overload to Monitor.Enter:

public static void Enter (object obj, ref bool lockTaken);

lockTaken is false after this method if (and only if) the Enter method throws an exception and
the lock was not taken.
Here’s the more robust pattern of use (which is exactly how C# 4.0 and later translate a lock
statement):

bool lockTaken = false;
try
{



  Monitor.Enter (_locker, ref lockTaken);
  // Do your stuff...
}
finally { if (lockTaken) Monitor.Exit (_locker); }

TryEnter
Monitor also provides a TryEnter method that allows a timeout to be specified, either in
milliseconds or as a TimeSpan. The method then returns true if a lock was obtained, or false
if no lock was obtained because the method timed out. TryEnter can also be called with no
argument, which “tests” the lock, timing out immediately if the lock can’t be obtained right
away. As with the Enter method, TryEnter is overloaded in CLR 4.0 to accept a lockTaken
argument.

Choosing the Synchronization Object
Any object visible to each of the partaking threads can be used as a synchronizing object,
subject to one hard rule: it must be a reference type. The synchronizing object is typically
private (because this helps to encapsulate the locking logic) and is typically an instance or
static field. The synchronizing object can double as the object it’s protecting, as the _list field
does in the following example:

class ThreadSafe
{
  List <string> _list = new List <string>();

  void Test()
  {
    lock (_list)
    {
      _list.Add ("Item 1");
      ...

A field dedicated for the purpose of locking (such as _locker, in the example prior) allows
precise control over the scope and granularity of the lock. The containing object (this) — or
even its type — can also be used as a synchronization object:

lock (this) { ... }

or:

lock (typeof (Widget)) { ... }    // For protecting access to statics

The disadvantage of locking in this way is that you’re not encapsulating the locking logic, so it
becomes harder to prevent deadlocking and excessive blocking. A lock on a type may also seep
through application domain boundaries (within the same process — see Chapter 24).
You can also lock on local variables captured by lambda expressions or anonymous methods.

NOTE
Locking doesn’t restrict access to the synchronizing object itself in any way. In other words,
x.ToString() will not block because another thread has called lock(x); both threads must call
lock(x) in order for blocking to occur.



When to Lock
As a basic rule, you need to lock around accessing any writable shared field. Even in the
simplest case — an assignment operation on a single field — you must consider
synchronization. In the following class, neither the Increment nor the Assign method is
thread-safe:

class ThreadUnsafe
{
  static int _x;
  static void Increment() { _x++; }
  static void Assign()    { _x = 123; }
}

Here are thread-safe versions of Increment and Assign:

static readonly object _locker = new object();
static int _x;

static void Increment() { lock (_locker) _x++; }
static void Assign()    { lock (_locker) _x = 123; }

Without locks, two problems can arise:
Operations such as incrementing a variable (or even reading/writing a variable, under
certain conditions) are not atomic.

The compiler, CLR, and processor are entitled to reorder instructions and cache variables
in CPU registers to improve performance — as long as such optimizations don’t change the
behavior of a single-threaded program (or a multi-threaded program that uses locks).

Locking mitigates the second problem because it creates a memory barrier before and after the
lock. A memory barrier is a “fence” around which the effects or reordering and caching cannot
cross.

NOTE
This applies not just to locks, but to all synchronization constructs. So if your use of a
signaling construct, for instance, ensures that just one thread reads/writes a variable at a
time, you don’t need to lock. Hence, the following code is thread-safe without locking around
x:

var signal = new ManualResetEvent (false);
int x = 0;
new Thread (() => { x++; signal.Set(); }).Start();
signal.WaitOne();
Console.WriteLine (x);    // 1 (always)

In “Nonblocking Synchronization” at http://albahari.com/threading, we explain how this need
arises, and how the memory barriers and the Interlocked class can provide alternatives to
locking in these situations.

Locking and Atomicity

http://albahari.com/threading


If a group of variables are always read and written within the same lock, you can say the
variables are read and written atomically. Let’s suppose fields x and y are always read and
assigned within a lock on object locker:

lock (locker) { if (x != 0) y /= x; }

One can say x and y are accessed atomically, because the code block cannot be divided or
preempted by the actions of another thread in such a way that it will change x or y and
invalidate its outcome. You’ll never get a division-by-zero error, providing x and y are
always accessed within this same exclusive lock.

WARNING
The atomicity provided by a lock is violated if an exception is thrown within a lock block.
For example, consider the following:

decimal _savingsBalance, _checkBalance;

void Transfer (decimal amount)
{
  lock (_locker)
  {
    _savingsBalance += amount;
    _checkBalance -= amount + GetBankFee();
  }
}

If an exception was thrown by GetBankFee(), the bank would lose money. In this case, we
could avoid the problem by calling GetBankFee earlier. A solution for more complex cases is to
implement “rollback” logic within a catch or finally block.

Instruction atomicity is a different, although analogous concept: an instruction is atomic if it
executes indivisibly on the underlying processor.

Nested Locking
A thread can repeatedly lock the same object in a nested (reentrant) fashion:

lock (locker)
  lock (locker)
    lock (locker)
    {
       // Do something...
    }

or:

Monitor.Enter (locker); Monitor.Enter (locker);  Monitor.Enter (locker);
// Do something...
Monitor.Exit (locker);  Monitor.Exit (locker);   Monitor.Exit (locker);

In these scenarios, the object is unlocked only when the outermost lock statement has exited —
or a matching number of Monitor.Exit statements have executed.
Nested locking is useful when one method calls another from within a lock:



static readonly object _locker = new object();

static void Main()
{
  lock (_locker)
  {
     AnotherMethod();
     // We still have the lock - because locks are reentrant.
  }
}

static void AnotherMethod()
{
  lock (_locker) { Console.WriteLine ("Another method"); }
}

A thread can block on only the first (outermost) lock.

Deadlocks
A deadlock happens when two threads each wait for a resource held by the other, so neither
can proceed. The easiest way to illustrate this is with two locks:

object locker1 = new object();
object locker2 = new object();

new Thread (() => {
                    lock (locker1)
                    {
                      Thread.Sleep (1000);
                      lock (locker2);      // Deadlock
                    }
                  }).Start();
lock (locker2)
{
  Thread.Sleep (1000);
  lock (locker1);                          // Deadlock
}

More elaborate deadlocking chains can be created with three or more threads.

WARNING
The CLR, in a standard hosting environment, is not like SQL Server and does not
automatically detect and resolve deadlocks by terminating one of the offenders. A threading
deadlock causes participating threads to block indefinitely, unless you’ve specified a locking
timeout. (Under the SQL CLR integration host, however, deadlocks are automatically
detected and a [catchable] exception is thrown on one of the threads.)

Deadlocking is one of the hardest problems in multithreading — especially when there are
many interrelated objects. Fundamentally, the hard problem is that you can’t be sure what locks
your caller has taken out.
So, you might lock private field a within your class x, unaware that your caller (or caller’s
caller) has already locked field b within class y. Meanwhile, another thread is doing the
reverse — creating a deadlock. Ironically, the problem is exacerbated by (good) object-
oriented design patterns, because such patterns create call chains that are not determined until
runtime.



The popular advice, “lock objects in a consistent order to avoid deadlocks,” although helpful
in our initial example, is hard to apply to the scenario just described. A better strategy is to be
wary of locking around calls to methods in objects that may have references back to your own
object. Also, consider whether you really need to lock around calls to methods in other classes
(often you do — as we’ll see in “Thread Safety” — but sometimes there are other options).
Relying more on higher-level synchronization options such as task continuations/combinators,
data parallelism, and immutable types (later in this chapter) can lessen the need for locking.

NOTE
Here is an alternative way to perceive the problem: when you call out to other code while
holding a lock, the encapsulation of that lock subtly leaks. This is not a fault in the CLR or
.NET Framework, but a fundamental limitation of locking in general. The problems of
locking are being addressed in various research projects, including Software Transactional
Memory.

Another deadlocking scenario arises when calling Dispatcher.Invoke (in a WPF
application) or Control.Invoke (in a Windows Forms application) while in possession of a
lock. If the UI happens to be running another method that’s waiting on the same lock, a deadlock
will happen right there. This can often be fixed simply by calling BeginInvoke instead of
Invoke (or relying on asynchronous functions, which do this implicitly when a synchronization
context is present). Alternatively, you can release your lock before calling Invoke, although
this won’t work if your caller took out the lock.

Performance
Locking is fast: you can expect to acquire and release a lock in less than 50 nanoseconds on a
2015-era computer if the lock is uncontended. If it is contended, the consequential context
switch moves the overhead closer to the microsecond region, although it may be longer before
the thread is actually rescheduled.

Mutex
A Mutex is like a C# lock, but it can work across multiple processes. In other words, Mutex
can be computer-wide as well as application-wide. Acquiring and releasing an uncontended
Mutex takes around a microsecond — about 20 times slower than a lock.
With a Mutex class, you call the WaitOne method to lock and ReleaseMutex to unlock. Just as
with the lock statement, a Mutex can be released only from the same thread that obtained it.

WARNING
If you forget to call ReleaseMutex and simply call Close or Dispose, an
AbandonedMutexException will be thrown upon anyone else waiting upon that mutex.

A common use for a cross-process Mutex is to ensure that only one instance of a program can
run at a time. Here’s how it’s done:



class OneAtATimePlease
{
  static void Main()
  {
    // Naming a Mutex makes it available computer-wide. Use a name that's
    // unique to your company and application (e.g., include your URL).

    using (var mutex = new Mutex (true, "oreilly.com OneAtATimeDemo"))
    {
      // Wait a few seconds if contended, in case another instance
      // of the program is still in the process of shutting down.

      if (!mutex.WaitOne (TimeSpan.FromSeconds (3), false))
      {
        Console.WriteLine ("Another instance of the app is running. Bye!");
        return;
      }
      try { RunProgram(); }
      finally { mutex.ReleaseMutex (); }
    }
  }

  static void RunProgram()
  {
    Console.WriteLine ("Running. Press Enter to exit");
    Console.ReadLine();
  }
}

NOTE
If running under Terminal Services, a computer-wide Mutex is ordinarily visible only to
applications in the same terminal server session. To make it visible to all terminal server
sessions, prefix its name with Global\.

Locking and Thread Safety
A program or method is thread-safe if it can work correctly in any multithreading scenario.
Thread safety is achieved primarily with locking and by reducing the possibilities for thread
interaction.
General-purpose types are rarely thread-safe in their entirety, for the following reasons:

The development burden in full thread safety can be significant, particularly if a type has
many fields (each field is a potential for interaction in an arbitrarily multithreaded context).

Thread safety can entail a performance cost (payable, in part, whether or not the type is
actually used by multiple threads).

A thread-safe type does not necessarily make the program using it thread-safe, and often the
work involved in the latter makes the former redundant.

Thread safety is thus usually implemented just where it needs to be, in order to handle a
specific multithreading scenario.
There are, however, a few ways to “cheat” and have large and complex classes run safely in a
multithreaded environment. One is to sacrifice granularity by wrapping large sections of code
— even access to an entire object — within a single exclusive lock, enforcing serialized
access at a high level. This tactic is, in fact, essential if you want to use thread-unsafe third-



party code (or most Framework types, for that matter) in a multithreaded context. The trick is
simply to use the same exclusive lock to protect access to all properties, methods, and fields on
the thread-unsafe object. The solution works well if the object’s methods all execute quickly
(otherwise, there will be a lot of blocking).

WARNING
Primitive types aside, few .NET Framework types, when instantiated, are thread-safe for
anything more than concurrent read-only access. The onus is on the developer to
superimpose thread safety, typically with exclusive locks. (The collections in
System.Collections.Concurrent that we cover in Chapter 23 are an exception.)

Another way to cheat is to minimize thread interaction by minimizing shared data. This is an
excellent approach and is used implicitly in “stateless” middle-tier application and web page
servers. Since multiple client requests can arrive simultaneously, the server methods they call
must be thread-safe. A stateless design (popular for reasons of scalability) intrinsically limits
the possibility of interaction, since classes do not persist data between requests. Thread
interaction is then limited just to the static fields one may choose to create, for such purposes
as caching commonly used data in memory and in providing infrastructure services such as
authentication and auditing.
Yet another solution (in rich-client applications) is to run code that accesses shared state on the
UI thread. As we saw in Chapter 14, asynchronous functions make this easy.
The final approach in implementing thread safety is to use an automatic locking regime. The
.NET Framework does exactly this, if you subclass ContextBound Object and apply the
Synchronization attribute to the class. Whenever a method or property on such an object is
then called, an object-wide lock is automatically taken for the whole execution of the method
or property. Although this reduces the thread-safety burden, it creates problems of its own:
deadlocks that would not otherwise occur, impoverished concurrency, and unintended
reentrancy. For these reasons, manual locking is generally a better option — at least until a less
simplistic automatic locking regime becomes available.

Thread Safety and .NET Framework Types
Locking can be used to convert thread-unsafe code into thread-safe code. A good application of
this is the .NET Framework: nearly all of its nonprimitive types are not thread-safe (for
anything more than read-only access) when instantiated, and yet they can be used in
multithreaded code if all access to any given object is protected via a lock. Here’s an example,
where two threads simultaneously add an item to the same List collection, then enumerate the
list:

class ThreadSafe
{
  static List <string> _list = new List <string>();

  static void Main()
  {
    new Thread (AddItem).Start();
    new Thread (AddItem).Start();
  }



  static void AddItem()
  {
    lock (_list) _list.Add ("Item " + _list.Count);

    string[] items;
    lock (_list) items = _list.ToArray();
    foreach (string s in items) Console.WriteLine (s);
  }
}

In this case, we’re locking on the _list object itself. If we had two interrelated lists, we
would have to choose a common object upon which to lock (we could nominate one of the lists,
or better: use an independent field).
Enumerating .NET collections is also thread-unsafe in the sense that an exception is thrown if
the list is modified during enumeration. Rather than locking for the duration of enumeration, in
this example, we first copy the items to an array. This avoids holding the lock excessively if
what we’re doing during enumeration is potentially time-consuming. (Another solution is to use
a reader/writer lock; see “Reader/Writer Locks”.)

Locking around thread-safe objects
Sometimes you also need to lock around accessing thread-safe objects. To illustrate, imagine
that the Framework’s List class was, indeed, thread-safe, and we want to add an item to a list:

if (!_list.Contains (newItem)) _list.Add (newItem);

Whether or not the list was thread-safe, this statement is certainly not! The whole if statement
would have to be wrapped in a lock in order to prevent preemption in between testing for
containership and adding the new item. This same lock would then need to be used everywhere
we modified that list. For instance, the following statement would also need to be wrapped in
the identical lock:

_list.Clear();

to ensure that it did not preempt the former statement. In other words, we would have to lock
exactly as with our thread-unsafe collection classes (making the List class’s hypothetical
thread safety redundant).

NOTE
Locking around accessing a collection can cause excessive blocking in highly concurrent
environments. To this end, Framework 4.0 provides a thread-safe queue, stack, and
dictionary, which we discuss in Chapter 23.

Static members
Wrapping access to an object around a custom lock works only if all concurrent threads are
aware of — and use — the lock. This may not be the case if the object is widely scoped. The
worst case is with static members in a public type. For instance, imagine if the static property
on the DateTime struct, DateTime.Now, was not thread-safe, and that two concurrent calls
could result in garbled output or an exception. The only way to remedy this with external
locking might be to lock the type itself — lock(typeof(DateTime)) — before calling



DateTime.Now. This would work only if all programmers agreed to do this (which is unlikely).
Furthermore, locking a type creates problems of its own.
For this reason, static members on the DateTime struct have been carefully programmed to be
thread-safe. This is a common pattern throughout the .NET Framework: static members are
thread-safe; instance members are not. Following this pattern also makes sense when writing
types for public consumption, so as not to create impossible thread-safety conundrums. In other
words, by making static methods thread-safe, you’re programming so as not to preclude thread
safety for consumers of that type.

NOTE
Thread safety in static methods is something that you must explicitly code: it doesn’t happen
automatically by virtue of the method being static!

Read-only thread safety
Making types thread-safe for concurrent read-only access (where possible) is advantageous
because it means that consumers can avoid excessive locking. Many of the .NET Framework
types follow this principle: collections, for instance, are thread-safe for concurrent readers.
Following this principle yourself is simple: if you document a type as being thread-safe for
concurrent read-only access, don’t write to fields within methods that a consumer would expect
to be read-only (or lock around doing so). For instance, in implementing a ToArray() method
in a collection, you might start by compacting the collection’s internal structure. However, this
would make it thread-unsafe for consumers that expected this to be read-only.
Read-only thread safety is one of the reasons that enumerators are separate from
“enumerables”: two threads can simultaneously enumerate over a collection because each gets
a separate enumerator object.

NOTE
In the absence of documentation, it pays to be cautious in assuming whether a method is
read-only in nature. A good example is the Random class: when you call Random.Next(), its
internal implementation requires that it update private seed values. Therefore, you must either
lock around using the Random class, or maintain a separate instance per thread.

Thread Safety in Application Servers
Application servers need to be multithreaded to handle simultaneous client requests. WCF,
ASP.NET, and Web Services applications are implicitly multithreaded; the same holds true for
Remoting server applications that use a network channel such as TCP or HTTP. This means that
when writing code on the server side, you must consider thread safety if there’s any possibility
of interaction among the threads processing client requests. Fortunately, such a possibility is
rare; a typical server class is either stateless (no fields) or has an activation model that creates
a separate object instance for each client or each request. Interaction usually arises only
through static fields, sometimes used for caching in-memory parts of a database to improve
performance.



For example, suppose you have a RetrieveUser method that queries a database:

// User is a custom class with fields for user data
internal User RetrieveUser (int id) { ... }

If this method was called frequently, you could improve performance by caching the results in a
static Dictionary. Here’s a solution that takes thread safety into account:

static class UserCache
{
  static Dictionary <int, User> _users = new Dictionary <int, User>();

  internal static User GetUser (int id)
  {
    User u = null;

    lock (_users)
      if (_users.TryGetValue (id, out u))
        return u;

    u = RetrieveUser (id);           // Method to retrieve from database;
    lock (_users) _users [id] = u;
    return u;
  }
}

We must, at a minimum, lock around reading and updating the dictionary to ensure thread safety.
In this example, we choose a practical compromise between simplicity and performance in
locking. Our design actually creates a very small potential for inefficiency: if two threads
simultaneously called this method with the same previously unretrieved id, the RetrieveUser
method would be called twice — and the dictionary would be updated unnecessarily. Locking
once across the whole method would prevent this, but would create a worse inefficiency: the
entire cache would be locked up for the duration of calling RetrieveUser, during which time
other threads would be blocked in retrieving any user.

Immutable Objects
An immutable object is one whose state cannot be altered — externally or internally. The fields
in an immutable object are typically declared read-only and are fully initialized during
construction.
Immutability is a hallmark of functional programming — where instead of mutating an object,
you create a new object with different properties. LINQ follows this paradigm. Immutability is
also valuable in multithreading in that it avoids the problem of shared writable state — by
eliminating (or minimizing) the writable.
One pattern is to use immutable objects to encapsulate a group of related fields, to minimize
lock durations. To take a very simple example, suppose we had two fields as follows:

int _percentComplete;
string _statusMessage;

and we wanted to read/write them atomically. Rather than locking around these fields, we
could define the following immutable class:

class ProgressStatus    // Represents progress of some activity
{



  public readonly int PercentComplete;
  public readonly string StatusMessage;

  // This class might have many more fields...

  public ProgressStatus (int percentComplete, string statusMessage)
  {
    PercentComplete = percentComplete;
    StatusMessage = statusMessage;
  }
}

Then we could define a single field of that type, along with a locking object:

readonly object _statusLocker = new object();
ProgressStatus _status;

We can now read/write values of that type without holding a lock for more than a single
assignment:

var status = new ProgressStatus (50, "Working on it");
// Imagine we were assigning many more fields...
// ...
lock (_statusLocker) _status = status;    // Very brief lock

To read the object, we first obtain a copy of the object reference (within a lock). Then we can
read its values without needing to hold on to the lock:

ProgressStatus status;
lock (_statusLocker) status = _status;   // Again, a brief lock
int pc = status.PercentComplete;
string msg = status.StatusMessage;
...

Nonexclusive Locking

Semaphore
A semaphore is like a nightclub: it has a certain capacity, enforced by a bouncer. Once it’s full,
no more people can enter, and a queue builds up outside. Then, for each person that leaves, one
person enters. The constructor requires a minimum of two arguments: the number of places
currently available in the nightclub and the club’s total capacity.
A semaphore with a capacity of one is similar to a Mutex or lock, except that the semaphore
has no “owner” — it’s thread-agnostic. Any thread can call Release on a Semaphore,
whereas with Mutex and lock, only the thread that obtained the lock can release it.

NOTE
There are two functionally similar versions of this class: Semaphore and SemaphoreSlim. The
latter was introduced in Framework 4.0 and has been optimized to meet the low-latency
demands of parallel programming. It’s also useful in traditional multithreading because it lets
you specify a cancellation token when waiting (see “Cancellation” in Chapter 14), and it
exposes a WaitAsync method for asynchronous programming. It cannot, however, be used for
interprocess signaling.



Semaphore incurs about 1 microsecond in calling WaitOne and Release; SemaphoreSlim incurs
about one tenth of that.

Semaphores can be useful in limiting concurrency — preventing too many threads from
executing a particular piece of code at once. In the following example, five threads try to enter
a nightclub that allows only three threads in at once:

class TheClub      // No door lists!
{
  static SemaphoreSlim _sem = new SemaphoreSlim (3);    // Capacity of 3
 
  static void Main()
  {
    for (int i = 1; i <= 5; i++) new Thread (Enter).Start (i);
  }

  static void Enter (object id)
  {
    Console.WriteLine (id + " wants to enter");
    _sem.Wait();
    Console.WriteLine (id + " is in!");           // Only three threads
    Thread.Sleep (1000 * (int) id);               // can be here at
    Console.WriteLine (id + " is leaving");       // a time.
    _sem.Release();
  }
}

1 wants to enter
1 is in!
2 wants to enter
2 is in!
3 wants to enter
3 is in!
4 wants to enter
5 wants to enter
1 is leaving
4 is in!
2 is leaving
5 is in!

A Semaphore, if named, can span processes in the same way as a Mutex.

Reader/Writer Locks
Quite often, instances of a type are thread-safe for concurrent read operations, but not for
concurrent updates (nor for a concurrent read and update). This can also be true with resources
such as a file. Although protecting instances of such types with a simple exclusive lock for all
modes of access usually does the trick, it can unreasonably restrict concurrency if there are
many readers and just occasional updates. An example of where this could occur is in a
business application server, where commonly used data is cached for fast retrieval in static
fields. The ReaderWriterLockSlim class is designed to provide maximum-availability
locking in just this scenario.

NOTE
ReaderWriterLockSlim was introduced in Framework 3.5 and is a replacement for the older
“fat” ReaderWriterLock class. The latter is similar in functionality, but it is several times
slower and has an inherent design fault in its mechanism for handling lock upgrades.



When compared to an ordinary lock (Monitor.Enter/Exit), ReaderWriterLockSlim is still
twice as slow, though. The trade-off is less contention (when there’s a lot of reading and
minimal writing).

With both classes, there are two basic kinds of lock — a read lock and a write lock:
A write lock is universally exclusive.

A read lock is compatible with other read locks.

So, a thread holding a write lock blocks all other threads trying to obtain a read or write lock
(and vice versa). But if no thread holds a write lock, any number of threads may concurrently
obtain a read lock.
ReaderWriterLockSlim defines the following methods for obtaining and releasing read/write
locks:

public void EnterReadLock();
public void ExitReadLock();
public void EnterWriteLock();
public void ExitWriteLock();

Additionally, there are “Try” versions of all EnterXXX methods that accept timeout arguments
in the style of Monitor.TryEnter (timeouts can occur quite easily if the resource is heavily
contended). ReaderWriterLock provides similar methods, named AcquireXXX and
ReleaseXXX. These throw an ApplicationException if a timeout occurs, rather than
returning false.
The following program demonstrates ReaderWriterLockSlim. Three threads continually
enumerate a list, while two further threads append a random number to the list every 100ms. A
read lock protects the list readers, and a write lock protects the list writers:

class SlimDemo
{
  static ReaderWriterLockSlim _rw = new ReaderWriterLockSlim();
  static List<int> _items = new List<int>();
  static Random _rand = new Random();

  static void Main()
  {
    new Thread (Read).Start();
    new Thread (Read).Start();
    new Thread (Read).Start();

    new Thread (Write).Start ("A");
    new Thread (Write).Start ("B");
  }

  static void Read()
  {
    while (true)
    {
      _rw.EnterReadLock();
      foreach (int i in _items) Thread.Sleep (10);
      _rw.ExitReadLock();
    }
  }

  static void Write (object threadID)
  {
    while (true)



    {
      int newNumber = GetRandNum (100);
      _rw.EnterWriteLock();
      _items.Add (newNumber);
      _rw.ExitWriteLock();
      Console.WriteLine ("Thread " + threadID + " added " + newNumber);
      Thread.Sleep (100);
    }
  }

  static int GetRandNum (int max) { lock (_rand) return _rand.Next(max); }
}

NOTE
In production code, you’d typically add try/finally blocks to ensure that locks were released
if an exception was thrown.

Here’s the result:

Thread B added 61
Thread A added 83
Thread B added 55
Thread A added 33
...

ReaderWriterLockSlim allows more concurrent Read activity than a simple lock. We can
illustrate this by inserting the following line in the Write method, at the start of the while loop:

Console.WriteLine (_rw.CurrentReadCount + " concurrent readers");

This nearly always prints “3 concurrent readers” (the Read methods spend most of their time
inside the foreach loops). As well as CurrentReadCount, ReaderWriterLockSlim provides
the following properties for monitoring locks:

public bool IsReadLockHeld            { get; }
public bool IsUpgradeableReadLockHeld { get; }
public bool IsWriteLockHeld           { get; }

public int  WaitingReadCount          { get; }
public int  WaitingUpgradeCount       { get; }
public int  WaitingWriteCount         { get; }

public int  RecursiveReadCount        { get; }
public int  RecursiveUpgradeCount     { get; }
public int  RecursiveWriteCount       { get; }

Upgradeable locks
Sometimes it’s useful to swap a read lock for a write lock in a single atomic operation. For
instance, suppose you want to add an item to a list only if the item wasn’t already present.
Ideally, you’d want to minimize the time spent holding the (exclusive) write lock, so you might
proceed as follows:

1. Obtain a read lock.

2. Test if the item is already present in the list, and if so, release the lock and return.



3. Release the read lock.

4. Obtain a write lock.

5. Add the item.

The problem is that another thread could sneak in and modify the list (e.g., adding the same
item) between steps 3 and 4. ReaderWriterLockSlim addresses this through a third kind of
lock called an upgradeable lock. An upgradeable lock is like a read lock except that it can
later be promoted to a write lock in an atomic operation. Here’s how you use it:

1. Call EnterUpgradeableReadLock.

2. Perform read-based activities (e.g., test whether the item is already present in the list).

3. Call EnterWriteLock (this converts the upgradeable lock to a write lock).

4. Perform write-based activities (e.g., add the item to the list).

5. Call ExitWriteLock (this converts the write lock back to an upgradeable lock).

6. Perform any other read-based activities.

7. Call ExitUpgradeableReadLock.

From the caller’s perspective, it’s rather like nested or recursive locking. Functionally, though,
in step 3, ReaderWriterLockSlim releases your read lock and obtains a fresh write lock,
atomically.
There’s another important difference between upgradeable locks and read locks. Although an
upgradeable lock can coexist with any number of read locks, only one upgradeable lock can
itself be taken out at a time. This prevents conversion deadlocks by serializing competing
conversions — just as update locks do in SQL Server:

SQL Server ReaderWriterLockSlim

Share lock Read lock

Exclusive lock Write lock

Update lock Upgradeable lock

We can demonstrate an upgradeable lock by changing the Write method in the preceding
example such that it adds a number to a list only if not already present:

while (true)
{
  int newNumber = GetRandNum (100);
  _rw.EnterUpgradeableReadLock();
  if (!_items.Contains (newNumber))
  {
    _rw.EnterWriteLock();
    _items.Add (newNumber);
    _rw.ExitWriteLock();
    Console.WriteLine ("Thread " + threadID + " added " + newNumber);
  }
  _rw.ExitUpgradeableReadLock();
  Thread.Sleep (100);



}

NOTE
ReaderWriterLock can also do lock conversions — but unreliably because it doesn’t support
the concept of upgradeable locks. This is why the designers of ReaderWriterLockSlim had to
start afresh with a new class.

Lock recursion
Ordinarily, nested or recursive locking is prohibited with ReaderWriterLockSlim. Hence, the
following throws an exception:

var rw = new ReaderWriterLockSlim();
rw.EnterReadLock();
rw.EnterReadLock();
rw.ExitReadLock();
rw.ExitReadLock();

It runs without error, however, if you construct ReaderWriterLockSlim as follows:

var rw = new ReaderWriterLockSlim (LockRecursionPolicy.SupportsRecursion);

This ensures that recursive locking can happen only if you plan for it. Recursive locking can
create undesired complexity because it’s possible to acquire more than one kind of lock:

rw.EnterWriteLock();
rw.EnterReadLock();
Console.WriteLine (rw.IsReadLockHeld);     // True
Console.WriteLine (rw.IsWriteLockHeld);    // True
rw.ExitReadLock();
rw.ExitWriteLock();

The basic rule is that once you’ve acquired a lock, subsequent recursive locks can be less, but
not greater, on the following scale:

Read Lock→Upgradeable Lock→Write Lock

A request to promote an upgradeable lock to a write lock, however, is always legal.

Signaling with Event Wait Handles
The simplest kind of signaling constructs are called event wait handles (unrelated to C#
events). Event wait handles come in three flavors: AutoResetEvent, ManualReset 
Event(Slim), and CountdownEvent. The former two are based on the common
EventWaitHandle class, where they derive all their functionality.

AutoResetEvent
An AutoResetEvent is like a ticket turnstile: inserting a ticket lets exactly one person through.
The “auto” in the class’s name refers to the fact that an open turnstile automatically closes or
“resets” after someone steps through. A thread waits, or blocks, at the turnstile by calling
WaitOne (wait at this “one” turnstile until it opens), and a ticket is inserted by calling the Set



method. If a number of threads call Wait One, a queue2 builds up behind the turnstile. A ticket
can come from any thread; in other words, any (unblocked) thread with access to the
AutoResetEvent object can call Set on it to release one blocked thread.
You can create an AutoResetEvent in two ways. The first is via its constructor:

var auto = new AutoResetEvent (false);

(Passing true into the constructor is equivalent to immediately calling Set upon it.) The
second way to create an AutoResetEvent is as follows:

var auto = new EventWaitHandle (false, EventResetMode.AutoReset);

In the following example, a thread is started whose job is simply to wait until signaled by
another thread (see Figure 22-1):

class BasicWaitHandle
{
  static EventWaitHandle _waitHandle = new AutoResetEvent (false);

  static void Main()
  {
    new Thread (Waiter).Start();
    Thread.Sleep (1000);                  // Pause for a second...
    _waitHandle.Set();                    // Wake up the Waiter.
  }

  static void Waiter()
  {
    Console.WriteLine ("Waiting...");
    _waitHandle.WaitOne();                // Wait for notification
    Console.WriteLine ("Notified");
  }
}

// Output:
Waiting... (pause) Notified.

Figure 22-1. Signaling with an EventWaitHandle

If Set is called when no thread is waiting, the handle stays open for as long as it takes until
some thread calls WaitOne. This behavior helps avoid a race between a thread heading for the
turnstile, and a thread inserting a ticket (“Oops, inserted the ticket a microsecond too soon;
now you’ll have to wait indefinitely!”). However, calling Set repeatedly on a turnstile at



which no one is waiting doesn’t allow a whole party through when they arrive: only the next
single person is let through and the extra tickets are “wasted.”
Calling Reset on an AutoResetEvent closes the turnstile (should it be open) without waiting
or blocking.
WaitOne accepts an optional timeout parameter, returning false if the wait ended because of a
timeout rather than obtaining the signal.

NOTE
Calling WaitOne with a timeout of 0 tests whether a wait handle is “open,” without blocking
the caller. Bear in mind, though, that doing this resets the AutoResetEvent if it’s open.

DISPOSING WAIT HANDLES
Once you’ve finished with a wait handle, you can call its Close method to release the operating
system resource. Alternatively, you can simply drop all references to the wait handle and allow the
garbage collector to do the job for you sometime later (wait handles implement the disposal pattern
whereby the finalizer calls Close). This is one of the few scenarios where relying on this backup is
(arguably) acceptable, because wait handles have a light OS burden.
Wait handles are released automatically when an application domain unloads.

Two-way signaling
Let’s say we want the main thread to signal a worker thread three times in a row. If the main
thread simply calls Set on a wait handle several times in rapid succession, the second or third
signal may get lost, since the worker may take time to process each signal.
The solution is for the main thread to wait until the worker’s ready before signaling it. This can
be done with another AutoResetEvent, as follows:

class TwoWaySignaling
{
  static EventWaitHandle _ready = new AutoResetEvent (false);
  static EventWaitHandle _go = new AutoResetEvent (false);
  static readonly object _locker = new object();
  static string _message;

  static void Main()
  {
    new Thread (Work).Start();

    _ready.WaitOne();                  // First wait until worker is ready
    lock (_locker) _message = "ooo";
    _go.Set();                         // Tell worker to go

    _ready.WaitOne();
    lock (_locker) _message = "ahhh";  // Give the worker another message
    _go.Set();

    _ready.WaitOne();
    lock (_locker) _message = null;    // Signal the worker to exit
    _go.Set();
  }

  static void Work()
  {



    while (true)
    {
      _ready.Set();                          // Indicate that we're ready
      _go.WaitOne();                         // Wait to be kicked off...
      lock (_locker)
      {
        if (_message == null) return;        // Gracefully exit
        Console.WriteLine (_message);
      }
    }
  }
}

// Output:
ooo
ahhh

Figure 22-2 shows this process visually.

Figure 22-2. Two-way signaling

Here, we’re using a null message to indicate that the worker should end. With threads that run
indefinitely, it’s important to have an exit strategy!

ManualResetEvent
As we described in Chapter 14, a ManualResetEvent functions like a simple gate. Calling
Set opens the gate, allowing any number of threads calling WaitOne to be let through. Calling
Reset closes the gate. Threads that call WaitOne on a closed gate will block; when the gate is
next opened, they will be released all at once. Apart from these differences, a
ManualResetEvent functions like an AutoResetEvent.
As with AutoResetEvent, you can construct a ManualResetEvent in two ways:

var manual1 = new ManualResetEvent (false);
var manual2 = new EventWaitHandle (false, EventResetMode.ManualReset);

NOTE
From Framework 4.0, there’s another version of ManualResetEvent called
ManualResetEventSlim. The latter is optimized for short waiting times — with the ability to
opt into spinning for a set number of iterations. It also has a more efficient managed
implementation and allows a Wait to be canceled via a CancellationToken. It cannot,
however, be used for interprocess signaling. ManualResetEventSlim doesn’t subclass



WaitHandle; however, it exposes a WaitHandle property that returns a WaitHandle-based
object when called (with the performance profile of a traditional wait handle).

SIGNALING CONSTRUCTS AND PERFORMANCE
Waiting or signaling an AutoResetEvent or ManualResetEvent takes about one microsecond
(assuming no blocking).
ManualResetEventSlim and CountdownEvent can be up to 50 times faster in short-wait scenarios,
because of their nonreliance on the operating system and judicious use of spinning constructs.
In most scenarios, however, the overhead of the signaling classes themselves doesn’t create a
bottleneck, and so is rarely a consideration.

A ManualResetEvent is useful in allowing one thread to unblock many other threads. The
reverse scenario is covered by CountdownEvent.

CountdownEvent
CountdownEvent lets you wait on more than one thread. The class was introduced in
Framework 4.0 and has an efficient fully managed implementation. To use the class, instantiate
it with the number of threads or “counts” that you want to wait on:

var countdown = new CountdownEvent (3);  // Initialize with "count" of 3.

Calling Signal decrements the “count”; calling Wait blocks until the count goes down to zero.
For example:

static CountdownEvent _countdown = new CountdownEvent (3);

static void Main()
{
  new Thread (SaySomething).Start ("I am thread 1");
  new Thread (SaySomething).Start ("I am thread 2");
  new Thread (SaySomething).Start ("I am thread 3");
  _countdown.Wait();   // Blocks until Signal has been called 3 times
  Console.WriteLine ("All threads have finished speaking!");
}

static void SaySomething (object thing)
{
  Thread.Sleep (1000);
  Console.WriteLine (thing);
  _countdown.Signal();
}

NOTE
Problems for which CountdownEvent is effective can sometimes be solved more easily using
the structured parallelism constructs that we describe in Chapter 23 (PLINQ and the
Parallel class).

You can re-increment a CountdownEvent’s count by calling AddCount. However, if it has
already reached zero, this throws an exception: you can’t “unsignal” a Countdown Event by



calling AddCount. To avoid the possibility of an exception being thrown, you can instead call
TryAddCount, which returns false if the countdown is zero.
To unsignal a countdown event, call Reset: this both unsignals the construct and resets its count
to the original value.
Like ManualResetEventSlim, CountdownEvent exposes a WaitHandle property for
scenarios where some other class or method expects an object based on WaitHandle.

Creating a Cross-Process EventWaitHandle
EventWaitHandle’s constructor allows a “named” EventWaitHandle to be created, capable
of operating across multiple processes. The name is simply a string, and it can be any value
that doesn’t unintentionally conflict with someone else’s! If the name is already in use on the
computer, you get a reference to the same underlying EventWaitHandle; otherwise, the
operating system creates a new one. Here’s an example:

EventWaitHandle wh = new EventWaitHandle (false, EventResetMode.AutoReset,
                                          "MyCompany.MyApp.SomeName");

If two applications each ran this code, they would be able to signal each other: the wait handle
would work across all threads in both processes.

Wait Handles and Continuations
Rather than waiting on a wait handle (and blocking your thread), you can attach continuations to
it by calling ThreadPool.RegisterWaitForSingleObject. This method accepts a delegate
that is executed when a wait handle is signaled:

static ManualResetEvent _starter = new ManualResetEvent (false);

public static void Main()
{
  RegisteredWaitHandle reg = ThreadPool.RegisterWaitForSingleObject
   (_starter, Go, "Some Data", -1, true);
  Thread.Sleep (5000);
  Console.WriteLine ("Signaling worker...");
  _starter.Set();
  Console.ReadLine();
  reg.Unregister (_starter);    // Clean up when we're done.
}

public static void Go (object data, bool timedOut)
{
  Console.WriteLine ("Started - " + data);
  // Perform task...
}

// Output:
(5 second delay)
Signaling worker...
Started - Some Data

When the wait handle is signaled (or a timeout elapses), the delegate runs on a pooled thread.
You are then supposed to call Unregister to release the unmanaged handle to the callback.
In addition to the wait handle and delegate, RegisterWaitForSingleObject accepts a “black
box” object that it passes to your delegate method (rather like ParameterizedThreadStart),
as well as a timeout in milliseconds (–1 meaning no timeout) and a boolean flag indicating



whether the request is one-off rather than recurring.

Converting Wait Handles to Tasks
Using ThreadPool.RegisterWaitForSingleObject is awkward in practice, because you’ll
usually want to call Unregister from the callback itself — before the registration token is
available. Thus, it makes sense to write an extension method such as the following, which
converts a wait handle into a Task that you can await:

public static Task<bool> ToTask (this WaitHandle waitHandle,
                                 int timeout = -1)
{
  var tcs = new TaskCompletionSource<bool>();
  RegisteredWaitHandle token = null;
  var tokenReady = new ManualResetEventSlim();
  token = ThreadPool.RegisterWaitForSingleObject (
    waitHandle,
    (state, timedOut) =>
    {
      tokenReady.Wait();
      tokenReady.Dispose();
      token.Unregister (waitHandle);
      tcs.SetResult (!timedOut);
    },
    null,
    timeout,
    true);
  tokenReady.Set();
  return tcs.Task;
}

This lets us attach a continuation to a wait handle as follows:

myWaitHandle.ToTask().ContinueWith (...)

or await it:

await myWaitHandle.ToTask();

with an optional timeout:

if (!await (myWaitHandle.ToTask (5000)))
  Console.WriteLine ("Timed out");

Notice that in implementing ToTask, we used another wait handle (a ManualReset EventSlim)
to avoid a race condition whereby the callback runs before the registration token is assigned to
the token variable.

WaitAny, WaitAll, and SignalAndWait
In addition to the Set, WaitOne, and Reset methods, there are static methods on the
WaitHandle class to crack more complex synchronization nuts. The WaitAny, WaitAll, and
SignalAndWait methods perform signaling and waiting operations on multiple handles. The
wait handles can be of differing types (including Mutex and Semphore, since these also derive
from the abstract WaitHandle class). ManualReset EventSlim and CountdownEvent can also
partake in these methods via their Wait Handle properties.



WARNING
WaitAll and SignalAndWait have a weird connection to the legacy COM architecture: these
methods require that the caller be in a multithreaded apartment, the model least suitable for
interoperability. The main thread of a WPF or Windows Forms application, for example, is
unable to interact with the clipboard in this mode. We’ll discuss alternatives shortly.

WaitHandle.WaitAny waits for any one of an array of wait handles; WaitHandle .Wait All
waits on all of the given handles, atomically. This means that if you wait on two
AutoResetEvents:

WaitAny will never end up “latching” both events.

WaitAll will never end up “latching” only one event.

SignalAndWait calls Set on one WaitHandle, and then calls WaitOne on another
WaitHandle. After signaling the first handle, it will jump to the head of the queue in waiting on
the second handle; this helps it succeed (although the operation is not truly atomic). You can
think of this method as “swapping” one signal for another, and use it on a pair of
EventWaitHandles to set up two threads to rendezvous or “meet” at the same point in time.
Either AutoResetEvent or ManualResetEvent will do the trick. The first thread executes the
following:

WaitHandle.SignalAndWait (wh1, wh2);

whereas the second thread does the opposite:

WaitHandle.SignalAndWait (wh2, wh1);

Alternatives to WaitAll and SignalAndWait
WaitAll and SignalAndWait won’t run in a single-threaded apartment. Fortunately, there are
alternatives. In the case of SignalAndWait, it’s rare that you need its queue-jumping
semantics: in our rendezvous example, for instance, it would be valid simply to call Set on the
first wait handle, and then WaitOne on the other, if wait handles were used solely for that
rendezvous. In the following section, we’ll explore yet another option for implementing a
thread rendezvous.
In the case of WaitAny and WaitAll, if you don’t need atomicity, you can use the code we
wrote in the previous section to convert the wait handles to tasks and then use Task.WhenAny
and Task.WhenAll (Chapter 14).
If you need atomicity, you can take the lowest-level approach to signaling and write the logic
yourself with Monitor’s Wait and Pulse methods. We describe Wait and Pulse in detail in
http://albahari.com/threading/.

The Barrier Class
The Barrier class implements a thread execution barrier, allowing many threads to
rendezvous at a point in time. The class is very fast and efficient, and is built upon Wait,
Pulse, and spinlocks.

http://albahari.com/threading/


To use this class:
1. Instantiate it, specifying how many threads should partake in the rendezvous (you can

change this later by calling AddParticipants/RemoveParticipants).

2. Have each thread call SignalAndWait when it wants to rendezvous.

Instantiating Barrier with a value of 3 causes SignalAndWait to block until that method has
been called three times. It then starts over: calling SignalAndWait again blocks until called
another three times. This keeps each thread “in step” with every other thread.
In the following example, each of three threads writes the numbers 0 through 4, while keeping
in step with the other threads:

static Barrier _barrier = new Barrier (3);

static void Main()
{
  new Thread (Speak).Start();
  new Thread (Speak).Start();
  new Thread (Speak).Start();
}

static void Speak()
{
  for (int i = 0; i < 5; i++)
  {
    Console.Write (i + " ");
    _barrier.SignalAndWait();
  }
}

OUTPUT:  0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

A really useful feature of Barrier is that you can also specify a post-phase action when
constructing it. This is a delegate that runs after SignalAndWait has been called n times, but
before the threads are unblocked (as shown in the shaded area in Figure 22-3). In our example,
if we instantiate our barrier as follows:

static Barrier _barrier = new Barrier (3, barrier => Console.WriteLine());

then the output is:

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4



Figure 22-3. Barrier

A post-phase action can be useful for coalescing data from each of the worker threads. It
doesn’t have to worry about preemption, because all workers are blocked while it does its
thing.

Lazy Initialization
A frequent problem in threading is how to lazily initialize a shared field in a thread-safe
fashion. The need arises when you have a field of a type that’s expensive to construct:

class Foo
{
  public readonly Expensive Expensive = new Expensive();
  ...
}
class Expensive {  /* Suppose this is expensive to construct */  }

The problem with this code is that instantiating Foo incurs the performance cost of instantiating
Expensive — whether or not the Expensive field is ever accessed. The obvious answer is to
construct the instance on demand:

class Foo
{
  Expensive _expensive;
  public Expensive Expensive         // Lazily instantiate Expensive
  {
    get
    {
      if (_expensive == null) _expensive = new Expensive();
      return _expensive;
    }
  }
  ...
}



The question then arises, is this thread-safe? Aside from the fact that we’re accessing
_expensive outside a lock without a memory barrier, consider what would happen if two
threads accessed this property at once. They could both satisfy the if statement’s predicate and
each thread end up with a different instance of Expensive. As this may lead to subtle errors,
we would say, in general, that this code is not thread-safe.
The solution to the problem is to lock around checking and initializing the object:

Expensive _expensive;
readonly object _expenseLock = new object();

public Expensive Expensive
{
  get
  {
    lock (_expenseLock)
    {
      if (_expensive == null) _expensive = new Expensive();
      return _expensive;
    }
  }
}

Lazy<T>
From Framework 4.0, the Lazy<T> class is available to help with lazy initialization. If
instantiated with an argument of true, it implements the thread-safe initialization pattern just
described.

NOTE
Lazy<T> actually implements a micro-optimized version of this pattern, called double-checked
locking. Double-checked locking performs an additional volatile read to avoid the cost of
obtaining a lock if the object is already initialized.

To use Lazy<T>, instantiate the class with a value factory delegate that tells it how to initialize
a new value, and the argument true. Then access its value via the Value property:

Lazy<Expensive> _expensive = new Lazy<Expensive>
  (() => new Expensive(), true);

public Expensive Expensive { get { return _expensive.Value; } }

If you pass false into Lazy<T>’s constructor, it implements the thread-unsafe lazy
initialization pattern that we described at the start of this section — this makes sense when you
want to use Lazy<T> in a single-threaded context.

LazyInitializer
LazyInitializer is a static class that works exactly like Lazy<T> except:

Its functionality is exposed through a static method that operates directly on a field in your
own type. This avoids a level of indirection, improving performance in cases where you
need extreme optimization.



It offers another mode of initialization in which multiple threads can race to initialize.

To use LazyInitializer, call EnsureInitialized before accessing the field, passing a
reference to the field and the factory delegate:

Expensive _expensive;
public Expensive Expensive
{
  get          // Implement double-checked locking
  {
    LazyInitializer.EnsureInitialized (ref _expensive,
                                      () => new Expensive());
    return _expensive;
  }
}

You can also pass in another argument to request that competing threads race to initialize. This
sounds similar to our original thread-unsafe example, except that the first thread to finish
always wins — and so you end up with only one instance. The advantage of this technique is
that it’s even faster (on multicores) than double-checked locking — because it can be
implemented entirely without locks using advanced techniques that we describe in
“Nonblocking Synchronization” at http://albahari.com/threading/ and “Lazy Initialization”.
This is an extreme (and rarely needed) optimization that comes at a cost:

It’s slower when more threads race to initialize than you have cores.

It potentially wastes CPU resources performing redundant initialization.

The initialization logic must be thread-safe (in this case, it would be thread-unsafe if
Expensive’s constructor wrote to static fields, for instance).

If the initializer instantiates an object requiring disposal, the “wasted” object won’t get
disposed without additional logic.

Thread-Local Storage
Much of this chapter has focused on synchronization constructs and the issues arising from
having threads concurrently access the same data. Sometimes, however, you want to keep data
isolated, ensuring that each thread has a separate copy. Local variables achieve exactly this,
but they are useful only with transient data.
The solution is thread-local storage. You might be hard-pressed to think of a requirement: data
you’d want to keep isolated to a thread tends to be transient by nature. Its main application is
for storing “out-of-band” data — that which supports the execution path’s infrastructure, such
as messaging, transaction, and security tokens. Passing such data around in method parameters
is extremely clumsy and alienates all but your own methods; storing such information in
ordinary static fields means sharing it among all threads.

NOTE
Thread-local storage can also be useful in optimizing parallel code. It allows each thread to
exclusively access its own version of a thread-unsafe object without needing locks — and
without needing to reconstruct that object between method calls.

http://albahari.com/threading/


However, it doesn’t mix well with asynchronous code, because continuations may execute on
a different thread to the antecedent.

There are three ways to implement thread-local storage.

[ThreadStatic]
The easiest approach to thread-local storage is to mark a static field with the ThreadStatic
attribute:

[ThreadStatic] static int _x;

Each thread then sees a separate copy of _x.
Unfortunately, [ThreadStatic] doesn’t work with instance fields (it simply does nothing); nor
does it play well with field initializers — they execute only once on the thread that’s running
when the static constructor executes. If you need to work with instance fields — or start with a
nondefault value — ThreadLocal<T> provides a better option.

ThreadLocal<T>
ThreadLocal<T> is new to Framework 4.0. It provides thread-local storage for both static and
instance fields — and allows you to specify default values.
Here’s how to create a ThreadLocal<int> with a default value of 3 for each thread:

static ThreadLocal<int> _x = new ThreadLocal<int> (() => 3);

You then use _x’s Value property to get or set its thread-local value. A bonus of using
ThreadLocal is that values are lazily evaluated: the factory function evaluates on the first call
(for each thread).

ThreadLocal<T> and instance fields
ThreadLocal<T> is also useful with instance fields and captured local variables. For example,
consider the problem of generating random numbers in a multithreaded environment. The
Random class is not thread-safe, so we have to either lock around using Random (limiting
concurrency) or generate a separate Random object for each thread. ThreadLocal<T> makes
the latter easy:

var localRandom = new ThreadLocal<Random>(() => new Random());
Console.WriteLine (localRandom.Value.Next());

Our factory function for creating the Random object is a bit simplistic, though, in that Random’s
parameterless constructor relies on the system clock for a random number seed. This may be
the same for two Random objects created within ~10 ms of each other. Here’s one way to fix it:

var localRandom = new ThreadLocal<Random>
 ( () => new Random (Guid.NewGuid().GetHashCode()) );

We use this in the following chapter (see the parallel spellchecking example in “PLINQ”).



GetData and SetData
The third approach is to use two methods in the Thread class: GetData and SetData. These
store data in thread-specific “slots.” Thread.GetData reads from a thread’s isolated data
store; Thread.SetData writes to it. Both methods require a LocalDataStoreSlot object to
identify the slot. The same slot can be used across all threads and they’ll still get separate
values. Here’s an example:

class Test
{
  // The same LocalDataStoreSlot object can be used across all threads.
  LocalDataStoreSlot _secSlot = Thread.GetNamedDataSlot ("securityLevel");

  // This property has a separate value on each thread.
  int SecurityLevel
  {
    get
    {
      object data = Thread.GetData (_secSlot);
      return data == null ? 0 : (int) data;    // null == uninitialized
    }
    set { Thread.SetData (_secSlot, value); }
  }
  ...

In this instance, we called Thread.GetNamedDataSlot, which creates a named slot — this
allows sharing of that slot across the application. Alternatively, you can control a slot’s scope
yourself with an unnamed slot, obtained by calling Thread.AllocateDataSlot:

class Test
{
  LocalDataStoreSlot _secSlot = Thread.AllocateDataSlot();
  ...

Thread.FreeNamedDataSlot will release a named data slot across all threads, but only once
all references to that LocalDataStoreSlot have dropped out of scope and have been garbage-
collected. This ensures that threads don’t get data slots pulled out from under their feet, as long
as they keep a reference to the appropriate LocalDataStoreSlot object while the slot is
needed.

Interrupt and Abort
The Interrupt and Abort methods act preemptively on another thread. Interrupt has no
valid use-case, whereas Abort is occasionally useful.
Interrupt forcibly releases a blocked thread, throwing a ThreadInterruptedException on
the thread. If the thread is not blocked, execution continues until it next blocks, and then a
ThreadInterruptedException is thrown. Interrupt is useless because there is no scenario
that can’t be better solved with signaling constructs and cancellation tokens (or the Abort
method). It’s also inherently dangerous because you can never really be sure where, in the
code, a thread will be forcibly unblocked (it could within the internals of the .NET
Framework, for instance).
Abort attempts to forcibly end another thread, throwing a ThreadAbortException on the
thread right where it’s executing (unmanaged code excepted). ThreadAbort Exception is
unusual in that while it can be caught, the exception is re-thrown at the end of the catch block



(in an attempt to terminate the thread for good) unless you call Thread.ResetAbort within the
catch block. (In the interim, the thread has a ThreadState of AbortRequested.)

NOTE
An unhandled ThreadAbortException is one of only two types of exception that does not
cause application shutdown (the other is AppDomainUnloadException).

To preserve the integrity of the application domain, any finally blocks are honored and static
constructors are never aborted part-way through. Despite this, Abort is unsuitable for general-
purpose cancellation because it’s still possible for an aborted thread to cause trouble and
pollute the application domain (or even the process). For example, suppose that a type’s
instance constructor obtains an unmanaged resource (e.g., a file handle), which it releases in its
Dispose method. If a thread is aborted before the constructor completes, the partially
constructed object cannot be disposed and the unmanaged handle will leak. (The finalizer, if
present, will still run, but not until the GC catches up with it.) This vulnerability applies to
basic .NET Framework types including FileStream, making Abort unsuitable in most
scenarios. For an extended discussion on why aborting .NET Framework code is not safe, see
the topic “Aborting Threads” at http://www.albahari.com/threading/.
When there’s no alternative to using Abort, you can mitigate most of the potential damage by
running the thread in another application domain and re-creating the domain after aborting the
thread (this is what LINQPad does when you cancel a query). We discuss application domains
in Chapter 24.

NOTE
It’s valid and safe to call Abort on your own thread, because you know exactly where you
are. This is occasionally useful when you want an exception to get re-thrown after each catch
block — ASP.NET does exactly this when you call Redirect.

Suspend and Resume
Suspend and Resume freeze and unfreeze another thread. A frozen thread acts as though it’s
blocked, although suspension is considered distinct from blocking (as reported by its
ThreadState). Just as with Interrupt, Suspend/Resume lack valid use-cases and are
potentially dangerous: if you suspend a thread while it holds a lock, no other thread can obtain
that lock (including your own), making your program vulnerable to deadlocking. For this
reason, Suspend and Resume were deprecated in Framework 2.0.
Suspending a thread is mandatory, however, if you want to obtain stack trace on another thread.
This is sometimes useful for diagnostic purposes, and can be done as follows:

StackTrace stackTrace;   // in System.Diagnostics
targetThread.Suspend();
try { stackTrace = new StackTrace (targetThread, true); }
finally { targetThread.Resume(); }

Unfortunately, this is vulnerable to deadlocking, because obtaining a stack trace itself obtains

http://www.albahari.com/threading/


locks through its use of reflection. You can work around this by having another thread call
Resume if it’s still suspended after, say, 200ms (at that time, one can assume a deadlock has
occurred). Of course, this will invalidate the stack trace, but this is infinitely better than
deadlocking the application.

StackTrace stackTrace = null;
var ready = new ManualResetEventSlim();

new Thread (() =>
{
  // Backstop to release thread in case of deadlock:
  ready.Set();
  Thread.Sleep (200);
  try { targetThread.Resume(); } catch { }
}).Start();

ready.Wait();
targetThread.Suspend();
try { stackTrace = new StackTrace (targetThread, true); }
catch { /* Deadlock */ }
finally
{
  try { targetThread.Resume(); }
  catch { stackTrace = null;  /* Deadlock */  }
}

Timers
If you need to execute some method repeatedly at regular intervals, the easiest way is with a
timer. Timers are convenient and efficient in their use of memory and resources — compared
with techniques such as the following:

new Thread (delegate() {
                         while (enabled)
                         {
                           DoSomeAction();
                           Thread.Sleep (TimeSpan.FromHours (24));
                         }
                       }).Start();

Not only does this permanently tie up a thread resource, but without additional coding,
DoSomeAction will happen at a later time each day. Timers solve these problems.
The .NET Framework provides four timers. Two of these are general-purpose multithreaded
timers:

System.Threading.Timer

System.Timers.Timer

The other two are special-purpose single-threaded timers:
System.Windows.Forms.Timer (Windows Forms timer)

System.Windows.Threading.DispatcherTimer (WPF timer)

The multithreaded timers are more powerful, accurate, and flexible; the single-threaded timers
are safer and more convenient for running simple tasks that update Windows Forms controls or
WPF elements.



Multithreaded Timers
System.Threading.Timer is the simplest multithreaded timer: it has just a constructor and
two methods (a delight for minimalists, as well as book authors!). In the following example, a
timer calls the Tick method, which writes “tick...” after five seconds have elapsed, and then
every second after that, until the user presses Enter:

using System;
using System.Threading;

class Program
{
  static void Main()
  {
    // First interval = 5000ms; subsequent intervals = 1000ms
    Timer tmr = new Timer (Tick, "tick...", 5000, 1000);
    Console.ReadLine();
    tmr.Dispose();         // This both stops the timer and cleans up.
  }

  static void Tick (object data)
  {
    // This runs on a pooled thread
    Console.WriteLine (data);          // Writes "tick..."
  }
}

NOTE
See “Timers” in Chapter 12 for a discussion on disposing multithreaded timers.

You can change a timer’s interval later by calling its Change method. If you want a timer to fire
just once, specify Timeout.Infinite in the constructor’s last argument.
The .NET Framework provides another timer class of the same name in the System .Timers
namespace. This simply wraps the System.Threading.Timer, providing additional
convenience while using the identical underlying engine. Here’s a summary of its added
features:

An IComponent implementation, allowing it to be sited in the Visual Studio’s Designer’s
component tray

An Interval property instead of a Change method

An Elapsed event instead of a callback delegate

An Enabled property to start and stop the timer (its default value being false)

Start and Stop methods in case you’re confused by Enabled

An AutoReset flag for indicating a recurring event (default value is true)

A SynchronizingObject property with Invoke and BeginInvoke methods for safely
calling methods on WPF elements and Windows Forms controls

Here’s an example:



using System;
using System.Timers;   // Timers namespace rather than Threading

class SystemTimer
{
  static void Main()
  {
    Timer tmr = new Timer();       // Doesn't require any args
    tmr.Interval = 500;
    tmr.Elapsed += tmr_Elapsed;    // Uses an event instead of a delegate
    tmr.Start();                   // Start the timer
    Console.ReadLine();
    tmr.Stop();                    // Stop the timer
    Console.ReadLine();
    tmr.Start();                   // Restart the timer
    Console.ReadLine();
    tmr.Dispose();                 // Permanently stop the timer
  }

  static void tmr_Elapsed (object sender, EventArgs e)
  {
    Console.WriteLine ("Tick");
  }
}

Multithreaded timers use the thread pool to allow a few threads to serve many timers. This
means that the callback method or Elapsed event may fire on a different thread each time it is
called. Furthermore, the Elapsed event always fires (approximately) on time — regardless of
whether the previous Elapsed event finished executing. Hence, callbacks or event handlers
must be thread-safe.
The precision of multithreaded timers depends on the operating system, and is typically in the
10–20 ms region. If you need greater precision, you can use native interop and call the
Windows multimedia timer. This has precision down to 1 ms and it is defined in winmm.dll.
First call timeBeginPeriod to inform the operating system that you need high timing
precision, and then call timeSetEvent to start a multimedia timer. When you’re done, call
timeKillEvent to stop the timer and timeEndPeriod to inform the OS that you no longer need
high timing precision. Chapter 25 demonstrates calling external methods with P/Invoke. You
can find complete examples on the Internet that use the multimedia timer by searching for the
keywords dllimport winmm.dll timesetevent.

Single-Threaded Timers
The .NET Framework provides timers designed to eliminate thread-safety issues for WPF and
Windows Forms applications:

System.Windows.Threading.DispatcherTimer (WPF)

System.Windows.Forms.Timer (Windows Forms)

WARNING
The single-threaded timers are not designed to work outside their respective environments. If
you use a Windows Forms timer in a Windows Service application, for instance, the Timer
event won’t fire!

Both are like System.Timers.Timer in the members that they expose — Interval, Start,



and Stop (and Tick, which is equivalent to Elapsed) — and are used in a similar manner.
However, they differ in how they work internally. Instead of firing timer events on pooled
threads, they post the events to the WPF or Windows Forms message loop. This means that the
Tick event always fires on the same thread that originally created the timer — which, in a
normal application, is the same thread used to manage all user interface elements and controls.
This has a number of benefits:

You can forget about thread safety.

A fresh Tick will never fire until the previous Tick has finished processing.

You can update user interface elements and controls directly from Tick event handling
code, without calling Control.BeginInvoke or Dispatcher.Begin Invoke.

Thus, a program employing these timers is not really multithreaded: you end up with the same
kind of pseudoconcurrency that we described in Chapter 14 with asynchronous functions that
execute on a UI thread. One thread serves all timers — as well as the processing UI events.
Which means that the Tick event handler must execute quickly, otherwise the user interface
becomes unresponsive.
This makes the WPF and Windows Forms timers suitable for small jobs, typically updating
some aspect of the UI (e.g., a clock or countdown display).
In terms of precision, the single-threaded timers are similar to the multithreaded timers (tens of
milliseconds), although they are typically less accurate, because they can be delayed while
other user interface requests (or other timer events) are processed.

Nuances in the behavior of Windows and the CLR mean that the fairness of the queue can
sometimes be violated.

As with locks, the fairness of the queue can sometimes be violated due to nuances in the operating
system.

1
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Chapter 23. Parallel Programming

In this chapter, we cover the multithreading APIs and constructs aimed at leveraging multicore
processors:

Parallel LINQ or PLINQ

The Parallel class

The task parallelism constructs

The concurrent collections

These were added in Framework 4.0 and are collectively known (loosely) as PFX (Parallel
Framework). The Parallel class together with the task parallelism constructs is called the
Task Parallel Library or TPL.
You’ll need to be comfortable with the fundamentals in Chapter 14 before reading this chapter
— particularly locking, thread safety, and the Task class.

Why PFX?
Over the past 10 years, CPU manufacturers have shifted from single- to multicore processors.
This is problematic for us as programmers because single-threaded code does not
automatically run faster as a result of those extra cores.
Leveraging multiple cores is easy for most server applications, where each thread can
independently handle a separate client request, but is harder on the desktop — because it
typically requires that you take your computationally intensive code and do the following:

1. Partition it into small chunks.

2. Execute those chunks in parallel via multithreading.

3. Collate the results as they become available, in a thread-safe and performant manner.

Although you can do all of this with the classic multithreading constructs, it’s awkward —
particularly the steps of partitioning and collating. A further problem is that the usual strategy
of locking for thread safety causes a lot of contention when many threads work on the same data
at once.
The PFX libraries have been designed specifically to help in these scenarios.

NOTE
Programming to leverage multicores or multiple processors is called parallel programming.
This is a subset of the broader concept of multithreading.

PFX Concepts



There are two strategies for partitioning work among threads: data parallelism and task
parallelism.
When a set of tasks must be performed on many data values, we can parallelize by having each
thread perform the (same) set of tasks on a subset of values. This is called data parallelism
because we are partitioning the data between threads. In contrast, with task parallelism we
partition the tasks; in other words, we have each thread perform a different task.
In general, data parallelism is easier and scales better to highly parallel hardware, because it
reduces or eliminates shared data (thereby reducing contention and thread-safety issues). Also,
data parallelism leverages the fact that there are often more data values than discrete tasks,
increasing the parallelism potential.
Data parallelism is also conducive to structured parallelism, which means that parallel work
units start and finish in the same place in your program. In contrast, task parallelism tends to be
unstructured, meaning that parallel work units may start and finish in places scattered across
your program. Structured parallelism is simpler and less error-prone and allows you to farm
the difficult job of partitioning and thread coordination (and even result collation) out to
libraries.

PFX Components
PFX comprises two layers of functionality, as shown in Figure 23-1. The higher layer consists
of two structured data parallelism APIs: PLINQ and the Parallel class. The lower layer
contains the task parallelism classes — plus a set of additional constructs to help with parallel
programming activities.

Figure 23-1. PFX components



PLINQ offers the richest functionality: it automates all the steps of parallelization — including
partitioning the work into tasks, executing those tasks on threads, and collating the results into a
single output sequence. It’s called declarative — because you simply declare that you want to
parallelize your work (which you structure as a LINQ query), and let the Framework take care
of the implementation details. In contrast, the other approaches are imperative, in that you need
to explicitly write code to partition or collate. In the case of the Parallel class, you must
collate results yourself; with the task parallelism constructs, you must partition the work
yourself, too:

 Partitions work Collates results

PLINQ Yes Yes

The Parallel class Yes No

PFX’s task parallelism No No

The concurrent collections and spinning primitives help you with lower-level parallel
programming activities. These are important because PFX has been designed to work not only
with today’s hardware, but also with future generations of processors with far more cores. If
you want to move a pile of chopped wood and you have 32 workers to do the job, the biggest
challenge is moving the wood without the workers getting in each other’s way. It’s the same
with dividing an algorithm among 32 cores: if ordinary locks are used to protect common
resources, the resultant blocking may mean that only a fraction of those cores are ever actually
busy at once. The concurrent collections are tuned specifically for highly concurrent access,
with the focus on minimizing or eliminating blocking. PLINQ and the Parallel class
themselves rely on the concurrent collections and on spinning primitives for efficient
management of work.

OTHER USES FOR PFX
The parallel programming constructs are useful not only for leveraging multicores, but in other
scenarios:

The concurrent collections are sometimes appropriate when you want a thread-safe queue,
stack, or dictionary.

BlockingCollection provides an easy means to implement producer/consumer structures, and
is a good way to limit concurrency.

Tasks are the basis of asynchronous programming, as we saw in Chapter 14.

When to Use PFX
The primary use case for PFX is parallel programming: leveraging multicore processors to
speed up computationally intensive code.
A challenge in leveraging multicores is Amdahl’s law, which states that the maximum
performance improvement from parallelization is governed by the portion of the code that must
execute sequentially. For instance, if only two-thirds of an algorithm’s execution time is
parallelizable, you can never exceed a threefold performance gain — even with an infinite
number of cores.



So, before proceeding, it’s worth verifying that the bottleneck is in parallelizable code. It’s
also worth considering whether your code needs to be computationally intensive —
optimization is often the easiest and most effective approach. There’s a trade-off, though, in that
some optimization techniques can make it harder to parallelize code.
The easiest gains come with what’s called embarrassingly parallel problems — where a job
can be divided easily into tasks that execute efficiently on their own (structured parallelism is
very well suited to such problems). Examples include many image processing tasks, ray
tracing, and brute force approaches in mathematics or cryptography. An example of a
nonembarrassingly parallel problem is implementing an optimized version of the quicksort
algorithm — a good result takes some thought and may require unstructured parallelism.

PLINQ
PLINQ automatically parallelizes local LINQ queries. PLINQ has the advantage of being easy
to use in that it offloads the burden of both work partitioning and result collation to the
Framework.
To use PLINQ, simply call AsParallel() on the input sequence and then continue the LINQ
query as usual. The following query calculates the prime numbers between 3 and 100,000 —
making full use of all cores on the target machine:

// Calculate prime numbers using a simple (unoptimized) algorithm.

IEnumerable<int> numbers = Enumerable.Range (3, 100000-3);

var parallelQuery =
  from n in numbers.AsParallel()
  where Enumerable.Range (2, (int) Math.Sqrt (n)).All (i => n % i > 0)
  select n;

int[] primes = parallelQuery.ToArray();

AsParallel is an extension method in System.Linq.ParallelEnumerable. It wraps the
input in a sequence based on ParallelQuery<TSource>, which causes the LINQ query
operators that you subsequently call to bind to an alternate set of extension methods defined in
ParallelEnumerable. These provide parallel implementations of each of the standard query
operators. Essentially, they work by partitioning the input sequence into chunks that execute on
different threads, collating the results back into a single output sequence for consumption (see
Figure 23-2).



Figure 23-2. PLINQ execution model

Calling AsSequential() unwraps a ParallelQuery sequence so that subsequent query
operators bind to the standard query operators and execute sequentially. This is necessary
before calling methods that have side effects or are not thread-safe.
For query operators that accept two input sequences (Join, GroupJoin, Concat, Union,
Intersect, Except, and Zip), you must apply AsParallel() to both input sequences
(otherwise, an exception is thrown). You don’t, however, need to keep applying AsParallel to
a query as it progresses, because PLINQ’s query operators output another ParallelQuery
sequence. In fact, calling AsParallel again introduces inefficiency in that it forces merging
and repartitioning of the query:

mySequence.AsParallel()           // Wraps sequence in ParallelQuery<int>
          .Where (n => n > 100)   // Outputs another ParallelQuery<int>
          .AsParallel()           // Unnecessary - and inefficient!
          .Select (n => n * n)

Not all query operators can be effectively parallelized. For those that cannot (see “PLINQ
Limitations”), PLINQ implements the operator sequentially instead. PLINQ may also operate
sequentially if it suspects that the overhead of parallelization will actually slow a particular
query.
PLINQ is only for local collections: it doesn’t work with LINQ to SQL or Entity Framework
because in those cases the LINQ translates into SQL, which then executes on a database server.
However, you can use PLINQ to perform additional local querying on the result sets obtained
from database queries.

WARNING
If a PLINQ query throws an exception, it’s re-thrown as an AggregateException whose
InnerExceptions property contains the real exception (or exceptions). See “Working with
AggregateException” for more details.

WHY ISN’T ASPARALLEL THE DEFAULT?



Given that AsParallel transparently parallelizes LINQ queries, the question arises, “Why didn’t
Microsoft simply parallelize the standard query operators and make PLINQ the default?”
There are a number of reasons for the opt-in approach. First, for PLINQ to be useful there has to
be a reasonable amount of computationally intensive work for it to farm out to worker threads.
Most LINQ to Objects queries execute very quickly, and not only would parallelization be
unnecessary, but the overhead of partitioning, collating, and coordinating the extra threads may
actually slow things down.
Additionally:

The output of a PLINQ query (by default) may differ from a LINQ query with respect to
element ordering (see “PLINQ and Ordering”).

PLINQ wraps exceptions in an AggregateException (to handle the possibility of multiple
exceptions being thrown).

PLINQ will give unreliable results if the query invokes thread-unsafe methods.

Finally, PLINQ offers quite a few hooks for tuning and tweaking. Burdening the standard LINQ to
Objects API with such nuances would add distraction.

Parallel Execution Ballistics
Like ordinary LINQ queries, PLINQ queries are lazily evaluated. This means that execution is
triggered only when you begin consuming the results — typically via a foreach loop (although
it may also be via a conversion operator such as ToArray or an operator that returns a single
element or value).
As you enumerate the results, though, execution proceeds somewhat differently from that of an
ordinary sequential query. A sequential query is powered entirely by the consumer in a “pull”
fashion: each element from the input sequence is fetched exactly when required by the
consumer. A parallel query ordinarily uses independent threads to fetch elements from the input
sequence slightly ahead of when they’re needed by the consumer (rather like a teleprompter for
newsreaders, or an antiskip buffer in CD players). It then processes the elements in parallel
through the query chain, holding the results in a small buffer so that they’re ready for the
consumer on demand. If the consumer pauses or breaks out of the enumeration early, the query
processor also pauses or stops so as not to waste CPU time or memory.

NOTE
You can tweak PLINQ’s buffering behavior by calling WithMergeOptions after AsParallel.
The default value of AutoBuffered generally gives the best overall results. NotBuffered
disables the buffer and is useful if you want to see results as soon as possible; FullyBuffered
caches the entire result set before presenting it to the consumer (the OrderBy and Reverse
operators naturally work this way, as do the element, aggregation, and conversion operators).

PLINQ and Ordering
A side effect of parallelizing the query operators is that when the results are collated, it’s not
necessarily in the same order that they were submitted (see Figure 23-2). In other words,
LINQ’s normal order-preservation guarantee for sequences no longer holds.
If you need order preservation, you can force it by calling AsOrdered() after AsParallel():



myCollection.AsParallel().AsOrdered()...

Calling AsOrdered incurs a performance hit with large numbers of elements because PLINQ
must keep track of each element’s original position.
You can negate the effect of AsOrdered later in a query by calling AsUnordered: this
introduces a “random shuffle point” that allows the query to execute more efficiently from that
point on. So if you wanted to preserve input-sequence ordering for just the first two query
operators, you’d do this:

inputSequence.AsParallel().AsOrdered()
  .QueryOperator1()
  .QueryOperator2()
  .AsUnordered()       // From here on, ordering doesn't matter
  .QueryOperator3()
  ...

AsOrdered is not the default because for most queries, the original input ordering doesn’t
matter. In other words, if AsOrdered was the default, you’d have to apply AsUnordered to the
majority of your parallel queries to get the best performance, which would be burdensome.

PLINQ Limitations
There are currently some practical limitations on what PLINQ can parallelize. These
limitations may loosen with subsequent service packs and Framework versions.
The following query operators prevent a query from being parallelized, unless the source
elements are in their original indexing position:

The indexed versions of Select, SelectMany, and ElementAt

Most query operators change the indexing position of elements (including those that remove
elements, such as Where). This means that if you want to use the preceding operators, they’ll
usually need to be at the start of the query.
The following query operators are parallelizable, but use an expensive partitioning strategy
that can sometimes be slower than sequential processing:

Join, GroupBy, GroupJoin, Distinct, Union, Intersect, and Except

The Aggregate operator’s seeded overloads in their standard incarnations are not
parallelizable — PLINQ provides special overloads to deal with this (see “Optimizing
PLINQ”).
All other operators are parallelizable, although use of these operators doesn’t guarantee that
your query will be parallelized. PLINQ may run your query sequentially if it suspects that the
overhead of parallelization will slow down that particular query. You can override this
behavior and force parallelism by calling the following after AsParallel():

.WithExecutionMode (ParallelExecutionMode.ForceParallelism)

Example: Parallel Spellchecker
Suppose we want to write a spellchecker that runs quickly with very large documents by
leveraging all available cores. By formulating our algorithm into a LINQ query, we can very



easily parallelize it.
The first step is to download a dictionary of English words into a HashSet for efficient
lookup:

if (!File.Exists ("WordLookup.txt"))    // Contains about 150,000 words
  new WebClient().DownloadFile (
    "http://www.albahari.com/ispell/allwords.txt", "WordLookup.txt");

var wordLookup = new HashSet<string> (
  File.ReadAllLines ("WordLookup.txt"),
  StringComparer.InvariantCultureIgnoreCase);

We’ll then use our word lookup to create a test “document” comprising an array of a million
random words. After building the array, we’ll introduce a couple of spelling mistakes:

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
  .Select (i => wordList [random.Next (0, wordList.Length)])
  .ToArray();

wordsToTest [12345] = "woozsh";     // Introduce a couple
wordsToTest [23456] = "wubsie";     // of spelling mistakes.

Now we can perform our parallel spellcheck by testing wordsToTest against word Lookup.
PLINQ makes this very easy:

var query = wordsToTest
  .AsParallel()
  .Select  ((word, index) => new IndexedWord { Word=word, Index=index })
  .Where   (iword => !wordLookup.Contains (iword.Word))
  .OrderBy (iword => iword.Index);

foreach (var mistake in query)
  Console.WriteLine (mistake.Word + " - index = " + mistake.Index);

// OUTPUT:
// woozsh - index = 12345
// wubsie - index = 23456

IndexedWord is a custom struct that we define as follows:

struct IndexedWord { public string Word; public int Index; }

The wordLookup.Contains method in the predicate gives the query some “meat” and makes it
worth parallelizing.

NOTE
We could simplify the query slightly by using an anonymous type instead of the IndexedWord
struct. However, this would degrade performance because anonymous types (being classes
and therefore reference types) incur the cost of heap-based allocation and subsequent garbage
collection.
The difference might not be enough to matter with sequential queries, but with parallel
queries, favoring stack-based allocation can be quite advantageous. This is because stack-
based allocation is highly parallelizable (as each thread has its own stack), whereas all threads
must compete for the same heap — managed by a single memory manager and garbage



collector.

Using ThreadLocal<T>
Let’s extend our example by parallelizing the creation of the random test-word list itself. We
structured this as a LINQ query, so it should be easy. Here’s the sequential version:

string[] wordsToTest = Enumerable.Range (0, 1000000)
  .Select (i => wordList [random.Next (0, wordList.Length)])
  .ToArray();

Unfortunately, the call to random.Next is not thread-safe, so it’s not as simple as inserting
AsParallel() into the query. A potential solution is to write a function that locks around
random.Next; however, this would limit concurrency. The better option is to use
ThreadLocal<Random> (see “Thread-Local Storage” in the preceding chapter) to create a
separate Random object for each thread. We can then parallelize the query as follows:

var localRandom = new ThreadLocal<Random>
 ( () => new Random (Guid.NewGuid().GetHashCode()) );

string[] wordsToTest = Enumerable.Range (0, 1000000).AsParallel()
  .Select (i => wordList [localRandom.Value.Next (0, wordList.Length)])
  .ToArray();

In our factory function for instantiating a Random object, we pass in a Guid’s hashcode to
ensure that if two Random objects are created within a short period of time, they’ll yield
different random number sequences.

WHEN TO USE PLINQ
It’s tempting to search your existing applications for LINQ queries and experiment with parallelizing
them. This is usually unproductive, because most problems for which LINQ is obviously the best
solution tend to execute very quickly and so don’t benefit from parallelization. A better approach is
to find a CPU-intensive bottleneck and then consider, “Can this be expressed as a LINQ query?” (A
welcome side effect of such restructuring is that LINQ typically makes code smaller and more
readable.)
PLINQ is well suited to embarrassingly parallel problems. It can be a poor choice for imaging,
however, because collating millions of pixels into an output sequence creates a bottleneck. Instead,
it’s better to write pixels directly to an array or unmanaged memory block and use the Parallel
class or task parallelism to manage the multithreading. (It is possible, however, to defeat result
collation using ForAll — we discuss this in “Optimizing PLINQ”. Doing so makes sense if the
image processing algorithm naturally lends itself to LINQ.)

Functional Purity
Because PLINQ runs your query on parallel threads, you must be careful not to perform thread-
unsafe operations. In particular, writing to variables is side-effecting and therefore thread-
unsafe:

// The following query multiplies each element by its position.
// Given an input of Enumerable.Range(0,999), it should output squares.
int i = 0;
var query = from n in Enumerable.Range(0,999).AsParallel() select n * i++;



We could make incrementing i thread-safe by using locks, but the problem would still remain
that i won’t necessarily correspond to the position of the input element. And adding
AsOrdered to the query wouldn’t fix the latter problem, because AsOrdered ensures only that
the elements are output in an order consistent with them having been processed sequentially —
it doesn’t actually process them sequentially.
Instead, this query should be rewritten to use the indexed version of Select:

var query = Enumerable.Range(0,999).AsParallel().Select ((n, i) => n * i);

For best performance, any methods called from query operators should be thread-safe by virtue
of not writing to fields or properties (non–side-effecting, or functionally pure). If they’re
thread-safe by virtue of locking, the query’s parallelism potential will be limited — by the
duration of the lock divided by the total time spent in that function.

Setting the Degree of Parallelism
By default, PLINQ chooses an optimum degree of parallelism for the processor in use. You can
override it by calling WithDegreeOfParallelism after AsParallel:

...AsParallel().WithDegreeOfPallelism(4)...

An example of when you might increase the parallelism beyond the core count is with I/O-
bound work (downloading many web pages at once, for instance). Since Framework 4.5,
however, task combinators and asynchronous functions provide a similarly easy and more
efficient solution (see “Task Combinators” in Chapter 14. Unlike with Tasks, PLINQ cannot
perform I/O-bound work without blocking threads (and pooled threads, to make matters
worse).

Changing the degree of parallelism
You can call WithDegreeOfParallelism only once within a PLINQ query. If you need to call
it again, you must force merging and repartitioning of the query by calling AsParallel() again
within the query:

"The Quick Brown Fox"
  .AsParallel().WithDegreeOfParallelism (2)
  .Where (c => !char.IsWhiteSpace (c))
  .AsParallel().WithDegreeOfParallelism (3)   // Forces Merge + Partition
  .Select (c => char.ToUpper (c))

Cancellation
Canceling a PLINQ query whose results you’re consuming in a foreach loop is easy: simply
break out of the foreach and the query will be automatically canceled as the enumerator is
implicitly disposed.
For a query that terminates with a conversion, element, or aggregation operator, you can cancel
it from another thread via a cancellation token (see “Cancellation” in Chapter 14). To insert a
token, call WithCancellation after calling AsParallel, passing in the Token property of a
CancellationTokenSource object. Another thread can then call Cancel on the token source,
which throws an OperationCanceledException on the query’s consumer:



IEnumerable<int> million = Enumerable.Range (3, 1000000);

var cancelSource = new CancellationTokenSource();

var primeNumberQuery =
  from n in million.AsParallel().WithCancellation (cancelSource.Token)
  where Enumerable.Range (2, (int) Math.Sqrt (n)).All (i => n % i > 0)
  select n;

new Thread (() => {
                    Thread.Sleep (100);      // Cancel query after
                    cancelSource.Cancel();   // 100 milliseconds.
                  }
           ).Start();
try
{
  // Start query running:
  int[] primes = primeNumberQuery.ToArray();
  // We'll never get here because the other thread will cancel us.
}
catch (OperationCanceledException)
{
  Console.WriteLine ("Query canceled");
}

PLINQ doesn’t preemptively abort threads, because of the danger of doing so (see “Interrupt
and Abort” in Chapter 22). Instead, upon cancellation it waits for each worker thread to finish
with its current element before ending the query. This means that any external methods that the
query calls will run to completion.

Optimizing PLINQ

Output-side optimization
One of PLINQ’s advantages is that it conveniently collates the results from parallelized work
into a single output sequence. Sometimes, though, all that you end up doing with that sequence
is running some function once over each element:

foreach (int n in parallelQuery)
  DoSomething (n);

If this is the case — and you don’t care about the order in which the elements are processed —
you can improve efficiency with PLINQ’s ForAll method.
The ForAll method runs a delegate over every output element of a ParallelQuery. It hooks
right into PLINQ’s internals, bypassing the steps of collating and enumerating the results. To
give a trivial example:

"abcdef".AsParallel().Select (c => char.ToUpper(c)).ForAll (Console.Write);

Figure 23-3 shows the process.

NOTE
Collating and enumerating results is not a massively expensive operation, so the ForAll
optimization yields the greatest gains when there are large numbers of quickly executing input
elements.



Figure 23-3. PLINQ ForAll

Input-side optimization
PLINQ has three partitioning strategies for assigning input elements to threads:

Strategy Element allocation Relative performance

Chunk partitioning Dynamic Average

Range partitioning Static Poor to excellent

Hash partitioning Static Poor

For query operators that require comparing elements (GroupBy, Join, GroupJoin, Intersect,
Except, Union, and Distinct), you have no choice: PLINQ always uses hash partitioning.
Hash partitioning is relatively inefficient in that it must precalculate the hashcode of every
element (so that elements with identical hashcodes can be processed on the same thread). If you
find this too slow, your only option is to call AsSequential to disable parallelization.
For all other query operators, you have a choice as to whether to use range or chunk
partitioning. By default:

If the input sequence is indexable (if it’s an array or implements IList<T>), PLINQ
chooses range partitioning.

Otherwise, PLINQ chooses chunk partitioning.

In a nutshell, range partitioning is faster with long sequences for which every element takes a
similar amount of CPU time to process. Otherwise, chunk partitioning is usually faster.
To force range partitioning:

If the query starts with Enumerable.Range, replace that method with Parallel 
Enumerable.Range.

Otherwise, simply call ToList or ToArray on the input sequence (obviously, this incurs a
performance cost in itself that you should take into account).



WARNING
ParallelEnumerable.Range is not simply a shortcut for calling
Enumerable.Range(...).AsParallel(). It changes the performance of the query by activating
range partitioning.

To force chunk partitioning, wrap the input sequence in a call to Partitioner.Create (in
System.Collection.Concurrent) as follows:

int[] numbers = { 3, 4, 5, 6, 7, 8, 9 };
var parallelQuery =
  Partitioner.Create (numbers, true).AsParallel()
  .Where (...)

The second argument to Partitioner.Create indicates that you want to load-balance the
query, which is another way of saying that you want chunk partitioning.
Chunk partitioning works by having each worker thread periodically grab small “chunks” of
elements from the input sequence to process (see Figure 23-4). PLINQ starts by allocating very
small chunks (one or two elements at a time), then increases the chunk size as the query
progresses: this ensures that small sequences are effectively parallelized and large sequences
don’t cause excessive round-tripping. If a worker happens to get “easy” elements (that process
quickly) it will end up getting more chunks. This system keeps every thread equally busy (and
the cores “balanced”); the only downside is that fetching elements from the shared input
sequence requires synchronization (typically an exclusive lock) — and this can result in some
overhead and contention.



Figure 23-4. Chunk versus range partitioning

Range partitioning bypasses the normal input-side enumeration and preallocates an equal
number of elements to each worker, avoiding contention on the input sequence. But if some
threads happen to get easy elements and finish early, they sit idle while the remaining threads
continue working. Our earlier prime number calculator might perform poorly with range
partitioning. An example of when range partitioning would do well is in calculating the sum of
the square roots of the first 10 million integers:

ParallelEnumerable.Range (1, 10000000).Sum (i => Math.Sqrt (i))

ParallelEnumerable.Range returns a ParallelQuery<T>, so you don’t need to
subsequently call AsParallel.

NOTE
Range partitioning doesn’t necessarily allocate element ranges in contiguous blocks — it
might instead choose a “striping” strategy. For instance, if there are two workers, one worker
might process odd-numbered elements while the other processes even-numbered elements.
The TakeWhile operator is almost certain to trigger a striping strategy to avoid unnecessarily
processing elements later in the sequence.



Optimizing custom aggregations
PLINQ parallelizes the Sum, Average, Min, and Max operators efficiently without additional
intervention. The Aggregate operator, though, presents special challenges for PLINQ. As
described in Chapter 9, Aggregate performs custom aggregations. For example, the following
sums a sequence of numbers, mimicking the Sum operator:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate (0, (total, n) => total + n);   // 6

We also saw in Chapter 9 that for unseeded aggregations, the supplied delegate must be
associative and commutative. PLINQ will give incorrect results if this rule is violated, because
it draws multiple seeds from the input sequence in order to aggregate several partitions of the
sequence simultaneously.
Explicitly seeded aggregations might seem like a safe option with PLINQ, but unfortunately
these ordinarily execute sequentially because of the reliance on a single seed. To mitigate this,
PLINQ provides another overload of Aggregate that lets you specify multiple seeds — or
rather, a seed factory function. For each thread, it executes this function to generate a separate
seed, which becomes a thread-local accumulator into which it locally aggregates elements.
You must also supply a function to indicate how to combine the local and main accumulators.
Finally, this Aggregate overload (somewhat gratuitously) expects a delegate to perform any
final transformation on the result (you can achieve this as easily by running some function on
the result yourself afterward). So, here are the four delegates, in the order they are passed:

seedFactory

Returns a new local accumulator

updateAccumulatorFunc

Aggregates an element into a local accumulator

combineAccumulatorFunc

Combines a local accumulator with the main accumulator

resultSelector

Applies any final transformation on the end result

NOTE
In simple scenarios, you can specify a seed value instead of a seed factory. This tactic fails
when the seed is a reference type that you wish to mutate, because the same instance will
then be shared by each thread.

To give a very simple example, the following sums the values in a numbers array:

numbers.AsParallel().Aggregate (
 () => 0,                                      // seedFactory
  (localTotal, n) => localTotal + n,           // updateAccumulatorFunc
  (mainTot, localTot) => mainTot + localTot,   // combineAccumulatorFunc
  finalResult => finalResult)                  // resultSelector

This example is contrived in that we could get the same answer just as efficiently using simpler



approaches (such as an unseeded aggregate, or better, the Sum operator). To give a more
realistic example, suppose we wanted to calculate the frequency of each letter in the English
alphabet in a given string. A simple sequential solution might look like this:

string text = "Let's suppose this is a really long string";
var letterFrequencies = new int[26];
foreach (char c in text)
{
  int index = char.ToUpper (c) - 'A';
  if (index >= 0 && index <= 26) letterFrequencies [index]++;
};

NOTE
An example of when the input text might be very long is in gene sequencing. The “alphabet”
would then consist of the letters a, c, g, and t.

To parallelize this, we could replace the foreach statement with a call to Parallel .ForEach
(as we’ll cover in the following section), but this will leave us to deal with concurrency issues
on the shared array. And locking around accessing that array would all but kill the potential for
parallelization.
Aggregate offers a tidy solution. The accumulator, in this case, is an array just like the
letterFrequencies array in our preceding example. Here’s a sequential version using
Aggregate:

int[] result =
  text.Aggregate (
    new int[26],                // Create the "accumulator"
    (letterFrequencies, c) =>   // Aggregate a letter into the accumulator
    {
      int index = char.ToUpper (c) - 'A';
      if (index >= 0 && index <= 26) letterFrequencies [index]++;
      return letterFrequencies;
    });

And now the parallel version, using PLINQ’s special overload:

int[] result =
  text.AsParallel().Aggregate (
   () => new int[26],             // Create a new local accumulator

    (localFrequencies, c) =>       // Aggregate into the local accumulator
    {
      int index = char.ToUpper (c) - 'A';
      if (index >= 0 && index <= 26) localFrequencies [index]++;
      return localFrequencies;
    },
                                   // Aggregate local->main accumulator
    (mainFreq, localFreq) =>
      mainFreq.Zip (localFreq, (f1, f2) => f1 + f2).ToArray(),

    finalResult => finalResult     // Perform any final transformation
  );                               // on the end result.

Notice that the local accumulation function mutates the localFrequencies array. This ability
to perform this optimization is important — and is legitimate because localFrequencies is
local to each thread.



The Parallel Class
PFX provides a basic form of structured parallelism via three static methods in the Parallel
class:

Parallel.Invoke

Executes an array of delegates in parallel

Parallel.For

Performs the parallel equivalent of a C# for loop

Parallel.ForEach

Performs the parallel equivalent of a C# foreach loop
All three methods block until all work is complete. As with PLINQ, after an unhandled
exception, remaining workers are stopped after their current iteration and the exception (or
exceptions) are thrown back to the caller — wrapped in an AggregateException (see
“Working with AggregateException”).

Parallel.Invoke
Parallel.Invoke executes an array of Action delegates in parallel, and then waits for them
to complete. The simplest version of the method is defined as follows:

public static void Invoke (params Action[] actions);

Just as with PLINQ, the Parallel.* methods are optimized for compute-bound and not I/O-
bound work. However, downloading two web pages at once provides a simple way to
demonstrate Parallel.Invoke:

Parallel.Invoke (
 () => new WebClient().DownloadFile ("http://www.linqpad.net", "lp.html"),
 () => new WebClient().DownloadFile ("http://www.jaoo.dk", "jaoo.html"));

On the surface, this seems like a convenient shortcut for creating and waiting on two thread-
bound Task objects. But there’s an important difference: Parallel .Invoke still works
efficiently if you pass in an array of a million delegates. This is because it partitions large
numbers of elements into batches, which it assigns to a handful of underlying Tasks — rather
than creating a separate Task for each delegate.
As with all of Parallel’s methods, you’re on your own when it comes to collating the results.
This means you need to keep thread safety in mind. The following, for instance, is thread-
unsafe:

var data = new List<string>();
Parallel.Invoke (
 () => data.Add (new WebClient().DownloadString ("http://www.foo.com")),
 () => data.Add (new WebClient().DownloadString ("http://www.far.com")));

Locking around adding to the list would resolve this, although locking would create a
bottleneck if you had a much larger array of quickly executing delegates. A better solution is to
use the thread-safe collections that we’ll cover in later sections — ConcurrentBag would be
ideal in this case.



Parallel.Invoke is also overloaded to accept a ParallelOptions object:

public static void Invoke (ParallelOptions options,
                           params Action[] actions);

With ParallelOptions, you can insert a cancellation token, limit the maximum concurrency,
and specify a custom task scheduler. A cancellation token is relevant when you’re executing
(roughly) more tasks than you have cores: upon cancellation, any unstarted delegates will be
abandoned. Any already-executing delegates will, however, continue to completion. See
“Cancellation” for an example of how to use cancellation tokens.

Parallel.For and Parallel.ForEach
Parallel.For and Parallel.ForEach perform the equivalent of a C# for and foreach
loop, but with each iteration executing in parallel instead of sequentially. Here are their
(simplest) signatures:

public static ParallelLoopResult For (
  int fromInclusive, int toExclusive, Action<int> body)

public static ParallelLoopResult ForEach<TSource> (
  IEnumerable<TSource> source, Action<TSource> body)

The following sequential for loop:

for (int i = 0; i < 100; i++)
  Foo (i);

is parallelized like this:

Parallel.For (0, 100, i => Foo (i));

or more simply:

Parallel.For (0, 100, Foo);

And the following sequential foreach:

foreach (char c in "Hello, world")
  Foo (c);

is parallelized like this:

Parallel.ForEach ("Hello, world", Foo);

To give a practical example, if we import the System.Security.Cryptography namespace,
we can generate six public/private key-pair strings in parallel as follows:

var keyPairs = new string[6];

Parallel.For (0, keyPairs.Length,
              i => keyPairs[i] = RSA.Create().ToXmlString (true));

As with Parallel.Invoke, we can feed Parallel.For and Parallel.ForEach a large



number of work items and they’ll be efficiently partitioned onto a few tasks.

NOTE
The latter query could also be done with PLINQ:

string[] keyPairs =
  ParallelEnumerable.Range (0, 6)
  .Select (i => RSA.Create().ToXmlString (true))
  .ToArray();

Outer versus inner loops
Parallel.For and Parallel.ForEach usually work best on outer rather than inner loops.
This is because with the former, you’re offering larger chunks of work to parallelize, diluting
the management overhead. Parallelizing both inner and outer loops is usually unnecessary. In
the following example, we’d typically need more than 100 cores to benefit from the inner
parallelization:

Parallel.For (0, 100, i =>
{
  Parallel.For (0, 50, j => Foo (i, j));   // Sequential would be better
});                                        // for the inner loop.

Indexed Parallel.ForEach
Sometimes it’s useful to know the loop iteration index. With a sequential foreach, it’s easy:

int i = 0;
foreach (char c in "Hello, world")
  Console.WriteLine (c.ToString() + i++);

Incrementing a shared variable, however, is not thread-safe in a parallel context. You must
instead use the following version of ForEach:

public static ParallelLoopResult ForEach<TSource> (
  IEnumerable<TSource> source, Action<TSource,ParallelLoopState,long> body)

We’ll ignore ParallelLoopState (which we’ll cover in the following section). For now,
we’re interested in Action’s third type parameter of type long, which indicates the loop
index:

Parallel.ForEach ("Hello, world", (c, state, i) =>
{
   Console.WriteLine (c.ToString() + i);
});

To put this into a practical context, we’ll revisit the spellchecker that we wrote with PLINQ.
The following code loads up a dictionary along with an array of a million words to test:

if (!File.Exists ("WordLookup.txt"))    // Contains about 150,000 words
  new WebClient().DownloadFile (
    "http://www.albahari.com/ispell/allwords.txt", "WordLookup.txt");



var wordLookup = new HashSet<string> (
  File.ReadAllLines ("WordLookup.txt"),
  StringComparer.InvariantCultureIgnoreCase);

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
  .Select (i => wordList [random.Next (0, wordList.Length)])
  .ToArray();

wordsToTest [12345] = "woozsh";     // Introduce a couple
wordsToTest [23456] = "wubsie";     // of spelling mistakes.

We can perform the spellcheck on our wordsToTest array using the indexed version of
Parallel.ForEach as follows:

var misspellings = new ConcurrentBag<Tuple<int,string>>();

Parallel.ForEach (wordsToTest, (word, state, i) =>
{
  if (!wordLookup.Contains (word))
    misspellings.Add (Tuple.Create ((int) i, word));
});

Notice that we had to collate the results into a thread-safe collection: having to do this is the
disadvantage when compared to using PLINQ. The advantage over PLINQ is that we avoid the
cost of applying an indexed Select query operator — which is less efficient than an indexed
ForEach.

ParallelLoopState: Breaking early out of loops
Because the loop body in a parallel For or ForEach is a delegate, you can’t exit the loop early
with a break statement. Instead, you must call Break or Stop on a ParallelLoopState
object:

public class ParallelLoopState
{
  public void Break();
  public void Stop();

  public bool IsExceptional { get; }
  public bool IsStopped { get; }
  public long? LowestBreakIteration { get; }
  public bool ShouldExitCurrentIteration { get; }
}

Obtaining a ParallelLoopState is easy: all versions of For and ForEach are overloaded to
accept loop bodies of type Action<TSource,ParallelLoopState>. So, to parallelize this:

foreach (char c in "Hello, world")
  if (c == ',')
    break;
  else
    Console.Write (c);

do this:

Parallel.ForEach ("Hello, world", (c, loopState) =>
{
  if (c == ',')
    loopState.Break();



  else
    Console.Write (c);
});

// OUTPUT: Hlloe

You can see from the output that loop bodies may complete in a random order. Aside from this
difference, calling Break yields at least the same elements as executing the loop sequentially:
this example will always output at least the letters H, e, l, l, and o in some order. In contrast,
calling Stop instead of Break forces all threads to finish right after their current iteration. In
our example, calling Stop could give us a subset of the letters H, e, l, l, and o if another thread
was lagging behind. Calling Stop is useful when you’ve found something that you’re looking
for — or when something has gone wrong and you won’t be looking at the results.

NOTE
The Parallel.For and Parallel.ForEach methods return a ParallelLoopResult object that
exposes properties called IsCompleted and LowestBreakIteration. These tell you whether the
loop ran to completion, and if not, at what cycle the loop was broken.
If LowestBreakIteration returns null, it means that you called Stop (rather than Break) on the
loop.

If your loop body is long, you might want other threads to break partway through the method
body in case of an early Break or Stop. You can do this by polling the
ShouldExitCurrentIteration property at various places in your code; this property
becomes true immediately after a Stop — or soon after a Break.

NOTE
ShouldExitCurrentIteration also becomes true after a cancellation request — or if an
exception is thrown in the loop.

IsExceptional lets you know whether an exception has occurred on another thread. Any
unhandled exception will cause the loop to stop after each thread’s current iteration: to avoid
this, you must explicitly handle exceptions in your code.

Optimization with local values
Parallel.For and Parallel.ForEach each offer a set of overloads that feature a generic
type argument called TLocal. These overloads are designed to help you optimize the collation
of data with iteration-intensive loops. The simplest is this:

public static ParallelLoopResult For <TLocal> (
  int fromInclusive,
  int toExclusive,
  Func <TLocal> localInit,
  Func <int, ParallelLoopState, TLocal, TLocal> body,
  Action <TLocal> localFinally);

These methods are rarely needed in practice because their target scenarios are covered mostly



by PLINQ (which is fortunate because these overloads are somewhat intimidating!).
Essentially, the problem is this: suppose we want to sum the square roots of the numbers 1
through 10,000,000. Calculating 10 million square roots is easily parallelizable, but summing
their values is troublesome because we must lock around updating the total:

object locker = new object();
double total = 0;
Parallel.For (1, 10000000,
              i => { lock (locker) total += Math.Sqrt (i); });

The gain from parallelization is more than offset by the cost of obtaining 10 million locks —
plus the resultant blocking.
The reality, though, is that we don’t actually need 10 million locks. Imagine a team of
volunteers picking up a large volume of litter. If all workers shared a single trash can, the
travel and contention would make the process extremely inefficient. The obvious solution is for
each worker to have a private or “local” trash can, which is occasionally emptied into the main
bin.
The TLocal versions of For and ForEach work in exactly this way. The volunteers are internal
worker threads, and the local value represents a local trash can. In order for Parallel to do
this job, you must feed it two additional delegates that indicate:

1. How to initialize a new local value

2. How to combine a local aggregation with the master value

Additionally, instead of the body delegate returning void, it should return the new aggregate for
the local value. Here’s our example refactored:

object locker = new object();
double grandTotal = 0;

Parallel.For (1, 10000000,

  () => 0.0,                        // Initialize the local value.

  (i, state, localTotal) =>         // Body delegate. Notice that it
     localTotal + Math.Sqrt (i),    // returns the new local total.

  localTotal =>                                    // Add the local value
    { lock (locker) grandTotal += localTotal; }    // to the master value.
);

We must still lock, but only around aggregating the local value to the grand total. This makes
the process dramatically more efficient.

NOTE
As stated earlier, PLINQ is often a good fit in these scenarios. Our example could be
parallelized with PLINQ simply like this:

ParallelEnumerable.Range (1, 10000000)
                  .Sum (i => Math.Sqrt (i))

(Notice that we used ParallelEnumerable to force range partitioning: this improves
performance in this case because all numbers will take equally long to process.)



In more complex scenarios, you might use LINQ’s Aggregate operator instead of Sum. If you
supplied a local seed factory, the situation would be somewhat analogous to providing a local
value function with Parallel.For.

Task Parallelism
Task parallelism is the lowest-level approach to parallelization with PFX. The classes for
working at this level are defined in the System.Threading.Tasks namespace and comprise
the following:

Class Purpose

Task For managing a unit for work

Task<TResult> For managing a unit for work with a return value

TaskFactory For creating tasks

TaskFactory<TResult> For creating tasks and continuations with the same return type

TaskScheduler For managing the scheduling of tasks

TaskCompletionSource For manually controlling a task’s workflow

We covered the basics of tasks in Chapter 14; in this section we’ll look at advanced features of
tasks that are aimed at parallel programming. Specifically:

Tuning a task’s scheduling

Establish a parent/child relationship when one task is started from another

Advanced use of continuations

TaskFactory

WARNING
The Task Parallel Library lets you create hundreds (or even thousands) of tasks with minimal
overhead. But if you want to create millions of tasks, you’ll need to partition those tasks into
larger work units to maintain efficiency. The Parallel class and PLINQ do this automatically.

NOTE
Visual Studio provides a window for monitoring tasks (Debug→Window→Parallel Tasks).
This is equivalent to the Threads window, but for tasks. The Parallel Stacks window also has
a special mode for tasks.

Creating and Starting Tasks
As described in Chapter 14, Task.Run creates and starts a Task or Task<TResult>. This
method is actually a shortcut for calling Task.Factory.StartNew, which allows greater
flexibility through additional overloads.



Specifying a state object
Task.Factory.StartNew lets you specify a state object, which is passed to the target. The
target method’s signature must then comprise a single object-type parameter:

static void Main()
{
  var task = Task.Factory.StartNew (Greet, "Hello");
  task.Wait();  // Wait for task to complete.
}

static void Greet (object state) { Console.Write (state); }   // Hello

This avoids the cost of the closure required for executing a lambda expression that calls Greet.
This is a micro-optimization and is rarely necessary in practice, so we can put the state object
to better use, which is to assign a meaningful name to the task. We can then use the AsyncState
property to query its name:

static void Main()
{
  var task = Task.Factory.StartNew (state => Greet ("Hello"), "Greeting");
  Console.WriteLine (task.AsyncState);   // Greeting
  task.Wait();
}

static void Greet (string message) { Console.Write (message); }

NOTE
Visual Studio displays each task’s AsyncState in the Parallel Tasks window, so having a
meaningful name here can ease debugging considerably.

TaskCreationOptions
You can tune a task’s execution by specifying a TaskCreationOptions enum when calling
StartNew (or instantiating a Task). TaskCreationOptions is a flags enum with the following
(combinable) values:

LongRunning, PreferFairness, AttachedToParent

LongRunning suggests to the scheduler to dedicate a thread to the task, and as we described in
Chapter 14, this is beneficial for I/O-bound tasks and for long-running tasks that might
otherwise force short-running tasks to wait an unreasonable amount of time before being
scheduled.
PreferFairness tells the scheduler to try to ensure that tasks are scheduled in the order they
were started. It may ordinarily do otherwise, because it internally optimizes the scheduling of
tasks using local work-stealing queues — an optimization that allows the creation of child
tasks without incurring the contention overhead that would otherwise arise with a single work
queue. A child task is created by specifying AttachedToParent.

Child tasks
When one task starts another, you can optionally establish a parent-child relationship:



Task parent = Task.Factory.StartNew (() =>
{
  Console.WriteLine ("I am a parent");

  Task.Factory.StartNew (() =>        // Detached task
  {
    Console.WriteLine ("I am detached");
  });

  Task.Factory.StartNew (() =>        // Child task
  {
    Console.WriteLine ("I am a child");
  }, TaskCreationOptions.AttachedToParent);
});

A child task is special in that when you wait for the parent task to complete, it waits for any
children as well. At which point any child exceptions bubble up:

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
var parent = Task.Factory.StartNew (() =>
{
  Task.Factory.StartNew (() =>   // Child
  {
    Task.Factory.StartNew (() => { throw null; }, atp);   // Grandchild
  }, atp);
});

// The following call throws a NullReferenceException (wrapped
// in nested AggregateExceptions):
parent.Wait();

This can be particularly useful when a child task is a continuation, as we’ll see shortly.

Waiting on Multiple Tasks
We saw in Chapter 14 that you can wait on a single task either by calling its Wait method, or
accessing its Result property (if it’s a Task<TResult>). You can also wait on multiple tasks
at once — via the static methods Task.WaitAll (waits for all the specified tasks to finish) and
Task.WaitAny (waits for just one task to finish).
WaitAll is similar to waiting out each task in turn, but is more efficient in that it requires (at
most) just one context switch. Also, if one or more of the tasks throw an unhandled exception,
WaitAll still waits out every task — and then re-throws an AggregateException that
accumulates the exceptions from each faulted task (this is where AggregateException is
genuinely useful). It’s equivalent to doing this:

// Assume t1, t2 and t3 are tasks:
var exceptions = new List<Exception>();
try { t1.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t2.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t3.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
if (exceptions.Count > 0) throw new AggregateException (exceptions);

Calling WaitAny is equivalent to waiting on a ManualResetEventSlim that’s signaled by each
task as it finishes.
As well as a timeout, you can also pass in a cancellation token to the Wait methods: this lets
you cancel the wait — not the task itself.

Canceling Tasks



You can optionally pass in a cancellation token when starting a task. Then, if cancellation
occurs via that token, the task itself enters the “Canceled” state:

var cts = new CancellationTokenSource();
CancellationToken token = cts.Token;
cts.CancelAfter (500);

Task task = Task.Factory.StartNew (() =>
{
  Thread.Sleep (1000);
  token.ThrowIfCancellationRequested();  // Check for cancellation request
}, token);

try { task.Wait(); }
catch (AggregateException ex)
{
  Console.WriteLine (ex.InnerException is TaskCanceledException);  // True
  Console.WriteLine (task.IsCanceled);                             // True
  Console.WriteLine (task.Status);                             // Canceled
}

TaskCanceledException is a subclass of OperationCanceledException. If you want to
explicitly throw an OperationCanceledException (rather than calling
token.ThrowIfCancellationRequested), you must pass the cancellation token into
OperationCanceledException’s constructor. If you fail to do this, the task won’t end up with
a TaskStatus.Canceled status and won’t trigger OnlyOnCanceled continuations.
If the task is canceled before it has started, it won’t get scheduled — an Operation 
CanceledException will instead be thrown on the task immediately.
Because cancellation tokens are recognized by other APIs, you can pass them into other
constructs and cancellations will propagate seamlessly:

var cancelSource = new CancellationTokenSource();
CancellationToken token = cancelSource.Token;

Task task = Task.Factory.StartNew (() =>
{
  // Pass our cancellation token into a PLINQ query:
  var query = someSequence.AsParallel().WithCancellation (token)...
  ... enumerate query ...
});

Calling Cancel on cancelSource in this example will cancel the PLINQ query, which will
throw an OperationCanceledException on the task body, which will then cancel the task.

NOTE
The cancellation tokens that you can pass into methods such as Wait and CancelAndWait
allow you to cancel the wait operation and not the task itself.

Continuations
The ContinueWith method executes a delegate right after a task ends:

Task task1 = Task.Factory.StartNew (() => Console.Write ("antecedant.."));
Task task2 = task1.ContinueWith (ant => Console.Write ("..continuation"));



As soon as task1 (the antecedent) completes, fails, or is canceled, task2 (the continuation)
starts. (If task1 had completed before the second line of code ran, task2 would be scheduled
to execute right away.) The ant argument passed to the continuation’s lambda expression is a
reference to the antecedent task. ContinueWith itself returns a task, making it easy to add
further continuations.
By default, antecedent and continuation tasks may execute on different threads. You can force
them to execute on the same thread by specifying TaskContinuation 
Options.ExecuteSynchronously when calling ContinueWith: this can improve
performance in very fine-grained continuations by lessening indirection.

Continuations and Task<TResult>
Just like ordinary tasks, continuations can be of type Task<TResult> and return data. In the
following example, we calculate Math.Sqrt(8*2) using a series of chained tasks and then
write out the result:

Task.Factory.StartNew<int> (() => 8)
  .ContinueWith (ant => ant.Result * 2)
  .ContinueWith (ant => Math.Sqrt (ant.Result))
  .ContinueWith (ant => Console.WriteLine (ant.Result));   // 4

Our example is somewhat contrived for simplicity; in real life, these lambda expressions
would call computationally intensive functions.

Continuations and exceptions
A continuation can know whether an antecedent faulted by querying the antecedent task’s
Exception property — or simply by invoking Result / Wait and catching the resultant
AggregateException. If an antecedent faults and the continuation does neither, the exception
is considered unobserved and the static TaskScheduler.UnobservedTaskException event
fires when the task is later garbage collected.
A safe pattern is to re-throw antecedent exceptions. As long as the continuation is Waited upon,
the exception will be propagated and re-thrown to the Waiter:

Task continuation = Task.Factory.StartNew     (()  => { throw null; })
                                .ContinueWith (ant =>
  {
    ant.Wait();
    // Continue processing...
  });

continuation.Wait();    // Exception is now thrown back to caller.

Another way to deal with exceptions is to specify different continuations for exceptional versus
nonexceptional outcomes. This is done with TaskContinuation Options:

Task task1 = Task.Factory.StartNew (() => { throw null; });

Task error = task1.ContinueWith (ant => Console.Write (ant.Exception),
                                 TaskContinuationOptions.OnlyOnFaulted);

Task ok = task1.ContinueWith (ant => Console.Write ("Success!"),
                              TaskContinuationOptions.NotOnFaulted);

This pattern is particularly useful in conjunction with child tasks, as we’ll see very soon.



The following extension method “swallows” a task’s unhandled exceptions:

public static void IgnoreExceptions (this Task task)
{
  task.ContinueWith (t => { var ignore = t.Exception; },
    TaskContinuationOptions.OnlyOnFaulted);
}

(This could be improved by adding code to log the exception.) Here’s how it would be used:

Task.Factory.StartNew (() => { throw null; }).IgnoreExceptions();

Continuations and child tasks
A powerful feature of continuations is that they kick off only when all child tasks have
completed (see Figure 23-5). At that point, any exceptions thrown by the children are
marshaled to the continuation.

Figure 23-5. Continuations

In the following example, we start three child tasks, each throwing a NullReference 
Exception. We then catch all of them in one fell swoop via a continuation on the parent:



TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
Task.Factory.StartNew (() =>
{
  Task.Factory.StartNew (() => { throw null; }, atp);
  Task.Factory.StartNew (() => { throw null; }, atp);
  Task.Factory.StartNew (() => { throw null; }, atp);
})
.ContinueWith (p => Console.WriteLine (p.Exception),
                    TaskContinuationOptions.OnlyOnFaulted);

Conditional continuations
By default, a continuation is scheduled unconditionally — whether the antecedent completes,
throws an exception, or is canceled. You can alter this behavior via a set of (combinable) flags
included within the TaskContinuationOptions enum. The three core flags that control
conditional continuation are:

NotOnRanToCompletion = 0x10000,
NotOnFaulted = 0x20000,
NotOnCanceled = 0x40000,

These flags are subtractive in the sense that the more you apply, the less likely the continuation
is to execute. For convenience, there are also the following precombined values:

OnlyOnRanToCompletion = NotOnFaulted | NotOnCanceled,
OnlyOnFaulted = NotOnRanToCompletion | NotOnCanceled,
OnlyOnCanceled = NotOnRanToCompletion | NotOnFaulted

(Combining all the Not* flags [NotOnRanToCompletion, NotOnFaulted, NotOnCanceled] is
nonsensical, as it would result in the continuation always being canceled.)
“RanToCompletion” means the antecedent succeeded — without cancellation or unhandled
exceptions.
“Faulted” means an unhandled exception was thrown on the antecedent.
“Canceled” means one of two things:

The antecedent was canceled via its cancellation token. In other words, an
OperationCanceledException was thrown on the antecedent — whose
CancellationToken property matched that passed to the antecedent when it was started.

The antecedent was implicitly canceled because it didn’t satisfy a conditional continuation
predicate.

It’s essential to grasp that when a continuation doesn’t execute by virtue of these flags, the
continuation is not forgotten or abandoned — it’s canceled. This means that any continuations
on the continuation itself will then run — unless you predicate them with NotOnCanceled. For
example, consider this:

Task t1 = Task.Factory.StartNew (...);

Task fault = t1.ContinueWith (ant => Console.WriteLine ("fault"),
                              TaskContinuationOptions.OnlyOnFaulted);

Task t3 = fault.ContinueWith (ant => Console.WriteLine ("t3"));

As it stands, t3 will always get scheduled — even if t1 doesn’t throw an exception (see



Figure 23-6). This is because if t1 succeeds, the fault task will be canceled, and with no
continuation restrictions placed on t3, t3 will then execute unconditionally.

Figure 23-6. Conditional continuations

If we want t3 to execute only if fault actually runs, we must instead do this:

Task t3 = fault.ContinueWith (ant => Console.WriteLine ("t3"),
                              TaskContinuationOptions.NotOnCanceled);

(Alternatively, we could specify OnlyOnRanToCompletion; the difference is that t3 would not
then execute if an exception was thrown within fault.)

Continuations with multiple antecedents
You can schedule continuation to execute based on the completion of multiple antecedents with
the ContinueWhenAll and ContinueWhenAny methods in the TaskFactory class. These
methods have become redundant, however, with the introduction of the task combinators that
we discussed in Chapter 14 (WhenAll and WhenAny). Specifically, given the following tasks:

var task1 = Task.Run (() => Console.Write ("X"));
var task2 = Task.Run (() => Console.Write ("Y"));

we can schedule a continuation to execute when both complete as follows:

var continuation = Task.Factory.ContinueWhenAll (
  new[] { task1, task2 }, tasks => Console.WriteLine ("Done"));

Here’s the same result with the WhenAll task combinator:

var continuation = Task.WhenAll (task1, task2)
                       .ContinueWith (ant => Console.WriteLine ("Done"));

Multiple continuations on a single antecedent
Calling ContinueWith more than once on the same task creates multiple continuations on a
single antecedent. When the antecedent finishes, all continuations will start together (unless you
specify TaskContinuationOptions.ExecuteSynchronously, in which case the
continuations will execute sequentially).
The following waits for one second, and then writes either “XY” or “YX”:

var t = Task.Factory.StartNew (() => Thread.Sleep (1000));
t.ContinueWith (ant => Console.Write ("X"));
t.ContinueWith (ant => Console.Write ("Y"));



Task Schedulers
A task scheduler allocates tasks to threads and is represented by the abstract TaskScheduler
class. The Framework provides two concrete implementations: the default scheduler that
works in tandem with the CLR thread pool, and the synchronization context scheduler. The
latter is designed (primarily) to help you with the threading model of WPF and Windows
Forms, which requires that UI elements and controls are accessed only from the thread that
created them (see “Threading in Rich-Client Applications” in Chapter 14). By capturing it, we
can tell a task or a continuation to execute on this context:

// Suppose we are on a UI thread in a Windows Forms / WPF application:
_uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();

Assuming Foo is a compute-bound method that returns a string and lblResult is a WPF or
Windows Forms label, we could then safely update the label after the operation completes as
follows:

Task.Run (() => Foo())
  .ContinueWith (ant => lblResult.Content = ant.Result, _uiScheduler);

Of course, C#’s asynchronous functions would more commonly be used for this kind of thing.
It’s also possible to write our own task scheduler (by subclassing TaskScheduler), although
this is something you’d do only in very specialized scenarios. For custom scheduling, you’d
more commonly use TaskCompletionSource.

TaskFactory
When you call Task.Factory, you’re calling a static property on Task that returns a default
TaskFactory object. The purpose of a task factory is to create tasks — specifically, three
kinds of tasks:

“Ordinary” tasks (via StartNew)

Continuations with multiple antecedents (via ContinueWhenAll and ContinueWhenAny)

Tasks that wrap methods that follow the defunct APM (via FromAsync; see “Obsolete
Patterns” in Chapter 14).

Another way to create tasks is to instantiate Task and call Start. However this only lets you
create “ordinary” tasks, not continuations.

Creating your own task factories
TaskFactory is not an abstract factory: you can actually instantiate the class, and this is useful
when you want to repeatedly create tasks using the same (nonstandard) values for
TaskCreationOptions, TaskContinuationOptions, or TaskScheduler. For example, if we
wanted to repeatedly create long-running parented tasks, we could create a custom factory as
follows:

var factory = new TaskFactory (
  TaskCreationOptions.LongRunning | TaskCreationOptions.AttachedToParent,
  TaskContinuationOptions.None);



Creating tasks is then simply a matter of calling StartNew on the factory:

Task task1 = factory.StartNew (Method1);
Task task2 = factory.StartNew (Method2);
...

The custom continuation options are applied when calling ContinueWhenAll and
ContinueWhenAny.

Working with AggregateException
As we’ve seen, PLINQ, the Parallel class, and Tasks automatically marshal exceptions to the
consumer. To see why this is essential, consider the following LINQ query, which throws a
DivideByZeroException on the first iteration:

try
{
  var query = from i in Enumerable.Range (0, 1000000)
              select 100 / i;
  ...
}
catch (DivideByZeroException)
{
  ...
}

If we asked PLINQ to parallelize this query and it ignored the handling of exceptions, a
DivideByZeroException would probably be thrown on a separate thread, bypassing our
catch block and causing the application to die.
Hence, exceptions are automatically caught and re-thrown to the caller. But unfortunately, it’s
not quite as simple as catching a DivideByZeroException. Because these libraries leverage
many threads, it’s actually possible for two or more exceptions to be thrown simultaneously. To
ensure that all exceptions are reported, exceptions are therefore wrapped in an
AggregateException container, which exposes an InnerExceptions property containing
each of the caught exception(s):

try
{
  var query = from i in ParallelEnumerable.Range (0, 1000000)
              select 100 / i;
  // Enumerate query
  ...
}
catch (AggregateException aex)
{
  foreach (Exception ex in aex.InnerExceptions)
    Console.WriteLine (ex.Message);
}

NOTE
Both PLINQ and the Parallel class end the query or loop execution upon encountering the
first exception — by not processing any further elements or loop bodies. More exceptions
might be thrown, however, before the current cycle is complete. The first exception in
AggregateException is visible in the InnerException property.



Flatten and Handle
The AggregateException class provides a couple of methods to simplify exception handling:
Flatten and Handle.

Flatten
AggregateExceptions will quite often contain other AggregateExceptions. An example of
when this might happen is if a child task throws an exception. You can eliminate any level of
nesting to simplify handling by calling Flatten. This method returns a new
AggregateException with a simple flat list of inner exceptions:

catch (AggregateException aex)
{
  foreach (Exception ex in aex.Flatten().InnerExceptions)
    myLogWriter.LogException (ex);
}

Handle
Sometimes it’s useful to catch only specific exception types, and have other types re-thrown.
The Handle method on AggregateException provides a shortcut for doing this. It accepts an
exception predicate, which it runs over every inner exception:

public void Handle (Func<Exception, bool> predicate)

If the predicate returns true, it considers that exception “handled.” After the delegate has run
over every exception, the following happens:

If all exceptions were “handled” (the delegate returned true), the exception is not re-
thrown.

If there were any exceptions for which the delegate returned false (“unhandled”), a new
AggregateException is built up containing those exceptions, and is re-thrown.

For instance, the following ends up re-throwing another AggregateException that contains a
single NullReferenceException:

var parent = Task.Factory.StartNew (() =>
{
  // We'll throw 3 exceptions at once using 3 child tasks:

  int[] numbers = { 0 };

  var childFactory = new TaskFactory
   (TaskCreationOptions.AttachedToParent, TaskContinuationOptions.None);

  childFactory.StartNew (() => 5 / numbers[0]);   // Division by zero
  childFactory.StartNew (() => numbers [1]);      // Index out of range
  childFactory.StartNew (() => { throw null; });  // Null reference
});

try { parent.Wait(); }
catch (AggregateException aex)
{
  aex.Flatten().Handle (ex =>   // Note that we still need to call Flatten
  {
    if (ex is DivideByZeroException)
    {
      Console.WriteLine ("Divide by zero");
      return true;                           // This exception is "handled"



    }
    if (ex is IndexOutOfRangeException)
    {
      Console.WriteLine ("Index out of range");
      return true;                           // This exception is "handled"  
    }
    return false;    // All other exceptions will get rethrown
  });
}

Concurrent Collections
Framework 4.0 added a set of new collections in the System.Collections.Concurrent
namespace. All of these are fully thread-safe:

Concurrent collection Nonconcurrent equivalent
ConcurrentStack<T> Stack<T>

ConcurrentQueue<T> Queue<T>

ConcurrentBag<T> (none)

ConcurrentDictionary<TKey,TValue> Dictionary<TKey,TValue>

The concurrent collections are optimized for high-concurrency scenarios; however, they can
also be useful whenever you need a thread-safe collection (as an alternative to locking around
an ordinary collection). However, there are some caveats:

The conventional collections outperform the concurrent collections in all but highly
concurrent scenarios.

A thread-safe collection doesn’t guarantee that the code using it will be thread-safe (see
“Thread Safety”).

If you enumerate over a concurrent collection while another thread is modifying it, no
exception is thrown — instead, you get a mixture of old and new content.

There’s no concurrent version of List<T>.

The concurrent stack, queue, and bag classes are implemented internally with linked lists.
This makes them less memory-efficient than the nonconcurrent Stack and Queue classes, but
better for concurrent access because linked lists are conducive to lock-free or low-lock
implementations. (This is because inserting a node into a linked list requires updating just a
couple of references, while inserting an element into a List<T>-like structure may require
moving thousands of existing elements.)

In other words, these collections are not merely shortcuts for using an ordinary collection with
a lock. To demonstrate, if we execute the following code on a single thread:

var d = new ConcurrentDictionary<int,int>();
for (int i = 0; i < 1000000; i++) d[i] = 123;

it runs three times more slowly than this:

var d = new Dictionary<int,int>();
for (int i = 0; i < 1000000; i++) lock (d) d[i] = 123;



(Reading from a ConcurrentDictionary, however, is fast because reads are lock-free.)
The concurrent collections also differ from conventional collections in that they expose special
methods to perform atomic test-and-act operations, such as TryPop. Most of these methods are
unified via the IProducerConsumerCollection<T> interface.

IProducerConsumerCollection<T>
A producer/consumer collection is one for which the two primary use cases are:

Adding an element (“producing”)

Retrieving an element while removing it (“consuming”)

The classic examples are stacks and queues. Producer/consumer collections are significant in
parallel programming because they’re conducive to efficient lock-free implementations.
The IProducerConsumerCollection<T> interface represents a thread-safe
producer/consumer collection. The following classes implement this interface:

ConcurrentStack<T>
ConcurrentQueue<T>
ConcurrentBag<T>

IProducerConsumerCollection<T> extends ICollection, adding the following methods:

void CopyTo (T[] array, int index);
T[] ToArray();
bool TryAdd (T item);
bool TryTake (out T item);

The TryAdd and TryTake methods test whether an add/remove operation can be performed,
and if so, they perform the add/remove. The testing and acting are performed atomically,
eliminating the need to lock as you would around a conventional collection:

int result;
lock (myStack) if (myStack.Count > 0) result = myStack.Pop();

TryTake returns false if the collection is empty. TryAdd always succeeds and returns true in
the three implementations provided. If you wrote your own concurrent collection that
prohibited duplicates, however, you’d make TryAdd return false if the element already
existed (an example would be if you wrote a concurrent set).
The particular element that TryTake removes is defined by the subclass:

With a stack, TryTake removes the most recently added element.

With a queue, TryTake removes the least recently added element.

With a bag, TryTake removes whatever element it can remove most efficiently.

The three concrete classes mostly implement the TryTake and TryAdd methods explicitly,
exposing the same functionality through more specifically named public methods such as
TryDequeue and TryPop.



ConcurrentBag<T>
ConcurrentBag<T> stores an unordered collection of objects (with duplicates permitted).
ConcurrentBag<T> is suitable in situations when you don’t care which element you get when
calling Take or TryTake.
The benefit of ConcurrentBag<T> over a concurrent queue or stack is that a bag’s Add method
suffers almost no contention when called by many threads at once. In contrast, calling Add in
parallel on a queue or stack incurs some contention (although a lot less than locking around a
nonconcurrent collection). Calling Take on a concurrent bag is also very efficient — as long
as each thread doesn’t take more elements than it Added.
Inside a concurrent bag, each thread gets its own private linked list. Elements are added to the
private list that belongs to the thread calling Add, eliminating contention. When you enumerate
over the bag, the enumerator travels through each thread’s private list, yielding each of its
elements in turn.
When you call Take, the bag first looks at the current thread’s private list. If there’s at least one
element,1 it can complete the task easily and without contention. But if the list is empty, it must
“steal” an element from another thread’s private list and incur the potential for contention.
So, to be precise, calling Take gives you the element added most recently on that thread; if
there are no elements on that thread, it gives you the element added most recently on another
thread, chosen at random.
Concurrent bags are ideal when the parallel operation on your collection mostly comprises
Adding elements — or when the Adds and Takes are balanced on a thread. We saw an example
of the former previously, when using Parallel.ForEach to implement a parallel spellchecker:

var misspellings = new ConcurrentBag<Tuple<int,string>>();

Parallel.ForEach (wordsToTest, (word, state, i) =>
{
  if (!wordLookup.Contains (word))
    misspellings.Add (Tuple.Create ((int) i, word));
});

A concurrent bag would be a poor choice for a producer/consumer queue, because elements
are added and removed by different threads.

BlockingCollection<T>
If you call TryTake on any of the producer/consumer collections we discussed in the previous
section:

ConcurrentStack<T>
ConcurrentQueue<T>
ConcurrentBag<T>

and the collection is empty, the method returns false. Sometimes it would be more useful in
this scenario to wait until an element is available.
Rather than overloading the TryTake methods with this functionality (which would have
caused a blowout of members after allowing for cancellation tokens and timeouts), PFX’s
designers encapsulated this functionality into a wrapper class called



BlockingCollection<T>. A blocking collection wraps any collection that implements
IProducerConsumerCollection<T> and lets you Take an element from the wrapped
collection — blocking if no element is available.
A blocking collection also lets you limit the total size of the collection, blocking the producer
if that size is exceeded. A collection limited in this manner is called a bounded blocking
collection.
To use BlockingCollection<T>:

1. Instantiate the class, optionally specifying the IProducerConsumerCollection<T> to
wrap and the maximum size (bound) of the collection.

2. Call Add or TryAdd to add elements to the underlying collection.

3. Call Take or TryTake to remove (consume) elements from the underlying collection.

If you call the constructor without passing in a collection, the class will automatically
instantiate a ConcurrentQueue<T>. The producing and consuming methods let you specify
cancellation tokens and timeouts. Add and TryAdd may block if the collection size is bounded;
Take and TryTake block while the collection is empty.
Another way to consume elements is to call GetConsumingEnumerable. This returns a
(potentially) infinite sequence that yields elements as they become available. You can force the
sequence to end by calling CompleteAdding: this method also prevents further elements from
being enqueued.
BlockingCollection also provides static methods called AddToAny and TakeFrom Any,
which let you add or take an element while specifying several blocking collections. The action
is then honored by the first collection able to service the request.

Writing a Producer/Consumer Queue
A producer/consumer queue is a useful structure, both in parallel programming and general
concurrency scenarios. Here’s how it works:

A queue is set up to describe work items — or data upon which work is performed.

When a task needs executing, it’s enqueued, and the caller gets on with other things.

One or more worker threads plug away in the background, picking off and executing queued
items.

A producer/consumer queue gives you precise control over how many worker threads execute
at once, which is useful not only in limiting CPU consumption, but other resources as well. If
the tasks perform intensive disk I/O, for instance, you can limit concurrency to avoid starving
the operating system and other applications. You can also dynamically add and remove
workers throughout the queue’s life. The CLR’s thread pool itself is a kind of
producer/consumer queue, optimized for short-running compute-bound jobs.
A producer/consumer queue typically holds items of data upon which (the same) task is
performed. For example, the items of data may be filenames, and the task might be to encrypt
those files. By making the item a delegate, however, you can write a more general-purpose
producer/consumer queue where each item can do anything.



At http://albahari.com/threading, we show how to write a producer/consumer queue from
scratch using an AutoResetEvent (and later, using Monitor’s Wait and Pulse). From
Framework 4.0, though, writing a producer/consumer from scratch is unnecessary because most
of the functionality is provided by BlockingCollection<T>. Here’s how we leverage it:

public class PCQueue : IDisposable
{
  BlockingCollection<Action> _taskQ = new BlockingCollection<Action>();

  public PCQueue (int workerCount)
  {
    // Create and start a separate Task for each consumer:
    for (int i = 0; i < workerCount; i++)
      Task.Factory.StartNew (Consume);
  }

  public void Enqueue (Action action) { _taskQ.Add (action); }

  void Consume()
  {
    // This sequence that we're enumerating will block when no elements
    // are available and will end when CompleteAdding is called.

    foreach (Action action in _taskQ.GetConsumingEnumerable())
      action();     // Perform task.
  }

  public void Dispose() { _taskQ.CompleteAdding(); }
}

Because we didn’t pass anything into BlockingCollection’s constructor, it instantiated a
concurrent queue automatically. Had we passed in a ConcurrentStack, we’d have ended up
with a producer/consumer stack.

Leveraging Tasks
The producer/consumer that we just wrote is inflexible in that we can’t track work items after
they’ve been enqueued. It would be nice if we could:

Know when a work item has completed (and await it)

Cancel a work item

Deal elegantly with any exceptions thrown by a work item

An ideal solution would be to have the Enqueue method return some object giving us the
functionality just described. The good news is that a class already exists to do exactly this —
the Task class, which we can generate either with a TaskCompletionSource, or by
instantiating directly (creating an unstarted or cold task):

public class PCQueue : IDisposable
{
  BlockingCollection<Task> _taskQ = new BlockingCollection<Task>();

  public PCQueue (int workerCount)
  {
    // Create and start a separate Task for each consumer:
    for (int i = 0; i < workerCount; i++)
      Task.Factory.StartNew (Consume);
  }

  public Task Enqueue (Action action, CancellationToken cancelToken

http://albahari.com/threading


                                            = default (CancellationToken))
  {
    var task = new Task (action, cancelToken);
    _taskQ.Add (task);
    return task;
  }

  public Task<TResult> Enqueue<TResult> (Func<TResult> func,
              CancellationToken cancelToken = default (CancellationToken))
  {
    var task = new Task<TResult> (func, cancelToken);
    _taskQ.Add (task);
    return task;
  }
 
  void Consume()
  {
    foreach (var task in _taskQ.GetConsumingEnumerable())
      try
      {
          if (!task.IsCanceled) task.RunSynchronously();
      }
      catch (InvalidOperationException) { }  // Race condition
  }

  public void Dispose() { _taskQ.CompleteAdding(); }
}

In Enqueue we enqueue and return to the caller a task that we create but don’t start.
In Consume, we run the task synchronously on the consumer’s thread. We catch an
InvalidOperationException to handle the unlikely event that the task is canceled in between
checking whether it’s canceled and running it.
Here’s how we can use this class:

var pcQ = new PCQueue (2);    // Maximum concurrency of 2
string result = await pcQ.Enqueue (() => "That was easy!");
...

Hence we have all the benefits of tasks — with exception propagation, return values, and
cancellation — while taking complete control over scheduling.

Due to an implementation detail, there actually needs to be at least two elements to avoid contention
entirely.

1



Chapter 24. Application Domains

An application domain is the runtime unit of isolation in which a .NET program runs. It
provides a managed memory boundary, a container for loaded assemblies and application
configuration settings, as well as delineating a communication boundary for distributed
applications.
Each .NET process usually hosts just one application domain: the default domain, created
automatically by the CLR when the process starts. It’s also possible — and sometimes useful
— to create additional application domains within the same process. This provides isolation
while avoiding the overhead and communication complications that arise with having separate
processes. It’s useful in scenarios such as load testing and application patching, and in
implementing robust error recovery mechanisms.

WARNING
This chapter is irrelevant to UWP and .NET Core apps, which have access to only a single
application domain.

Application Domain Architecture
Figure 24-1 illustrates the application domain architectures for single-domain, multidomain,
and typical distributed client/server applications. In most cases, the processes housing the
application domains are created implicitly by the operating system — when the user double-
clicks your .NET executable file or starts a Windows service. However, an application domain
can also be hosted in other processes such as IIS or in SQL Server through CLR integration.
In the case of a simple executable, the process ends when the default application domain
finishes executing. With hosts such as IIS or SQL Server, however, the process controls the
lifetime, creating and destroying .NET application domains as it sees fit.



Figure 24-1. Application domain architecture



Creating and Destroying Application Domains
You can create and destroy additional application domains in a process by calling the static
methods AppDomain.CreateDomain and AppDomain.Unload. In the following example,
test.exe is executed in an isolated application domain, which is then unloaded:

static void Main()
{
  AppDomain newDomain = AppDomain.CreateDomain ("New Domain");
  newDomain.ExecuteAssembly ("test.exe");
  AppDomain.Unload (newDomain);
}

Note that when the default application domain (the one created by the CLR at startup) is
unloaded, all other application domains automatically unload, and the application closes. A
domain can “know” whether it’s the default domain via the AppDomain property
IsDefaultDomain.
The AppDomainSetup class allows options to be specified for a new domain. The following
properties are the most useful:

public string ApplicationName { get; set; }        // "Friendly" name
public string ApplicationBase { get; set; }        // Base folder

public string ConfigurationFile { get; set; }
public string LicenseFile       { get; set; }

// To assist with automatic assembly resolution:
public string PrivateBinPath      { get; set; }
public string PrivateBinPathProbe { get; set; }

The ApplicationBase property controls the application domain base directory, used as the
root for automatic assembly probing. In the default application domain, this is the main
executable’s folder. In a new domain that you create, it can be anywhere you like:

AppDomainSetup setup = new AppDomainSetup();
setup.ApplicationBase = @"c:\MyBaseFolder";
AppDomain newDomain = AppDomain.CreateDomain ("New Domain", null, setup);

It’s also possible to subscribe a new domain to assembly resolution events defined in the
instigator’s domain:

static void Main()
{
  AppDomain newDomain = AppDomain.CreateDomain ("test");
  newDomain.AssemblyResolve += new ResolveEventHandler (FindAssem);
  ...
}

static Assembly FindAssem (object sender, ResolveEventArgs args)
{
  ...
}

This is acceptable providing the event handler is a static method defined in a type available to
both domains. The CLR is then able to execute the event handler in the correct domain. In this
example, FindAssem would execute from within newDomain, even though it was subscribed
from the default domain.



The PrivateBinPath property is a semicolon-separated list of subdirectories below the base
directory that the CLR should automatically search for assemblies. (As with the application
base folder, this can only be set prior to the application domain starting.) Take, for example, a
directory structure where a program has, in its base folder, a single executable (and perhaps a
configuration file) and all the referenced assemblies in subfolders as follows:

c:\MyBaseFolder\                  -- Startup executable
               \bin
               \bin\v1.23         -- Latest assembly DLLs
               \bin\plugins       -- More DLLs

Here’s how an application domain would be set up to use this folder structure:

AppDomainSetup setup  = new AppDomainSetup();
setup.ApplicationBase = @"c:\MyBaseFolder";
setup.PrivateBinPath  = @"bin\v1.23;bin\plugins";
AppDomain d = AppDomain.CreateDomain ("New Domain", null, setup);
d.ExecuteAssembly (@"c:\MyBaseFolder\Startup.exe");

Note that PrivateBinPath is always relative to, and below, the application base folder.
Specifying absolute paths is illegal. AppDomain also provides a PrivateBinPathProbe
property, which, if set to anything other than a blank string, excludes the base directory itself
from being part of the assembly search path. (The reason Private BinPathProbe is a string
rather than a bool type relates to COM compatibility.)
Just before any nondefault application domain unloads, the DomainUnload event fires. You can
use this event for tear-down logic: the unloading of the domain (and the application as a whole,
if necessary) is delayed until the execution of all Domain Unload event handlers completes.
Just before the application itself closes, the ProcessExit event fires on all loaded application
domains (including the default domain). Unlike with the DomainUnload event, ProcessExit
event handlers are timed: the default CLR host gives event handlers two seconds per domain,
and three seconds in total, before terminating their threads.

Using Multiple Application Domains
Multiple application domains have the following key uses:

Providing process-like isolation with minimum overhead

Allowing assembly files to be unloaded without restarting the process

When additional application domains are created within the same process, the CLR provides
each with a level of isolation akin to that of running in separate processes. This means that each
domain has separate memory, and objects in one domain cannot interfere with those in another.
Furthermore, static members of the same class have independent values in each domain.
ASP.NET uses exactly this approach to allow many sites to run in a shared process without
affecting each other.
With ASP.NET, the application domains are created by the infrastructure — without your
intervention. There are times, however, when you can benefit from explicitly creating multiple
domains inside a single process. Suppose you’ve written a custom authentication system, and
as part of unit testing, you want to stress-test the server code by simulating 20 clients logging in
at once. You have three options in simulating 20 concurrent logins:



Start 20 separate processes by calling Process.Start 20 times.

Start 20 threads in the same process and domain.

Start 20 threads in the same process — each in its own application domain.

The first option is clumsy and resource-intensive. It’s also hard to communicate with each of
the separate processes, should you want to give them more specific instructions on what to do.
The second option relies on the client-side code being thread-safe, which is unlikely —
especially if static variables are used to store the current authentication state. And adding a
lock around the client-side code would prevent the parallel execution that we need to stress-
test the server.
The third option is ideal. It keeps each thread isolated — with independent state — and yet
within easy reach of the hosting program.
Another reason to create a separate application domain is to allow assemblies to be unloaded
without ending the process. This stems from the fact that there’s no way to unload an assembly
other than closing the application domain that loaded it. This is a problem if it was loaded in
the default domain, because closing this domain means closing the application. An assembly’s
file is locked while loaded and so cannot be patched or replaced. Loading assemblies in a
separate application domain that can be torn down gets around this problem — as well as
helping to reduce the memory footprint of an application that occasionally needs to load large
assemblies.

THE LOADEROPTIMIZATION ATTRIBUTE
By default, assemblies that load into an explicitly created application domain are reprocessed by the
JIT compiler. This includes:

Assemblies that have already been JIT-compiled in the caller’s domain

Assemblies for which a native image has been generated with the ngen.exe tool

All of the .NET Framework assemblies (except for mscorlib)

This can be a major performance hit, particularly if you repeatedly create and unload application
domains that reference large .NET Framework assemblies. A workaround is to attach the following
attribute to your program’s main entry method:

[LoaderOptimization (LoaderOptimization.MultiDomainHost)]

This instructs the CLR to load GAC assemblies domain-neutral, so native images are honored and
JIT images shared across application domains. This is usually ideal, because the GAC includes all
.NET Framework assemblies (and possibly some invariant parts of your application).
You can go a stage further by specifying LoaderOptimization.MultiDomain: this instructs all
assemblies to be loaded domain-neutral (excluding those loaded outside the normal assembly
resolution mechanism). This is undesirable, however, if you want assemblies to unload with their
domain. A domain-neutral assembly is shared between all domains and so does not unload until the
parent process ends.

Using DoCallBack



Let’s revisit the most basic multidomain scenario:

static void Main()
{
  AppDomain newDomain = AppDomain.CreateDomain ("New Domain");
  newDomain.ExecuteAssembly ("test.exe");
  AppDomain.Unload (newDomain);
}

Calling ExecuteAssembly on a separate domain is convenient but offers little opportunity to
interact with the domain. It also requires that the target assembly is an executable, and it
commits the caller to a single entry point. The only way to incorporate flexibility is to resort to
an approach such as passing a string of arguments to the executable.
A more powerful approach is to use AppDomain’s DoCallBack method. This executes on
another application domain, a method on a given type. The type’s assembly is automatically
loaded into the domain (the CLR will know where it lives if the current domain can reference
it). In the following example, a method in the currently executing class is run in a new domain:

class Program
{
  static void Main()
  {
    AppDomain newDomain = AppDomain.CreateDomain ("New Domain");
    newDomain.DoCallBack (new CrossAppDomainDelegate (SayHello));
    AppDomain.Unload (newDomain);
  }

  static void SayHello()
  {
    Console.WriteLine ("Hi from " + AppDomain.CurrentDomain.FriendlyName);
  }
}

The example works because the delegate is referencing a static method, meaning it points to a
type rather than an instance. This makes the delegate “domain-agnostic” or agile. It can run in
any domain, and in the same way, as there’s nothing tying it to the original domain. It’s also
possible to use DoCallBack with a delegate referencing an instance method. However, the
CLR will attempt to apply Remoting semantics (described later), which in this case happens to
be the opposite of what we want.

Monitoring Application Domains
From Framework 4.0, you can monitor the memory and CPU consumption of a specific
application domain. For this to work, you must first enable application domain monitoring as
follows:

AppDomain.MonitoringIsEnabled = true;

This enables monitoring for all domains in the current process. Once enabled, you can’t
subsequently disable it — setting this property to false throws an exception.

NOTE
Another way to enable to enable domain monitoring is via the application configuration file.



Add the following element:

<configuration>
   <runtime>
     <appDomainResourceMonitoring enabled="true"/>
  </runtime>
</configuration>

This enables monitoring for all application domains.

You can then query an AppDomain’s CPU and memory usage via the following three instance
properties:

MonitoringTotalProcessorTime
MonitoringTotalAllocatedMemorySize
MonitoringSurvivedMemorySize

The first two properties return the total CPU consumption and managed memory allocated by
that domain since it was started. (These figures can only grow and never shrink.) The third
property returns the actual managed memory consumption of the domain at the time of the last
garbage collection.
You can access these properties from the same or another domain.

Domains and Threads
When you call a method in another application domain, execution blocks until the method
finishes executing — just as though you called a method in your own domain. Although this
behavior is usually desirable, there are times when you need to run a method concurrently. You
can do that with multithreading.
We talked previously about using multiple application domains to simulate 20 concurrent client
logins in order to test an authentication system. By having each client log in on a separate
application domain, each would be isolated and unable to interfere with another client via
static class members. To implement this example, we need to call a “Login” method on 20
concurrent threads, each in its own application domain:

class Program
{
  static void Main()
  {
    // Create 20 domains and 20 threads.
    AppDomain[] domains = new AppDomain [20];
    Thread[] threads = new Thread [20];

    for (int i = 0; i < 20; i++)
    {
      domains [i] = AppDomain.CreateDomain ("Client Login " + i);
      threads [i] = new Thread (LoginOtherDomain);
    }

    // Start all the threads, passing to each thread its app domain.
    for (int i = 0; i < 20; i++) threads [i].Start (domains [i]);

    // Wait for the threads to finish
    for (int i = 0; i < 20; i++) threads [i].Join();

    // Unload the app domains



    for (int i = 0; i < 20; i++) AppDomain.Unload (domains [i]);
    Console.ReadLine();
  }

  // Parameterized thread start - taking the domain on which to run.
  static void LoginOtherDomain (object domain)
  {
    ((AppDomain) domain).DoCallBack (Login);
  }

  static void Login()
  {
    Client.Login ("Joe", "");
    Console.WriteLine ("Logged in as: " + Client.CurrentUser + " on " +
      AppDomain.CurrentDomain.FriendlyName);
  }
}

class Client
{
  // Here's a static field that would interfere with other client logins
  // if running in the same app domain.
  public static string CurrentUser = "";

  public static void Login (string name, string password)
  {
   if (CurrentUser.Length == 0)    // If we're not already logged in...
    {
      // Sleep to simulate authentication...
      Thread.Sleep (500);
      CurrentUser = name;           // Record that we're authenticated.
    }
  }
}

// Output:
Logged in as: Joe on Client Login 0
Logged in as: Joe on Client Login 1
Logged in as: Joe on Client Login 4
Logged in as: Joe on Client Login 2
Logged in as: Joe on Client Login 3
Logged in as: Joe on Client Login 5
Logged in as: Joe on Client Login 6
...

See Chapter 22 for more information on multithreading.

Sharing Data Between Domains

Sharing Data via Slots
Application domains can use named slots to share data, as in the following example:

class Program
{
  static void Main()
  {
    AppDomain newDomain = AppDomain.CreateDomain ("New Domain");

    // Write to a named slot called "Message" - any string key will do.
    newDomain.SetData ("Message", "guess what...");

    newDomain.DoCallBack (SayMessage);
    AppDomain.Unload (newDomain);
  }

  static void SayMessage()



  {
    // Read from the "Message" data slot
    Console.WriteLine (AppDomain.CurrentDomain.GetData ("Message"));
  }
}

// Output:
guess what...

A slot is created automatically the first time it’s used. The data being communicated (in this
example, "guess what ...") must either be serializable (see Chapter 17), or be based on
MarshalByRefObject. If the data is serializable (such as the string in our example), it’s
copied to the other application domain. If it implements MarshalByRefObject, Remoting
semantics are applied.

Intra-Process Remoting
The most flexible way to communicate with another application domain is to instantiate objects
in the other domain via a proxy. This is called Remoting.
The class being “Remoted” must inherit from MarshalByRefObject. The client then calls a
CreateInstanceXXX method on the remote domain’s AppDomain class to remotely instantiate
the object.
The following instantiates the type Foo in another application domain, and then calls its
SayHello method:

class Program
{
  static void Main()
  {
    AppDomain newDomain = AppDomain.CreateDomain ("New Domain");

    Foo foo = (Foo) newDomain.CreateInstanceAndUnwrap (
                      typeof (Foo).Assembly.FullName,
                      typeof (Foo).FullName);

    Console.WriteLine (foo.SayHello());
    AppDomain.Unload (newDomain);
    Console.ReadLine();
  }
}

public class Foo : MarshalByRefObject
{
  public string SayHello()
    => "Hello from " + AppDomain.CurrentDomain.FriendlyName;

  // This ensures the object lasts for as long as the client wants it
  public override object InitializeLifetimeService() => null;
}

When the foo object is created on the other application domain (called the “remote” domain),
we don’t get back a direct reference to the object, because the application domains are
isolated. Instead, we get back a transparent proxy; transparent because it appears as though it
was a direct reference to the remote object. When we subsequently call the SayHello method
on foo, a message is constructed behind the scenes, which is forwarded to the “remote”
application domain where it is then executed on the real foo. Rather like saying “hello” on a
telephone: you’re talking not to a real person but to a piece of plastic that acts as a transparent
proxy for a person. Any return value is turned into a message and sent back to the caller.



NOTE
Before Windows Communication Foundation was released in .NET Framework 3.0,
Remoting was one of the two principal technologies for writing distributed applications (Web
Services being the other). In a distributed Remoting application, you explicitly set up an
HTTP or TCP/IP communication channel at each end, allowing communication to cross
process and network boundaries.
Although WCF is superior to Remoting for distributed applications, Remoting still has a niche
in inter-domain communication within a process. Its advantage in this scenario is that it
requires no configuration — the communication channel is automatically created (a fast in-
memory channel), and no type registration is required. You simply start using it.

The methods on Foo can return more MarshalByRefObject instances, in which case more
transparent proxies are generated when those methods are called. Methods on Foo can also
accept MarshalByRefObject instances as arguments — in which Remoting happens in
reverse. The caller will hold the “remote” object, while the callee will have a proxy.
As well as marshaling objects by reference, application domains can exchange scalar values,
or any serializable object. A type is serializable if it either has the Serializable attribute or
implements ISerializable. Then, when crossing the application domain boundary, a
complete copy of the object is returned, rather than a proxy. In other words, the object is
marshaled by value rather than reference.
Remoting within the same process is client-activated, meaning that the CLR doesn’t attempt to
share or reuse remotely created objects with the same or other clients. In other words, if the
client creates two Foo objects, two objects will be created in the remote domain, and two
proxies in the client domain. This provides the most natural object semantics; however, it
means that the remote domain is dependent on the client’s garbage collector: the foo object in
the remote domain is released from memory only when the client’s garbage collector decides
that the foo (proxy) is no longer in use. If the client domain crashes, it may never get released.
To protect against this scenario, the CLR provides a lease-based mechanism for managing the
lifetime of remotely created objects. The default behavior is for remotely created objects to
self-destruct after five minutes of nonuse.
Because in this example the client runs in the default application domain, the client doesn’t
have the luxury of crashing. Once it ends, so does the whole process! Hence, it makes sense to
disable the five-minute lifetime lease. This is the purpose of overriding
InitializeLifetimeService — by returning a null lease, remotely created objects are
destroyed only when garbage-collected by the client.

Isolating Types and Assemblies
In the preceding example, we remotely instantiated an object of type Foo as follows:

Foo foo = (Foo) newDomain.CreateInstanceAndUnwrap (
                  typeof (Foo).Assembly.FullName,
                  typeof (Foo).FullName);

Here’s the method’s signature:

public object CreateInstanceAndUnwrap (string assemblyName,
                                           string typeName)



Because this method accepts an assembly and type name rather than a Type object, you can
remotely instantiate an object without loading its type locally. This is useful when you want to
avoid loading the type’s assembly into the caller’s application domain.

NOTE
AppDomain also provides a method called CreateInstanceFromAndUnwrap. The difference is:

CreateInstanceAndUnwrap accepts a fully qualified assembly name (see Chapter 18).

CreateInstanceFromAndUnwrap accepts a path or filename.

To illustrate, suppose we were writing a text editor that allows the user to load and unload
third-party plug-ins.
The first step is to write a common library that both the host and the plug-ins will reference.
This library will define an interface describing what plug-ins can do. Here’s a simple example:

namespace Plugin.Common
{
  public interface ITextPlugin
  {
    string TransformText (string input);
  }
}

Next, we need to write a simple plug-in. We’ll assume the following is compiled to
AllCapitals.dll:

namespace Plugin.Extensions
{
  public class AllCapitals : MarshalByRefObject, Plugin.Common.ITextPlugin
  {
    public string TransformText (string input) => input.ToUpper();
  }
}

Here’s how to write a host that loads AllCapitals.dll into a separate application domain, calls
TransformText using Remoting, and then unloads the application domain:

using System;
using System.Reflection;
using Plugin.Common;

class Program
{
  static void Main()
  {
    AppDomain domain = AppDomain.CreateDomain ("Plugin Domain");

    ITextPlugin plugin = (ITextPlugin) domain.CreateInstanceFromAndUnwrap
      ("AllCapitals.dll", "Plugin.Extensions.AllCapitals");

    // Call the TransformText method using Remoting:
    Console.WriteLine (plugin.TransformText ("hello"));   // "HELLO"

    AppDomain.Unload (domain);

    // The AllCapitals.dll file is now completely unloaded and could



    // be moved or deleted.
  }
}

Because this program interacts with the plug-in solely through the common interface,
ITextPlugin, the types in AllCapitals are never loaded into the caller’s application
domain. This maintains the integrity of the caller’s domain and ensures that no locks are held
on the plug-in assembly files after their domain is unloaded.

Type discovery
In our preceding example, a real application would need some means of discovering plug-in
type names, such as Plugin.Extensions.AllCapitals.
You can achieve this by writing a discovery class in the common assembly that uses reflection
as follows:

public class Discoverer : MarshalByRefObject
{
  public string[] GetPluginTypeNames (string assemblyPath)
  {
    List<string> typeNames = new List<string>();
    Assembly a = Assembly.LoadFrom (assemblyPath);
    foreach (Type t in a.GetTypes())
      if (t.IsPublic
        && t.IsMarshalByRef
        && typeof (ITextPlugin).IsAssignableFrom (t))
    {
      typeNames.Add (t.FullName);
    }
    return typeNames.ToArray();
  }
}

The catch is that Assembly.LoadFrom loads the assembly into the current application domain.
Therefore, you must call this method in the plug-in domain:

class Program
{
  static void Main()
  {
    AppDomain domain = AppDomain.CreateDomain ("Plugin Domain");

    Discoverer d = (Discoverer) domain.CreateInstanceAndUnwrap (
      typeof (Discoverer).Assembly.FullName,
      typeof (Discoverer).FullName);

    string[] plugInTypeNames = d.GetPluginTypeNames ("AllCapitals.dll");

    foreach (string s in plugInTypeNames)
      Console.WriteLine (s);              // Plugin.Extensions.AllCapitals

    ...

NOTE
In the System.AddIn.Contract assembly is an API that develops these concepts into a
complete framework for program extensibility. It addresses such issues as isolation,
versioning, discovery, activation, and so on. For a good source of online information, search
for “CLR Add-In Team Blog” on http://blogs.msdn.com.

http://blogs.msdn.com


Chapter 25. Native and COM Interoperability

This chapter describes how to integrate with native (unmanaged) DLLs and COM components.
Unless otherwise stated, the types mentioned in this chapter exist in either the System or the
System.Runtime.InteropServices namespace.

Calling into Native DLLs
P/Invoke, short for Platform Invocation Services, allows you to access functions, structs, and
callbacks in unmanaged DLLs. For example, consider the MessageBox function, defined in the
Windows DLL user32.dll as follows:

int MessageBox (HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType);

You can call this function directly by declaring a static method of the same name, applying the
extern keyword, and adding the DllImport attribute:

using System;
using System.Runtime.InteropServices;

class MsgBoxTest
{
  [DllImport("user32.dll")]
  static extern int MessageBox (IntPtr hWnd, string text, string caption,
                                int type);
  public static void Main()
  {
    MessageBox (IntPtr.Zero,
                "Please do not press this again.", "Attention", 0);
  }
}

The MessageBox classes in the System.Windows and System.Windows.Forms namespaces
themselves call similar unmanaged methods.
The CLR includes a marshaler that knows how to convert parameters and return values
between .NET types and unmanaged types. In this example, the int parameters translate
directly to 4-byte integers that the function expects, and the string parameters are converted into
null-terminated arrays of 2-byte Unicode characters. IntPtr is a struct designed to encapsulate
an unmanaged handle, and is 32 bits wide on 32-bit platforms and 64 bits wide on 64-bit
platforms.

Type Marshaling

Marshaling Common Types
On the unmanaged side, there can be more than one way to represent a given data type. A string,
for instance, can contain single-byte ANSI characters or double-byte Unicode characters, and
can be length-prefixed, null-terminated, or of fixed length. With the MarshalAs attribute, you
can tell the CLR marshaler the variation in use, so it can provide the correct translation. Here’s
an example:



[DllImport("...")]
static extern int Foo ( [MarshalAs (UnmanagedType.LPStr)] string s );

The UnmanagedType enumeration includes all the Win32 and COM types that the marshaler
understands. In this case, the marshaler was told to translate to LPStr, which is a null-
terminated single-byte ANSI string.
On the .NET side, you also have some choice as to what data type to use. Unmanaged handles,
for instance, can map to IntPtr, int, uint, long, or ulong.

WARNING
Most unmanaged handles encapsulate an address or pointer, and so must be mapped to
IntPtr for compatibility with both 32- and 64-bit operating systems. A typical example is
HWND.

Quite often with Win32 functions, you come across an integer parameter that accepts a set of
constants, defined in a C++ header file such as WinUser.h. Rather than defining these as simple
C# constants, you can define them within an enum instead. Using an enum can make for tidier
code as well as increase static type safety. We provide an example in the later section “Shared
Memory”.

NOTE
When installing Microsoft Visual Studio, be sure to install the C++ header files — even if you
choose nothing else in the C++ category. This is where all the native Win32 constants are
defined. You can then locate all header files by searching for *.h in the Visual Studio program
directory.

Receiving strings from unmanaged code back to .NET requires that some memory management
take place. The marshaler performs this work automatically if you declare the external method
with a StringBuilder rather than a string, as follows:

using System;
using System.Text;
using System.Runtime.InteropServices;

class Test
{
  [DllImport("kernel32.dll")]
  static extern int GetWindowsDirectory (StringBuilder sb, int maxChars);

  static void Main()
  {
    StringBuilder s = new StringBuilder (256);
    GetWindowsDirectory (s, 256);
    Console.WriteLine (s);
  }
}

NOTE
If you are unsure how to call a particular Win32 method, you will usually find an example on



the Internet if you search for the method name and DllImport. The site
http://www.pinvoke.net is a wiki that aims to document all Win32 signatures.

Marshaling Classes and Structs
Sometimes you need to pass a struct to an unmanaged method. For example, GetSystemTime in
the Win32 API is defined as follows:

void GetSystemTime (LPSYSTEMTIME lpSystemTime);

LPSYSTEMTIME conforms to this C struct:

typedef struct _SYSTEMTIME {
  WORD wYear;
  WORD wMonth;
  WORD wDayOfWeek;
  WORD wDay;
  WORD wHour;
  WORD wMinute;
  WORD wSecond;
  WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

In order to call GetSystemTime, we must define a .NET class or struct that matches this C
struct:

using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
class SystemTime
{
   public ushort Year;
   public ushort Month;
   public ushort DayOfWeek;
   public ushort Day;
   public ushort Hour;
   public ushort Minute;
   public ushort Second;
   public ushort Milliseconds;
}

The StructLayout attribute instructs the marshaler how to map each field to its unmanaged
counterpart. LayoutKind.Sequential means that we want the fields aligned sequentially on
pack-size boundaries (we’ll see what this means shortly), just as they would be in a C struct.
The field names here are irrelevant; it’s the ordering of fields that’s important.
Now we can call GetSystemTime:

[DllImport("kernel32.dll")]
static extern void GetSystemTime (SystemTime t);

static void Main()
{
  SystemTime t = new SystemTime();
  GetSystemTime (t);
  Console.WriteLine (t.Year);
}

In both C and C#, fields in an object are located at n number of bytes from the address of that

http://www.pinvoke.net


object. The difference is that in a C# program, the CLR finds this offset by looking it up using
the field token; C field names are compiled directly into offsets. For instance, in C, wDay is just
a token to represent whatever is at the address of a SystemTime instance plus 24 bytes.
For access speed, each field is placed at an offset that is a multiple of the field’s size. That
multiplier, however, is restricted to a maximum of x bytes, where x is the pack size. In the
current implementation, the default pack size is 8 bytes, so a struct comprising an sbyte
followed by an (8-byte) long occupies 16 bytes, and the 7 bytes following the sbyte are
wasted. You can lessen or eliminate this wastage by specifying a pack size via the Pack
property of the StructLayout attribute: this makes the fields align to offsets that are multiples
of the specified pack size. So with a pack size of 1, the struct just described would occupy just
9 bytes. You can specify pack sizes of 1, 2, 4, 8, or 16 bytes.
The StructLayout attribute also lets you specify explicit field offsets (see “Simulating a C
Union”).

In and Out Marshaling
In the previous example, we implemented SystemTime as a class. We could have instead
chosen a struct — providing GetSystemTime was declared with a ref or out parameter:

[DllImport("kernel32.dll")]
static extern void GetSystemTime (out SystemTime t);

In most cases, C#’s directional parameter semantics work the same with external methods.
Pass-by-value parameters are copied in, C# ref parameters are copied in/out, and C# out
parameters are copied out. However, there are some exceptions for types that have special
conversions. For instance, array classes and the StringBuilder class require copying when
coming out of a function, so they are in/out. It is occasionally useful to override this behavior,
with the In and Out attributes. For example, if an array should be read-only, the in modifier
indicates to only copy the array going into the function and not coming out of it:

static extern void Foo ( [In] int[] array);

Callbacks from Unmanaged Code
The P/Invoke layer does its best to present a natural programming model on both sides of the
boundary, mapping between relevant constructs where possible. Since C# can not only call out
to C functions but also can be called back from the C functions (via function pointers), the
P/Invoke layer maps unmanaged function pointers into the nearest equivalent in C#, which is
delegates.
As an example, you can enumerate all top-level window handles with this method in
User32.dll:

BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);

WNDENUMPROC is a callback that gets fired with the handle of each window in sequence (or until
the callback returns false). Here is its definition:

BOOL CALLBACK EnumWindowsProc (HWND hwnd, LPARAM lParam);



To use this, we declare a delegate with a matching signature, and then pass a delegate instance
to the external method:

using System;
using System.Runtime.InteropServices;

class CallbackFun
{
  delegate bool EnumWindowsCallback (IntPtr hWnd, IntPtr lParam);

  [DllImport("user32.dll")]
  static extern int EnumWindows (EnumWindowsCallback hWnd, IntPtr lParam);

  static bool PrintWindow (IntPtr hWnd, IntPtr lParam)
  {
    Console.WriteLine (hWnd.ToInt64());
    return true;
  }

  static void Main() => EnumWindows (PrintWindow, IntPtr.Zero);
}

Simulating a C Union
Each field in a struct is given enough room to store its data. Consider a struct containing
one int and one char. The int is likely to start at an offset of 0 and is guaranteed at least 4
bytes. So, the char would start at an offset of at least 4. If, for some reason, the char started at
an offset of 2, you’d change the value of the int if you assigned a value to the char. Sounds
like mayhem, doesn’t it? Strangely enough, the C language supports a variation on a struct
called a union that does exactly this. You can simulate this in C# using LayoutKind.Explicit
and the FieldOffset attribute.
It might be hard to think of a case in which this would be useful. However, suppose you want to
play a note on an external synthesizer. The Windows Multimedia API provides a function for
doing just this via the MIDI protocol:

[DllImport ("winmm.dll")]
public static extern uint midiOutShortMsg (IntPtr handle, uint message);

The second argument, message, describes what note to play. The problem is in constructing
this 32-bit unsigned integer: it’s divided internally into bytes, representing a MIDI channel,
note, and velocity at which to strike. One solution is to shift and mask via the bitwise <<, >>, &,
and | operators to convert these bytes to and from the 32-bit “packed” message. Far simpler,
though, is to define a struct with explicit layout:

[StructLayout (LayoutKind.Explicit)]
public struct NoteMessage
{
  [FieldOffset(0)] public uint PackedMsg;    // 4 bytes long

  [FieldOffset(0)] public byte Channel;      // FieldOffset also at 0
  [FieldOffset(1)] public byte Note;
  [FieldOffset(2)] public byte Velocity;
}

The Channel, Note, and Velocity fields deliberately overlap with the 32-bit packed message.
This allows you to read and write using either. No calculations are required to keep other
fields in sync:



NoteMessage n = new NoteMessage();
Console.WriteLine (n.PackedMsg);    // 0

n.Channel = 10;
n.Note = 100;
n.Velocity = 50;
Console.WriteLine (n.PackedMsg);    // 3302410

n.PackedMsg = 3328010;
Console.WriteLine (n.Note);         // 200

Shared Memory
Memory-mapped files, or shared memory, is a feature in Windows that allows multiple
processes on the same computer to share data, without the overhead of Remoting or WCF.
Shared memory is extremely fast and, unlike pipes, offers random access to the shared data.
We saw in Chapter 15 how you can use the MemoryMappedFile class to access memory-
mapped files; bypassing this and calling the Win32 methods directly is a good way to
demonstrate P/Invoke.
The Win32 CreateFileMapping function allocates shared memory. You tell it how many bytes
you need and the name with which to identify the share. Another application can then subscribe
to this memory by calling OpenFileMapping with the same name. Both methods return a
handle, which you can convert to a pointer by calling MapViewOfFile.
Here’s a class that encapsulates access to shared memory:

using System;
using System.Runtime.InteropServices;
using System.ComponentModel;

public sealed class SharedMem : IDisposable
{
  // Here we're using enums because they're safer than constants

  enum FileProtection : uint      // constants from winnt.h
  {
    ReadOnly = 2,
    ReadWrite = 4
  }

  enum FileRights : uint          // constants from WinBASE.h
  {
    Read = 4,
    Write = 2,
    ReadWrite = Read + Write
  }

  static readonly IntPtr NoFileHandle = new IntPtr (-1);

  [DllImport ("kernel32.dll", SetLastError = true)]
  static extern IntPtr CreateFileMapping (IntPtr hFile,
                                          int lpAttributes,
                                          FileProtection flProtect,
                                          uint dwMaximumSizeHigh,
                                          uint dwMaximumSizeLow,
                                          string lpName);

  [DllImport ("kernel32.dll", SetLastError=true)]
  static extern IntPtr OpenFileMapping (FileRights dwDesiredAccess,
                                        bool bInheritHandle,
                                        string lpName);

  [DllImport ("kernel32.dll", SetLastError = true)]
  static extern IntPtr MapViewOfFile (IntPtr hFileMappingObject,



                                      FileRights dwDesiredAccess,
                                      uint dwFileOffsetHigh,
                                      uint dwFileOffsetLow,
                                      uint dwNumberOfBytesToMap);

  [DllImport ("Kernel32.dll", SetLastError = true)]
  static extern bool UnmapViewOfFile (IntPtr map);

  [DllImport ("kernel32.dll", SetLastError = true)]
  static extern int CloseHandle (IntPtr hObject);

  IntPtr fileHandle, fileMap;

  public IntPtr Root { get { return fileMap; } }

  public SharedMem (string name, bool existing, uint sizeInBytes)
  {
    if (existing)
      fileHandle = OpenFileMapping (FileRights.ReadWrite, false, name);
    else
      fileHandle = CreateFileMapping (NoFileHandle, 0,
                                      FileProtection.ReadWrite,
                                      0, sizeInBytes, name);
    if (fileHandle == IntPtr.Zero)
      throw new Win32Exception();

    // Obtain a read/write map for the entire file
    fileMap = MapViewOfFile (fileHandle, FileRights.ReadWrite, 0, 0, 0);

    if (fileMap == IntPtr.Zero)
      throw new Win32Exception();
  }

  public void Dispose()
  {
    if (fileMap != IntPtr.Zero) UnmapViewOfFile (fileMap);
    if (fileHandle != IntPtr.Zero) CloseHandle (fileHandle);
    fileMap = fileHandle = IntPtr.Zero;
  }
}

In this example, we set SetLastError=true on the DllImport methods that use the
SetLastError protocol for emitting error codes. This ensures that the Win32Exception is
populated with details of the error when that exception is thrown. (It also allows you to query
the error explicitly by calling Marshal.GetLastWin32Error.)
In order to demonstrate this class, we need to run two applications. The first one creates the
shared memory, as follows:

using (SharedMem sm = new SharedMem ("MyShare", false, 1000))
{
  IntPtr root = sm.Root;
  // I have shared memory!

  Console.ReadLine();         // Here's where we start a second app...
}

The second application subscribes to the shared memory by constructing a Shared Mem object
of the same name, with the existing argument true:

using (SharedMem sm = new SharedMem ("MyShare", true, 1000))
{
  IntPtr root = sm.Root;
  // I have the same shared memory!
  // ...
}



The net result is that each program has an IntPtr — a pointer to the same unmanaged memory.
The two applications now need somehow to read and write to memory via this common
pointer. One approach is to write a serializable class that encapsulates all the shared data, then
serialize (and deserialize) the data to the unmanaged memory using an
UnmanagedMemoryStream. This is inefficient, however, if there’s a lot of data. Imagine if the
shared memory class had a megabyte worth of data, and just one integer needed to be updated.
A better approach is to define the shared data construct as a struct, and then map it directly into
shared memory. We discuss this in the following section.

Mapping a Struct to Unmanaged Memory
A struct with a StructLayout of Sequential or Explicit can be mapped directly into
unmanaged memory. Consider the following struct:

[StructLayout (LayoutKind.Sequential)]
unsafe struct MySharedData
{
  public int Value;
  public char Letter;
  public fixed float Numbers [50];
}

The fixed directive allows us to define fixed-length value-type arrays inline, and it is what
takes us into the unsafe realm. Space in this struct is allocated inline for 50 floating-point
numbers. Unlike with standard C# arrays, Numbers is not a reference to an array — it is the
array. If we run the following:

static unsafe void Main() => Console.WriteLine (sizeof (MySharedData));

the result is 208: 50 4-byte floats, plus the 4 bytes for the Value integer, plus 2 bytes for the
Letter character. The total, 206, is rounded to 208 due to the floats being aligned on 4-byte
boundaries (4 bytes being the size of a float).
We can demonstrate MySharedData in an unsafe context, most simply, with stack-allocated
memory:

MySharedData d;
MySharedData* data = &d;       // Get the address of d

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

or:

// Allocate the array on the stack:
MySharedData* data = stackalloc MySharedData[1];

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

Of course, we’re not demonstrating anything that couldn’t otherwise be achieved in a managed
context. Suppose, however, that we want to store an instance of MyShared Data on the
unmanaged heap, outside the realm of the CLR’s garbage collector. This is where pointers
become really useful:



MySharedData* data = (MySharedData*)
  Marshal.AllocHGlobal (sizeof (MySharedData)).ToPointer();

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

Marshal.AllocHGlobal allocates memory on the unmanaged heap. Here’s how to later free
the same memory:

Marshal.FreeHGlobal (new IntPtr (data));

(The result of forgetting to free the memory is a good old-fashioned memory leak.)
In keeping with its name, we’ll now use MySharedData in conjunction with the SharedMem
class we wrote in the preceding section. The following program allocates a block of shared
memory, and then maps the MySharedData struct into that memory:

static unsafe void Main()
{
  using (SharedMem sm = new SharedMem ("MyShare", false, 1000))
  {
    void* root = sm.Root.ToPointer();
    MySharedData* data = (MySharedData*) root;

    data->Value = 123;
    data->Letter = 'X';
    data->Numbers[10] = 1.45f;
    Console.WriteLine ("Written to shared memory");

    Console.ReadLine();

    Console.WriteLine ("Value is " + data->Value);
    Console.WriteLine ("Letter is " + data->Letter);
    Console.WriteLine ("11th Number is " + data->Numbers[10]);
    Console.ReadLine();
  }
}

NOTE
You can use the built-in MemoryMappedFile class instead of SharedMem as follows:

using (MemoryMappedFile mmFile =
       MemoryMappedFile.CreateNew ("MyShare", 1000))
using (MemoryMappedViewAccessor accessor =
       mmFile.CreateViewAccessor())
{
  byte* pointer = null;
  accessor.SafeMemoryMappedViewHandle.AcquirePointer
   (ref pointer);
  void* root = pointer;
  ...
}

Here’s a second program that attaches to the same shared memory, reading the values written
by the first program. (It must be run while the first program is waiting on the ReadLine
statement, since the shared memory object is disposed upon leaving its using statement.)

static unsafe void Main()



{
  using (SharedMem sm = new SharedMem ("MyShare", true, 1000))
  {
    void* root = sm.Root.ToPointer();
    MySharedData* data = (MySharedData*) root;

    Console.WriteLine ("Value is " + data->Value);
    Console.WriteLine ("Letter is " + data->Letter);
    Console.WriteLine ("11th Number is " + data->Numbers[10]);

    // Our turn to update values in shared memory!
    data->Value++;
    data->Letter = '!';
    data->Numbers[10] = 987.5f;
    Console.WriteLine ("Updated shared memory");
    Console.ReadLine();
  }
}

The output from each of these programs is as follows:

// First program:

Written to shared memory
Value is 124
Letter is !
11th Number is 987.5

// Second program:

Value is 123
Letter is X
11th Number is 1.45
Updated shared memory

Don’t be put off by the pointers: C++ programmers use them throughout whole applications and
are able to get everything working. At least most of the time! This sort of usage is fairly simple
by comparison.
As it happens, our example is unsafe — quite literally — for another reason. We’ve not
considered the thread-safety (or more precisely, process-safety) issues that arise with two
programs accessing the same memory at once. To use this in a production application, we’d
need to add the volatile keyword to the Value and Letter fields in the MySharedData struct
to prevent fields from being cached in CPU registers. Furthermore, as our interaction with the
fields grew beyond the trivial, we would most likely need to protect their access via a cross-
process Mutex, just as we would use lock statements to protect access to fields in a
multithreaded program. We discussed thread safety in detail in Chapter 22.

fixed and fixed {...}
One limitation of mapping structs directly into memory is that the struct can contain only
unmanaged types. If you need to share string data, for instance, you must use a fixed character
array instead. This means manual conversion to and from the string type. Here’s how to do it:

[StructLayout (LayoutKind.Sequential)]
unsafe struct MySharedData
{
  ...
  // Allocate space for 200 chars (i.e., 400 bytes).
  const int MessageSize = 200;
  fixed char message [MessageSize];



  // One would most likely put this code into a helper class:
  public string Message
  {
    get { fixed (char* cp = message) return new string (cp); }
    set
    {
      fixed (char* cp = message)
      {
        int i = 0;
        for (; i < value.Length && i < MessageSize - 1; i++)
          cp [i] = value [i];

        // Add the null terminator
        cp [i] = '\0';
      }
    }
  }
}

NOTE
There’s no such thing as a reference to a fixed array; instead, you get a pointer. When you
index into a fixed array, you’re actually performing pointer arithmetic!

With the first use of the fixed keyword, we allocate space, inline, for 200 characters in the
struct. The same keyword (somewhat confusingly) has a different meaning when used later in
the property definition. It tells the CLR to pin an object, so that should it decide to perform a
garbage collection inside the fixed block, not to move the underlying struct about on the
memory heap (since its contents are being iterated via direct memory pointers). Looking at our
program, you might wonder how MySharedData could ever shift in memory, given that it lives
not on the heap, but in the unmanaged world, where the garbage collector has no jurisdiction.
The compiler doesn’t know this, however, and is concerned that we might use MySharedData
in a managed context, so it insists that we add the fixed keyword, to make our unsafe code
safe in managed contexts. And the compiler does have a point — here’s all it would take to put
MySharedData on the heap:

object obj = new MySharedData();

This results in a boxed MySharedData — on the heap and eligible for transit during garbage
collection.
This example illustrates how a string can be represented in a struct mapped to unmanaged
memory. For more complex types, you also have the option of using existing serialization code.
The one proviso is that the serialized data must never exceed, in length, its allocation of space
in the struct; otherwise, the result is an unintended union with subsequent fields.

COM Interoperability
The .NET runtime has had special support for COM since its first version, enabling COM
objects to be used from .NET and vice versa. This support was enhanced significantly in C#
4.0, with improvements to both usability and deployment.

The Purpose of COM



COM is an acronym for Component Object Model, a binary standard for APIs released by
Microsoft in 1993. The motivation for inventing COM was to enable components to
communicate with each other in a language-independent and version-tolerant manner. Before
COM, the approach in Windows was to publish Dynamic Link Libraries (DLLs) that declared
structures and functions using the C programming language. Not only is this approach language-
specific, but it’s also brittle. The specification of a type in such a library is inseparable from
its implementation: even updating a structure with a new field means breaking its specification.
The beauty of COM was to separate the specification of a type from its underlying
implementation through a construct known as a COM interface. COM also allowed for the
calling of methods on stateful objects — rather than being limited to simple procedure calls.

NOTE
In a way, the .NET programming model is an evolution of the principles of COM
programming: the .NET platform also facilitates cross-language development and allows
binary components to evolve without breaking applications that depend on them.

The Basics of the COM Type System
The COM type system revolves around interfaces. A COM interface is rather like a .NET
interface, but it’s more prevalent because a COM type exposes its functionality only through an
interface. In the .NET world, for instance, we could declare a type simply as follows:

public class Foo
{
  public string Test() => "Hello, world";
}

Consumers of that type can use Foo directly. And if we later changed the implementation of
Test(), calling assemblies would not require recompilation. In this respect, .NET separates
interface from implementation — without requiring interfaces. We could even add an overload
without breaking callers:

  public string Test (string s) => "Hello, world " + s;

In the COM world, Foo exposes its functionality through an interface to achieve this same
decoupling. So, in Foo’s type library, an interface such as this would exist:

public interface IFoo { string Test(); }

(We’ve illustrated this by showing a C# interface — not a COM interface. The principle,
however, is the same — although the plumbing is different.)
Callers would then interact with IFoo rather than Foo.
When it comes to adding the overloaded version of Test, life is more complicated with COM
than with .NET. First, we would avoid modifying the IFoo interface — because this would
break binary compatibility with the previous version (one of the principles of COM is that
interfaces, once published, are immutable). Second, COM doesn’t allow method overloading.
The solution is to instead have Foo implement a second interface:



public interface IFoo2 { string Test (string s); }

(Again, we’ve transliterated this into a .NET interface for familiarity.)
Supporting multiple interfaces is of key importance in making COM libraries versionable.

IUnknown and IDispatch
All COM interfaces are identified with a GUID.
The root interface in COM is IUnknown — all COM objects must implement it. This interface
has three methods:

AddRef

Release

QueryInterface

AddRef and Release are for lifetime management, since COM uses reference counting rather
than automatic garbage collection (COM was designed to work with unmanaged code, where
automatic garbage collection isn’t feasible). The QueryInterface method returns an object
reference that supports that interface, if it can do so.
To enable dynamic programming (e.g., scripting and automation), a COM object may also
implement IDispatch. This enables dynamic languages such as VBScript to call COM objects
in a late-bound manner — rather like dynamic in C# (although only for simple invocations).

Calling a COM Component from C#
The CLR’s built-in support for COM means that you don’t work directly with IUnknown and
IDispatch. Instead, you work with CLR objects and the runtime marshals your calls to the
COM world via Runtime-Callable Wrappers (RCWs). The runtime also handles lifetime
management by calling AddRef and Release (when the .NET object is finalized) and takes
care of the primitive type conversions between the two worlds. Type conversion ensures that
each side sees, for example, the integer and string types in their familiar forms.
Additionally, there needs to be some way to access RCWs in a statically typed fashion. This is
the job of COM interop types. COM interop types are automatically generated proxy types that
expose a .NET member for each COM member. The type library importer tool (tlbimp.exe)
generates COM interop types from the command line, based on a COM library that you choose,
and compiles them into a COM interop assembly.

NOTE
If a COM component implements multiple interfaces, the tlbimp.exe tool generates a single
type that contains a union of members from all interfaces.

You can create a COM interop assembly in Visual Studio by going to the Add Reference dialog
box and choosing a library from the COM tab. For example, if you have Microsoft Excel
installed, adding a reference to the Microsoft Excel Interop Library allows you to interoperate
with Excel’s COM classes. Here’s the C# code to create and show a workbook, and then



populate a cell in that workbook:

using System;
using Excel = Microsoft.Office.Interop.Excel;

class Program
{
  static void Main()
  {
    var excel = new Excel.Application();
    excel.Visible = true;
    Excel.Workbook workBook = excel.Workbooks.Add();
    excel.Cells [1, 1].Font.FontStyle = "Bold";
    excel.Cells [1, 1].Value2 = "Hello World";
    workBook.SaveAs (@"d:\temp.xlsx");
  }
}

The Excel.Application class is a COM interop type whose runtime type is an RCW. When
we access the Workbooks and Cells properties, we get back more interop types.
This code is fairly simple, thanks to a number of COM-specific enhancements that were
introduced in C# 4.0. Without these enhancements, our Main method looks like this instead:

var missing = System.Reflection.Missing.Value;

var excel = new Excel.Application();
excel.Visible = true;
Excel.Workbook workBook = excel.Workbooks.Add (missing);
var range = (Excel.Range) excel.Cells [1, 1];
range.Font.FontStyle = "Bold";
range.Value2 = "Hello world";

workBook.SaveAs (@"d:\temp.xlsx", missing, missing, missing, missing,
  missing, Excel.XlSaveAsAccessMode.xlNoChange, missing, missing,
  missing, missing, missing);

We’ll look now at what those language enhancements are, and how they help with COM
programming.

Optional Parameters and Named Arguments
Because COM APIs don’t support function overloading, it’s very common to have functions
with numerous parameters, many of which are optional. For instance, here’s how you might call
an Excel workbook’s Save method:

var missing = System.Reflection.Missing.Value;

workBook.SaveAs (@"d:\temp.xlsx", missing, missing, missing, missing,
  missing, Excel.XlSaveAsAccessMode.xlNoChange, missing, missing,
  missing, missing, missing);

The good news is that the C#’s support for optional parameters is COM-aware, so we can just
do this:

workBook.SaveAs (@"d:\temp.xlsx");

(As we stated in Chapter 3, optional parameters are “expanded” by the compiler into the full
verbose form.)



Named arguments allow you to specify additional arguments, regardless of their position:

workBook.SaveAs (@"c:\test.xlsx", Password:"foo");

Implicit ref Parameters
Some COM APIs (Microsoft Word, in particular) expose functions that declare every
parameter as pass-by-reference — whether or not the function modifies the parameter value.
This is because of the perceived performance gain from not copying argument values (the real
performance gain is negligible).
Historically, calling such methods from C# has been clumsy because you must specify the ref
keyword with every argument, and this prevents the use of optional parameters. For instance, to
open a Word document, we used to have to do this:

object filename = "foo.doc";
object notUsed1 = Missing.Value;
object notUsed2 = Missing.Value;
object notUsed3 = Missing.Value;
...
Open (ref filename, ref notUsed1, ref notUsed2, ref notUsed3, ...);

Since C# 4.0, however, you can omit the ref modifier on COM function calls, allowing the use
of optional parameters:

word.Open ("foo.doc");

The caveat is that you will get neither a compile-time nor a runtime error if the COM method
you’re calling actually does mutate an argument value.

Indexers
The ability to omit the ref modifier has another benefit: it makes COM indexers with ref
parameters accessible via ordinary C# indexer syntax. This would otherwise be forbidden
because ref/out parameters are not supported with C# indexers (the somewhat clumsy
workaround in older versions of C# was to call the backing methods such as get_XXX and
set_XXX; this workaround is still legal for backward compatibility).
Interop with indexers was further enhanced in C# 4.0 such that you can call COM properties
that accept arguments. In the following example, Foo is a property that accepts an integer
argument:

myComObject.Foo [123] = "Hello";

Writing such properties yourself in C# is still prohibited: a type can expose an indexer only on
itself (the “default” indexer). Therefore, if you wanted to write code in C# that would make the
preceding statement legal, Foo would need to return another type that exposed a (default)
indexer.

Dynamic Binding
There are two ways that dynamic binding can help when calling COM components. The first is
if you want to access a COM component without a COM interop type. To do this, call



Type.GetTypeFromProgID with the COM component name to obtain a COM instance, and
then use dynamic binding to call members from then on. Of course, there’s no IntelliSense, and
compile-time checks are impossible:

Type excelAppType = Type.GetTypeFromProgID ("Excel.Application", true);
dynamic excel = Activator.CreateInstance (excelAppType);
excel.Visible = true;
dynamic wb = excel.Workbooks.Add();
excel.Cells [1, 1].Value2 = "foo";

(The same thing can be achieved, much more clumsily, with reflection instead of dynamic
binding.)

NOTE
A variation of this theme is calling a COM component that supports only IDispatch. Such
components are quite rare, however.

Dynamic binding can also be useful (to a lesser extent) in dealing with the COM variant type.
For reasons due more to poor design that necessity, COM API functions are often peppered
with this type, which is roughly equivalent to object in .NET. If you enable “Embed Interop
Types” in your project (more on this soon), the runtime will map variant to dynamic, instead
of mapping variant to object, avoiding the need for casts. For instance, you could legally do
this:

excel.Cells [1, 1].Font.FontStyle = "Bold";

instead of:

var range = (Excel.Range) excel.Cells [1, 1];
range.Font.FontStyle = "Bold";

The disadvantage of working in this way is that you lose auto-completion, so you must know
that a property called Font happens to exist. For this reason, it’s usually easier to dynamically
assign the result to its known interop type:

Excel.Range range = excel.Cells [1, 1];
range.Font.FontStyle = "Bold";

As you can see, this saves only five characters over the old-fashioned approach!
The mapping of variant to dynamic is the default from Visual Studio 2010 onwards, and is a
function of enabling Embed Interop Types on a reference.

Embedding Interop Types
We said previously that C# ordinarily calls COM components via interop types that are
generated by calling the tlbimp.exe tool (directly, or via Visual Studio).
Historically, your only option was to reference interop assemblies just as you would with any
other assembly. This could be troublesome because interop assemblies can get quite large with



complex COM components. A tiny add-in for Microsoft Word, for instance, requires an interop
assembly that is orders of magnitude larger than itself.
From C# 4.0, rather than referencing an interop assembly, you have the option of linking to it.
When you do this, the compiler analyzes the assembly to work out precisely the types and
members that your application actually uses. It then embeds definitions for those types and
members directly in your application. This means that you don’t have to worry about bloat,
because only the COM interfaces that you actually use are included in your application.
Interop linking is the default in Visual Studio 2010 and later for COM references. If you want
to disable it, select the reference in the Solution Explorer, and then go to its properties and set
Embed Interop Types to False.
To enable interop linking from the command-line compiler, call csc with /link instead of
/reference (or /L instead of /R).

Type Equivalence
CLR 4.0 and later support type equivalence for linked interop types. That means that if two
assemblies each link to an interop type, those types will be considered equivalent if they wrap
the same COM type. This holds true even if the interop assemblies to which they linked were
generated independently.

NOTE
Type equivalence relies on the TypeIdentifierAttribute attribute in the
System.Runtime.InteropServices namespace. The compiler automatically applies this
attribute when you link to interop assemblies. COM types are then considered equivalent if
they have the same GUID.

Type equivalence does away with the need for Primary Interop Assemblies.

Primary Interop Assemblies
Until C# 4.0, there was no interop linking and no option of type equivalence. This created a
problem in that if two developers each ran the tlbimp.exe tool on the same COM component,
they’d end up with incompatible interop assemblies, hindering interoperability. The
workaround was for the author of each COM library to release an official version of the
interop assembly, called the Primary Interop Assembly (PIA). PIAs are still prevalent, mainly
because of the wealth of legacy code.
PIAs are a poor solution for the following reasons:

PIAs were not always used
Since everyone could run the type library importer tool, they often did so, rather than
using the official version. In some cases, there was no choice as the authors of the COM
library didn’t actually publish a PIA.

PIAs require registration
PIAs require registration in the GAC. This burden falls on developers writing simple add-



ins for a COM component.

PIAs bloat deployment
PIAs exemplify the problem of interop assembly bloat that we described earlier. In
particular, the Microsoft Office team chose not to deploy their PIAs with their product.

Exposing C# Objects to COM
It’s also possible to write classes in C# that can be consumed in the COM world. The CLR
makes this possible through a proxy called a COM-Callable Wrapper (CCW). A CCW
marshals types between the two worlds (as with an RCW) and implements IUnknown (and
optionally IDispatch) as required by the COM protocol. A CCW is lifetime-controlled from
the COM side via reference counting (rather than through the CLR’s garbage collector).
You can expose any public class to COM. The one requirement is to define an assembly
attribute that assigns a GUID to identify the COM type library:

 [assembly: Guid ("...")]     // A unique GUID for the COM type library

By default, all public types will be visible to COM consumers. You can make specific types
invisible, however, by applying the [ComVisible(false)] attribute. If you want all types
invisible by default, apply [ComVisible(false)] to the assembly, and then
[ComVisible(true)] to the types you wish to expose.
The final step is to call the tlbexp.exe tool:

tlbexp.exe myLibrary.dll

This generates a COM type library (.tlb) file, which you can then register and consume in COM
applications. COM interfaces to match the COM-visible classes are generated automatically.



Chapter 26. Regular Expressions

The regular expressions language identifies character patterns. The .NET types supporting
regular expressions are based on Perl 5 regular expressions and support both search and
search/replace functionality.
Regular expressions are used for tasks such as:

Validating text input such as passwords and phone numbers (ASP.NET provides the
RegularExpressionValidator control just for this purpose)

Parsing textual data into more structured forms (e.g., extracting data from an HTML page for
storage in a database)

Replacing patterns of text in a document (e.g., whole words only)

This chapter is split into both conceptual sections teaching the basics of regular expressions in
.NET and reference sections describing the regular expressions language.
All regular expression types are defined in System.Text.RegularExpressions.

NOTE
For more on regular expressions, http://regular-expressions.info is a good online reference
with lots of examples, and Mastering Regular Expressions by Jeffrey E. F. Friedl
(http://oreilly.com/catalog/9781565922570), is invaluable for the serious.
The samples in this chapter are all preloaded into LINQPad. There is also an interactive
utility available called Expresso (http://www.ultrapico.com) that assists in building and
visualizing regular expressions, and comes with its own expression library.

Regular Expression Basics
One of the most common regular expression operators is a quantifier. ? is a quantifier that
matches the preceding item 0 or 1 time. In other words, ? means optional. An item is either a
single character or a complex structure of characters in square brackets. For example, the
regular expression "colou?r" matches color and colour, but not colouur:

Console.WriteLine (Regex.Match ("color",   @"colou?r").Success);  // True
Console.WriteLine (Regex.Match ("colour",  @"colou?r").Success);  // True
Console.WriteLine (Regex.Match ("colouur", @"colou?r").Success);  // False

Regex.Match searches within a larger string. The object that it returns has properties for the
Index and Length of the match, as well as the actual Value matched:

Match m = Regex.Match ("any colour you like", @"colou?r");

Console.WriteLine (m.Success);     // True
Console.WriteLine (m.Index);       // 4
Console.WriteLine (m.Length);      // 6
Console.WriteLine (m.Value);       // colour
Console.WriteLine (m.ToString());  // colour

http://regular-expressions.info
http://oreilly.com/catalog/9781565922570
http://www.ultrapico.com


You can think of Regex.Match as a more powerful version of the string’s IndexOf method.
The difference is that it searches for a pattern rather than a literal string.
The IsMatch method is a shortcut for calling Match and then testing the Success property.
The regular expressions engine works from left to right by default, so only the leftmost match is
returned. You can use the NextMatch method to return more matches:

Match m1 = Regex.Match ("One color? There are two colours in my head!",
                        @"colou?rs?");
Match m2 = m1.NextMatch();
Console.WriteLine (m1);         // color
Console.WriteLine (m2);         // colours

The Matches method returns all matches in an array. We can rewrite the preceding example as
follows:

foreach (Match m in Regex.Matches
          ("One color? There are two colours in my head!", @"colou?rs?"))
  Console.WriteLine (m);

Another common regular expressions operator is the alternator, expressed with a vertical bar,
|. An alternator expresses alternatives. The following matches “Jen”, “Jenny”, and “Jennifer”:

Console.WriteLine (Regex.IsMatch ("Jenny", "Jen(ny|nifer)?"));  // True

The brackets around an alternator separate the alternatives from the rest of the expression.

NOTE
From Framework 4.5, you can specify a timeout when matching regular expressions. If a
match operation takes longer than the specified TimeSpan, a RegexMatchTimeoutException is
thrown. This can be useful if your program processes arbitrary regular expressions (for
instance, in an advanced search dialog box) because it prevents malformed regular
expressions from infinitely spinning.

Compiled Regular Expressions
In some of the preceding examples, we called a static RegEx method repeatedly with the same
pattern. An alternative approach in these cases is to instantiate a Regex object with the pattern
and RegexOptions.Compiled, and then call instance methods:

Regex r = new Regex (@"sausages?" , RegexOptions.Compiled);
Console.WriteLine (r.Match ("sausage"));   // sausage
Console.WriteLine (r.Match ("sausages"));  // sausages

RegexOptions.Compiled instructs the RegEx instance to use lightweight code generation
(DynamicMethod in Reflection.Emit) to dynamically build and compile code tailored to that
particular regular expression. This results in faster matching, at the expense of an initial
compilation cost.
A Regex instance is immutable.



NOTE
The regular expressions engine is fast. Even without compilation, a simple match typically
takes less than a microsecond.

RegexOptions
The RegexOptions flags enum lets you tweak matching behavior. A common use for
RegexOptions is to perform a case-insensitive search:

Console.WriteLine (Regex.Match ("a", "A", RegexOptions.IgnoreCase)); // a

This applies the current culture’s rules for case equivalence. The CultureInvariant flag lets
you request the invariant culture instead:

Console.WriteLine (Regex.Match ("a", "A", RegexOptions.IgnoreCase
                                        | RegexOptions.CultureInvariant));

Most of the RegexOptions flags can also be activated within a regular expression itself, using
a single-letter code as follows:

Console.WriteLine (Regex.Match ("a", @"(?i)A"));                     // a

You can turn options on and off throughout an expression as follows:

Console.WriteLine (Regex.Match ("AAAa", @"(?i)a(?-i)a"));            // Aa

Another useful option is IgnorePatternWhitespace or (?x). This allows you to insert
whitespace to make a regular expression more readable — without the whitespace being taken
literally.
Table 26-1 lists all RegExOptions values along with their single-letter codes.

Table 26-1. Regular expression options

Enum value Regular expressions
code

Description

None   

IgnoreCase i Ignores case (by default, regular expressions are case-sensitive)

Multiline m Changes ^ and $ so that they match the start/end of a line instead of
start/end of the string

ExplicitCapture n Captures only explicitly named or explicitly numbered groups (see
“Groups”)

Compiled  Forces compilation to IL (see “Compiled Regular Expressions”)

Singleline s Makes . match every character (instead of matching every character
except \n)

IgnorePatternWhitespace x Eliminates unescaped whitespace from the pattern

RightToLeft r Searches from right to left; can’t be specified midstream

ECMAScript  Forces ECMA compliance (by default, the implementation is not ECMA-
compliant)



CultureInvariant  Turns off culture-specific behavior for string comparisons

Character Escapes
Regular expressions have the following metacharacters, which have a special rather than literal
meaning:

\ * + ? | { [ ()  ̂$ . #

To use a metacharacter literally, you must prefix the character with a backslash. In the
following example, we escape the ? character to match the string "what?":

Console.WriteLine (Regex.Match ("what?", @"what\?")); // what? (correct)
Console.WriteLine (Regex.Match ("what?", @"what?"));  // what  (incorrect)

WARNING
If the character is inside a set (square brackets), this rule does not apply, and the
metacharacters are interpreted literally. We will discuss sets in the following section.

The Regex’s Escape and Unescape methods convert a string containing regular expression
metacharacters by replacing them with escaped equivalents, and vice versa. For example:

Console.WriteLine (Regex.Escape   (@"?"));     // \?
Console.WriteLine (Regex.Unescape (@"\?"));    // ?>

All the regular expression strings in this chapter we express with the C# @ literal. This is to
bypass C#’s escape mechanism, which also uses the backslash. Without the @, a literal
backslash would require four backslashes:

Console.WriteLine (Regex.Match ("\\", "\\\\"));    // \

Unless you include the (?x) option, spaces are treated literally in regular expressions:

Console.Write (Regex.IsMatch ("hello world", @"hello world"));  // True

Character Sets
Character sets act as wildcards for a particular set of characters.

Expression Meaning Inverse
(“not”)

[abcdef] Matches a single character in the list [^abcdef]

[a-f] Matches a single character in a range [^a-f]

\d Matches a decimal digit
Same as [0-9]

\D

\w Matches a word character (by default, varies according to CultureInfo.CurrentCulture; for
example, in English, same as [a-zA-Z_0-9])

\W

\s Matches a whitespace character
Same as [\n\r\t\f\v ]

\S

\p{category} Matches a character in a specified category \P



. (Default mode) Matches any character except \n \n

. (SingleLine mode) Matches any character \n

To match exactly one of a set of characters, put the character set in square brackets:

Console.Write (Regex.Matches ("That is that.", "[Tt]hat").Count);   // 2

To match any character except those in a set, put the set in square brackets with a ^ symbol
before the first character:

Console.Write (Regex.Match ("quiz qwerty", "q[^aeiou]").Index);    // 5

You can specify a range of characters with a hyphen. The following regular expression matches
a chess move:

Console.Write (Regex.Match ("b1-c4", @"[a-h]\d-[a-h]\d").Success);  // True

\d indicates a digit character, so \d will match any digit. \D matches any nondigit character.
\w indicates a word character, which includes letters, numbers, and the underscore. \W matches
any nonword character. These work as expected for non-English letters too, such as Cyrillic.
. matches any character except \n (but allows \r).
\p matches a character in a specified category, such as {Lu} for uppercase letter or {P} for
punctuation (we list the categories in the reference section later in the chapter):

Console.Write (Regex.IsMatch ("Yes, please", @"\p{P}"));   // True

We will find more uses for \d, \w, and . when we combine them with quantifiers.

Quantifiers
Quantifiers match an item a specified number of times.

Quantifier Meaning

* Zero or more matches

+ One or more matches

? Zero or one match

{n} Exactly n matches

{n,} At least n matches

{n,m} Between n and m matches

The * quantifier matches the preceding character or group zero or more times. The following
matches cv.doc, along with any numbered versions of the same file (e.g., cv2.doc, cv15.doc):

Console.Write (Regex.Match ("cv15.doc", @"cv\d*\.doc").Success);  // True

Notice that we have to escape out the period in the file extension with a backslash.
The following allows anything between cv and .doc and is equivalent to dir cv*.doc:



Console.Write (Regex.Match ("cvjoint.doc", @"cv.*\.doc").Success);  // True

The + quantifier matches the preceding character or group one or more times. For example:

Console.Write (Regex.Matches ("slow! yeah slooow!", "slo+w").Count);  // 2

The {} quantifier matches a specified number (or range) of repetitions. The following matches
a blood pressure reading:

Regex bp = new Regex (@"\d{2,3}/\d{2,3}");
Console.WriteLine (bp.Match ("It used to be 160/110"));  // 160/110
Console.WriteLine (bp.Match ("Now it's only 115/75"));   // 115/75

Greedy Versus Lazy Quantifiers
By default, quantifiers are greedy, as opposed to lazy. A greedy quantifier repeats as many
times as it can before advancing. A lazy quantifier repeats as few times as it can before
advancing. You can make any quantifier lazy by suffixing it with the ? symbol. To illustrate the
difference, consider the following HTML fragment:

string html = "<i>By default</i> quantifiers are <i>greedy</i> creatures";

Suppose we want to extract the two phrases in italics. If we execute the following:

foreach (Match m in Regex.Matches (html, @"<i>.*</i>"))
  Console.WriteLine (m);

the result is not two matches, but a single match, as follows:

<i>By default</i> quantifiers are <i>greedy</i>

The problem is that our * quantifier greedily repeats as many times as it can before matching
</i>. So, it passes right by the first </i>, stopping only at the final </i> (the last point at
which the rest of the expression can still match).
If we make the quantifier lazy:

foreach (Match m in Regex.Matches (html, @"<i>.*?</i>"))
  Console.WriteLine (m);

the * bails out at the first point at which the rest of the expression can match. Here’s the result:

<i>By default</i>
<i>greedy</i>

Zero-Width Assertions
The regular expressions language lets you place conditions on what should occur before or
after a match, through lookbehind, lookahead, anchors, and word boundaries. These are
called zero-width assertions, because they don’t increase the width (or length) of the match
itself.



Lookahead and Lookbehind
The (?=expr) construct checks whether the text that follows matches expr, without including
expr in the result. This is called positive lookahead. In the following example, we look for a
number followed by the word “miles”:

Console.WriteLine (Regex.Match ("say 25 miles more", @"\d+\s(?=miles)"));

OUTPUT: 25

Notice the word “miles” was not returned in the result, even though it was required to satisfy
the match.
After a successful lookahead, matching continues as though the sneak preview never took
place. So, if we append .* to our expression as follows:

Console.WriteLine (Regex.Match ("say 25 miles more", @"\d+\s(?=miles).*"));

the result is 25 miles more.
Lookahead can be useful in enforcing rules for a strong password. Suppose a password has to
be at least six characters and contain at least one digit. With a lookup, we could achieve this as
follows:

string password = "...";
bool ok = Regex.IsMatch (password, @"(?=.*\d).{6,}");

This first performs a lookahead to ensure that a digit occurs somewhere in the string. If
satisfied, it returns to its position before the sneak preview began and matches six or more
characters. (In the section “Cookbook Regular Expressions”, later in this chapter, we include a
more substantial password validation example.)
The opposite is the negative lookahead construct, (?!expr). This requires that the match not
be followed by expr. The following expression matches “good” — unless “however” or “but”
appears later in the string:

string regex = "(?i)good(?!.*(however|but))";
Console.WriteLine (Regex.IsMatch ("Good work! But...",  regex));  // False
Console.WriteLine (Regex.IsMatch ("Good work! Thanks!", regex));  // True

The (?<=expr) construct denotes positive lookbehind and requires that a match be preceded
by a specified expression. The opposite construct, (?<!expr), denotes negative lookbehind
and requires that a match not be preceded by a specified expression. For example, the
following matches “good” — unless “however” appears earlier in the string:

string regex = "(?i)(?<!however.*)good";
Console.WriteLine (Regex.IsMatch ("However good, we...", regex)); // False
Console.WriteLine (Regex.IsMatch ("Very good, thanks!", regex));  // True

We could improve these examples by adding word boundary assertions, which we will
introduce shortly.

Anchors



The anchors ^ and $ match a particular position. By default:

^

Matches the start of the string

$

Matches the end of the string

NOTE
^ has two context-dependent meanings: an anchor and a character class negator.
$ has two context-dependent meanings: an anchor and a replacement group denoter.

For example:

Console.WriteLine (Regex.Match ("Not now", "^[Nn]o"));   // No
Console.WriteLine (Regex.Match ("f = 0.2F", "[Ff]$"));   // F

If you specify RegexOptions.Multiline or include (?m) in the expression:
^ matches the start of the string or line (directly after a \n).

$ matches the end of the string or line (directly before a \n).

There’s a catch to using $ in multiline mode: a newline in Windows is nearly always denoted
with \r\n rather than just \n. This means that for $ to be useful, you must usually match the \r
as well, with a positive lookahead:

(?=\r?$)

The positive lookahead ensures that \r doesn’t become part of the result. The following
matches lines that end in ".txt":

string fileNames = "a.txt" + "\r\n" + "b.doc" + "\r\n" + "c.txt";
string r = @".+\.txt(?=\r?$)";
foreach (Match m in Regex.Matches (fileNames, r, RegexOptions.Multiline))
  Console.Write (m + " ");

OUTPUT: a.txt c.txt

The following matches all empty lines in string s:

MatchCollection emptyLines = Regex.Matches (s, "^(?=\r?$)",
                                            RegexOptions.Multiline);

The following matches all lines that are either empty or contain only whitespace:

MatchCollection blankLines = Regex.Matches (s, "^[ \t]*(?=\r?$)",
                                            RegexOptions.Multiline);

NOTE



Since an anchor matches a position rather than a character, specifying an anchor on its own
matches an empty string:

Console.WriteLine (Regex.Match ("x", "$").Length);   // 0

Word Boundaries
The word boundary assertion \b matches where word characters (\w) adjoin either:

Nonword characters (\W)

The beginning/end of the string (^ and $)

\b is often used to match whole words. For example:

foreach (Match m in Regex.Matches ("Wedding in Sarajevo", @"\b\w+\b"))
  Console.WriteLine (m);

Wedding
in
Sarajevo

The following statements highlight the effect of a word boundary:

int one = Regex.Matches ("Wedding in Sarajevo", @"\bin\b").Count; // 1
int two = Regex.Matches ("Wedding in Sarajevo", @"in").Count;     // 2

The next query uses positive lookahead to return words followed by “(sic)”:

string text = "Don't loose (sic) your cool";
Console.Write (Regex.Match (text, @"\b\w+\b\s(?=\(sic\))"));  // loose

Groups
Sometimes it’s useful to separate a regular expression into a series of subexpressions, or
groups. For instance, consider the following regular expression that represents a US phone
number such as 206-465-1918:

\d{3}-\d{3}-\d{4}

Suppose we wish to separate this into two groups: area code and local number. We can achieve
this by using parentheses to capture each group:

(\d{3})-(\d{3}-\d{4})

We then retrieve the groups programmatically as follows:

Match m = Regex.Match ("206-465-1918", @"(\d{3})-(\d{3}-\d{4})");

Console.WriteLine (m.Groups[1]);   // 206
Console.WriteLine (m.Groups[2]);   // 465-1918

The zeroth group represents the entire match. In other words, it has the same value as the



match’s Value:

Console.WriteLine (m.Groups[0]);   // 206-465-1918
Console.WriteLine (m);             // 206-465-1918

Groups are part of the regular expressions language itself. This means you can refer to a group
within a regular expression. The \n syntax lets you index the group by group number n within
the expression. For example, the expression (\w)ee\1 matches deed and peep. In the
following example, we find all words in a string starting and ending in the same letter:

foreach (Match m in Regex.Matches ("pop pope peep", @"\b(\w)\w+\1\b"))
  Console.Write (m + " ");  // pop peep

The brackets around the \w instruct the regular expressions engine to store the submatch in a
group (in this case, a single letter), so it can be used later. We refer to that group later using \1,
meaning the first group in the expression.

Named Groups
In a long or complex expression, it can be easier to work with groups by name rather than
index. Here’s a rewrite of the previous example, using a group that we name 'letter':

string regEx =
  @"\b"             +  // word boundary
  @"(?'letter'\w)"  +  // match first letter, and name it 'letter'
  @"\w+"            +  // match middle letters
  @"\k'letter'"     +  // match last letter, denoted by 'letter'
  @"\b";               // word boundary

foreach (Match m in Regex.Matches ("bob pope peep", regEx))
  Console.Write (m + " ");  // bob peep

To name a captured group:

(?'group-name'group-expr)  or  (?<group-name>group-expr)

To refer to a group:

\k'group-name'  or  \k<group-name>

The following example matches a simple (nonnested) XML/HTML element, by looking for start
and end nodes with a matching name:

string regFind =
  @"<(?'tag'\w+?).*>" +  // lazy-match first tag, and name it 'tag'
  @"(?'text'.*?)"     +  // lazy-match text content, name it 'text'
  @"</\k'tag'>";         // match last tag, denoted by 'tag'

Match m = Regex.Match ("<h1>hello</h1>", regFind);
Console.WriteLine (m.Groups ["tag"]);          // h1
Console.WriteLine (m.Groups ["text"]);         // hello

Allowing for all possible variations in XML structure, such as nested elements, is more
complex. The .NET regular expressions engine has a sophisticated extension called “matched
balanced constructs” that can assist with nested tags — information on this is available on the
Internet and in Mastering Regular Expressions by Jeffrey E. F. Friedl.



Replacing and Splitting Text
The RegEx.Replace method works like string.Replace, except that it uses a regular
expression.
The following replaces “cat” with “dog”. Unlike with string.Replace, “catapult” won’t
change into “dogapult”, because we match on word boundaries:

string find = @"\bcat\b";
string replace = "dog";
Console.WriteLine (Regex.Replace ("catapult the cat", find, replace));

OUTPUT: catapult the dog

The replacement string can reference the original match with the $0 substitution construct. The
following example wraps numbers within a string in angle brackets:

string text = "10 plus 20 makes 30";
Console.WriteLine (Regex.Replace (text, @"\d+", @"<$0>"));

OUTPUT: <10> plus <20> makes <30>

You can access any captured groups with $1, $2, $3, and so on, or ${name} for a named group.
To illustrate how this can be useful, consider the regular expression in the previous section that
matched a simple XML element. By rearranging the groups, we can form a replacement
expression that moves the element’s content into an XML attribute:

string regFind =
  @"<(?'tag'\w+?).*>" +  // lazy-match first tag, and name it 'tag'
  @"(?'text'.*?)"     +  // lazy-match text content, name it 'text'
  @"</\k'tag'>";         // match last tag, denoted by 'tag'

string regReplace =
  @"<${tag}"         +  // <tag
  @"value="""        +  // value="
  @"${text}"         +  // text
  @"""/>";              // "/>

Console.Write (Regex.Replace ("<msg>hello</msg>", regFind, regReplace));

Here’s the result:

<msg value="hello"/>

MatchEvaluator Delegate
Replace has an overload that takes a MatchEvaluator delegate, which is invoked per match.
This allows you to delegate the content of the replacement string to C# code when the regular
expressions language isn’t expressive enough. For example:

Console.WriteLine (Regex.Replace ("5 is less than 10", @"\d+",
                   m => (int.Parse (m.Value) * 10).ToString()) );

OUTPUT: 50 is less than 100

In the cookbook, we show how to use a MatchEvaluator to escape Unicode characters



appropriately for HTML.

Splitting Text
The static Regex.Split method is a more powerful version of the string.Split method,
with a regular expression denoting the separator pattern. In this example, we split a string,
where any digit counts as a separator:

foreach (string s in Regex.Split ("a5b7c", @"\d"))
  Console.Write (s + " ");     // a b c

The result, here, doesn’t include the separators themselves. You can include the separators,
however, by wrapping the expression in a positive lookahead. The following splits a camel-
case string into separate words:

foreach (string s in Regex.Split ("oneTwoThree", @"(?=[A-Z])"))
  Console.Write (s + " ");    // one Two Three



Cookbook Regular Expressions

Recipes

Matching U.S. Social Security number/phone number

string ssNum = @"\d{3}-\d{2}-\d{4}";

Console.WriteLine (Regex.IsMatch ("123-45-6789", ssNum));      // True

string phone = @"(?x)
  ( \d{3}[-\s] | \(\d{3}\)\s? )
    \d{3}[-\s]?
    \d{4}";

Console.WriteLine (Regex.IsMatch ("123-456-7890",   phone));   // True
Console.WriteLine (Regex.IsMatch ("(123) 456-7890", phone));   // True

Extracting “name = value” pairs (one per line)
Note that this starts with the multiline directive (?m):

string r = @"(?m)^\s*(?'name'\w+)\s*=\s*(?'value'.*)\s*(?=\r?$)";

string text =
  @"id = 3
    secure = true
    timeout = 30";

foreach (Match m in Regex.Matches (text, r))
  Console.WriteLine (m.Groups["name"] + " is " + m.Groups["value"]);
id is 3 secure is true timeout is 30

Strong password validation
The following checks whether a password has at least six characters, and whether it contains a
digit, symbol, or punctuation mark:

string r = @"(?x)^(?=.* ( \d | \p{P} | \p{S} )).{6,}";

Console.WriteLine (Regex.IsMatch ("abc12", r));     // False
Console.WriteLine (Regex.IsMatch ("abcdef", r));    // False
Console.WriteLine (Regex.IsMatch ("ab88yz", r));    // True

Lines of at least 80 characters

string r = @"(?m)^.{80,}(?=\r?$)";

string fifty = new string ('x', 50);
string eighty = new string ('x', 80);

string text = eighty + "\r\n" + fifty + "\r\n" + eighty;

Console.WriteLine (Regex.Matches (text, r).Count);   // 2

Parsing dates/times (N/N/N H:M:S AM/PM)
This expression handles a variety of numeric date formats — and works whether the year
comes first or last. The (?x) directive improves readability by allowing whitespace; the (?i)



switches off case sensitivity (for the optional AM/PM designator). You can then access each
component of the match through the Groups collection:

string r = @"(?x)(?i)
 (\d{1,4}) [./-]
 (\d{1,2}) [./-]
 (\d{1,4}) [\sT]
 (\d+):(\d+):(\d+) \s? (A\.?M\.?|P\.?M\.?)?";

string text = "01/02/2008 5:20:50 PM";

foreach (Group g in Regex.Match (text, r).Groups)
  Console.WriteLine (g.Value + " ");
01/02/2008 5:20:50 PM 01 02 2008 5 20 50 PM

(Of course, this doesn’t verify that the date/time is correct.)

Matching Roman numerals

string r =
  @"(?i)\bm*"         +
  @"(d?c{0,3}|c[dm])" +
  @"(l?x{0,3}|x[lc])" +
  @"(v?i{0,3}|i[vx])" +
  @"\b";

Console.WriteLine (Regex.IsMatch ("MCMLXXXIV", r));   // True

Removing repeated words
Here, we capture a named grouped called dupe:

string r = @"(?'dupe'\w+)\W\k'dupe'";

string text = "In the the beginning...";
Console.WriteLine (Regex.Replace (text, r, "${dupe}"));

In the beginning

Word count

string r = @"\b(\w|[-'])+\b";

string text = "It's all mumbo-jumbo to me";
Console.WriteLine (Regex.Matches (text, r).Count);   // 5

Matching a Guid

string r =
  @"(?i)\b"           +
  @"[0-9a-fA-F]{8}\-" +
  @"[0-9a-fA-F]{4}\-" +
  @"[0-9a-fA-F]{4}\-" +
  @"[0-9a-fA-F]{4}\-" +
  @"[0-9a-fA-F]{12}"  +
  @"\b";

string text = "Its key is {3F2504E0-4F89-11D3-9A0C-0305E82C3301}.";
Console.WriteLine (Regex.Match (text, r).Index);                    // 12

Parsing an XML/HTML tag



Regex is useful for parsing HTML fragments — particularly when the document may be
imperfectly formed:

string r =
  @"<(?'tag'\w+?).*>"  +  // lazy-match first tag, and name it 'tag'
  @"(?'text'.*?)"      +  // lazy-match text content, name it 'textd'
  @"</\k'tag'>";          // match last tag, denoted by 'tag'

string text = "<h1>hello</h1>";

Match m = Regex.Match (text, r);

Console.WriteLine (m.Groups ["tag"]);       // h1
Console.WriteLine (m.Groups ["text"]);      // hello

Splitting a camel-cased word
This requires a positive lookahead to include the uppercase separators:

string r = @"(?=[A-Z])";

foreach (string s in Regex.Split ("oneTwoThree", r))
  Console.Write (s + " ");    // one Two Three

Obtaining a legal filename

string input = "My \"good\" <recipes>.txt";

char[] invalidChars = System.IO.Path.GetInvalidPathChars();
string invalidString = Regex.Escape (new string (invalidChars));

string valid = Regex.Replace (input, "[" + invalidString + "]", "");
Console.WriteLine (valid);

My good recipes.txt

Escaping Unicode characters for HTML

string htmlFragment = "© 2007";

string result = Regex.Replace (htmlFragment, @"[\u0080-\uFFFF]",
                m => @"&#" + ((int)m.Value[0]).ToString() + ";");

Console.WriteLine (result);        // © 2007

Unescaping characters in an HTTP query string

string sample = "C%23 rocks";

string result = Regex.Replace (
    sample,
    @"%[0-9a-f][0-9a-f]",
    m => ((char) Convert.ToByte (m.Value.Substring (1), 16)).ToString(),
    RegexOptions.IgnoreCase
);

Console.WriteLine (result);   // C# rocks

Parsing Google search terms from a web stats log
This should be used in conjunction with the previous example to unescape characters in the
query string:



string sample =
  "http://google.com/search?hl=en&q=greedy+quantifiers+regex&btnG=Search";

Match m = Regex.Match (sample, @"(?<=google\..+search\?.*q=).+?(?=(&|$))");

string[] keywords = m.Value.Split (
  new[] { '+' }, StringSplitOptions.RemoveEmptyEntries);

foreach (string keyword in keywords)
  Console.Write (keyword + " ");       // greedy quantifiers regex

Regular Expressions Language Reference
Table 26-2 through Table 26-12 summarize the regular expressions grammar and syntax
supported in the .NET implementation.

Table 26-2. Character escapes

Escape code sequence Meaning Hexadecimal equivalent

\a Bell \u0007

\b Backspace \u0008

\t Tab \u0009

\r Carriage return \u000A

\v Vertical tab \u000B

\f Form feed \u000C

\n Newline \u000D

\e Escape \u001B

\nnn ASCII character nnn as octal (e.g., \n052)  

\xnn ASCII character nn as hex (e.g., \x3F)  

\cl ASCII control character l (e.g., \cG for Ctrl-G)  

\unnnn Unicode character nnnn as hex (e.g., \u07DE)  

\symbol A nonescaped symbol  

Special case: within a regular expression, \b means word boundary, except in a [ ] set, in
which \b means the backspace character.

Table 26-3. Character sets

Expression Meaning Inverse
(“not”)

[abcdef] Matches a single character in the list [^abcdef]

[a-f] Matches a single character in a range [^a-f]

\d Matches a decimal digit
Same as [0-9]

\D

\w Matches a word character (by default, varies according to CultureInfo.CurrentCulture; for
example, in English, same as [a-zA-Z_0-9])

\W

\s Matches a whitespace character
Same as [\n\r\t\f\v ]

\S

\p{category} Matches a character in a specified category (see Table 26-6) \P

. (Default mode) Matches any character except \n \n



. (SingleLine mode) Matches any character \n

Table 26-4. Character
categories

Quantifier Meaning

\p{L} Letters

\p{Lu} Uppercase letters

\p{Ll} Lowercase letters

\p{N} Numbers

\p{P} Punctuation

\p{M} Diacritic marks

\p{S} Symbols

\p{Z} Separators

\p{C} Control characters

Table 26-5. Quantifiers

Quantifier Meaning

* Zero or more matches

+ One or more matches

? Zero or one match

{n} Exactly n matches

{n,} At least n matches

{n,m} Between n and m matches

The ? suffix can be applied to any of the quantifiers to make them lazy rather than greedy.

Table 26-6. Substitutions

Expression Meaning

$0 Substitutes the matched text

$group-number Substitutes an indexed group-number within the matched text

${group-name} Substitutes a text group-name within the matched text

Substitutions are specified only within a replacement pattern.

Table 26-7. Zero-width assertions

Expression Meaning

^ Start of string (or line in multiline mode)

$ End of string (or line in multiline mode)

\A Start of string (ignores multiline mode)

\z End of string (ignores multiline mode)

\Z End of line or string



\G Where search started

\b On a word boundary

\B Not on a word boundary

(?=expr) Continue matching only if expression expr matches on right (positive lookahead)

(?!expr) Continue matching only if expression expr doesn’t match on right (negative lookahead)

(?<=expr) Continue matching only if expression expr matches on left (positive lookbehind)

(?<!expr) Continue matching only if expression expr doesn’t match on left (negative lookbehind)

(?>expr) Subexpression expr is matched once and not backtracked

Table 26-8. Grouping constructs

Syntax Meaning

(expr) Capture matched expression expr into indexed group

(?number) Capture matched substring into a specified group number

(?'name') Capture matched substring into group name

(?'name1-
name2')

Undefine name2, and store interval and current group into name1; if name2 is undefined, matching backtracks;
name1 is optional

(?:expr) Noncapturing group

Table 26-9. Back references

Parameter syntax Meaning

\index Reference a previously captured group by index

\k<name> Reference a previously captured group by name

Table 26-10. Alternation

Expression syntax Meaning

| Logical or

(?(expr)yes|no) Matches yes if expression matches; otherwise, matches no (no is optional)

(?(name)yes|no) Matches yes if named group has a match; otherwise, matches no (no is optional)

Table 26-11. Miscellaneous constructs

Expression syntax Meaning

(?#comment) Inline comment

#comment Comment to end of line (works only in IgnorePatternWhitespace mode)

Table 26-12. Regular expression options

Option Meaning

(?i) Case-insensitive match (“ignore” case)

(?m) Multiline mode; changes ^ and $ so that they match beginning and end of any line

(?n) Captures only explicitly named or numbered groups

(?c)



Compiles to IL

(?s) Single-line mode; changes meaning of “.” so that it matches every character

(?x) Eliminates unescaped whitespace from the pattern

(?r) Searches from right to left; can’t be specified midstream



Chapter 27. The Roslyn Compiler

As of C# 6, the compiler is written entirely in C#, and is modular, so you can utilize its
functionality in many ways besides compiling source code to an executable or library. Known
as “Roslyn,” the modular compiler makes it easier to write static code analysis and refactoring
tools, editors with syntax highlighting and code completion, and Visual Studio plug-ins that
understand C# code.
The Roslyn libraries can be downloaded from NuGet, and there are packages for both C# and
VB. As both languages share some architecture, there are common dependencies. The NuGet
package ID for the C# compiler libraries is Microsoft.CodeAnalysis.CSharp.
The source code for Roslyn is publicly available under the Apache 2 open source license. This
opens up further possibilities, including morphing C# into a custom or domain-specific
language. The source code is available on GitHub, at https://github.com/dotnet/roslyn.
The GitHub site also hosts documentation, examples, and walkthroughs that demonstrate code
analysis and refactoring.

WARNING
The .NET Framework does not ship with the Roslyn assemblies, and its version of csc.exe
invokes the old C# 5 compiler. Installing Visual Studio 2017 remaps csc.exe to the C# 7
(Roslyn) compiler.
Without Visual Studio 2017, you can still programmatically invoke the compiler (and its
services), if you download and reference the Roslyn assemblies. But the csc.exe tool that
ships with the .NET Framework will remain pointed at C# 5 until you install Visual Studio
2017.

The assemblies that comprise the C# compiler library are as follows:

Microsoft.CodeAnalysis.dll
Microsoft.CodeAnalysis.CSharp.dll
System.Collections.Immutable.dll
System.Reflection.Metadata.dll

The former assembly is also used by the VB compiler, and contains common base types for
trees, symbols, compilations, and so on.

NOTE
All code listings in this chapter are available as interactive samples in LINQPad 5. Go to
LINQPad’s Samples tab at the bottom left, click “Download more samples,” and choose “C#
7.0 in a Nutshell.”

Roslyn Architecture
The Roslyn architecture separates compilation into three phases:

https://github.com/dotnet/roslyn


1. Parsing code into syntax trees (the syntactic layer)

2. Binding identifiers to symbols (the semantic layer)

3. Emitting IL

In the first phase, a parser reads C# code and outputs syntax trees. A syntax tree is a DOM
(Document Object Model) that describes source code in tree structure.
The second phase is where C#’s static binding takes place. Assembly references are read, and
the compiler figures out, for instance, that console refers to System.Console in mscorlib.dll.
Overload resolution and type inference are a part of this, too.
The third phase produces the output assembly. If you plan to use Roslyn for code analysis or
refactoring, you won’t use this functionality.
Visual Studio’s editor uses the output of the syntactic layer to color keywords, strings,
comments, and disabled code (in blue, red, green, and gray, respectively), whereas it uses the
output of the semantic layer to color resolved type names (in turquoise).

Workspaces
In this chapter, we describe the compiler and the features it exposes. It’s worth keeping in mind
that there’s an additional “layer” above the compiler called workspaces. It’s also available on
NuGet; the package ID is Microsoft.CodeAnalysis.CSharp.Workspaces.
The workspaces layer understands Visual Studio solutions, projects, and documents, and
includes additional services not strictly related to the compilation processes, such as code
refactoring.
The workspaces layer is open source, and by looking at the source code, it’s possible to learn
more about the compilation layer.

Syntax Trees
A syntax tree is a DOM for source code. The syntax tree API is completely separate from the
System.Linq.Expressions API we discussed in “Expression Trees” in Chapter 8, although
the two have conceptual similarities. Both APIs can represent C# expressions in a DOM;
however, a Roslyn syntax tree has the following unique features:

It can represent the entire C# language, not just expressions.

It can include comments, whitespace, and other trivia, and can round-trip with full fidelity
back to the original source code.

It comes with a ParseText method that parses source code into a syntax tree.

Conversely, the System.Linq.Expressions API has the following unique features:
It’s built into the .NET Framework, and the C# compiler itself is programmed to emit
System.Linq.Expression types when it encounters a lambda expression with an
assignment conversion to Expression<T>.

It has a fast and lightweight Compile method that emits a delegate. In contrast, the semantic



layer that compiles Roslyn syntax trees offers only the heavyweight option of compiling a
complete program into an assembly.

Something that both APIs have in common is that syntax trees are immutable, so none of its
elements can be altered once created. This means that applications such as Visual Studio and
LINQPad must create a new syntax tree each time you press a key in the editor, in order to
update syntax highlighting and auto-completion services. This is less expensive than it sounds
because the new syntax tree is able to re-use most of the elements of the old (see “Transforming
a Syntax Tree”). And knowing that an object cannot change makes the API simpler to work
with. It also allows for easier and faster parallelization, since multithreaded code can safely
access all parts of a syntax tree without locks.

SyntaxTree Structure
A SyntaxTree comprises three main elements:

Nodes
(Abstract SyntaxNode class.) Represents C# constructs such as expressions, statements,
and method declarations. Nodes always have at least one child, so a node can never be a
leaf in the tree. Nodes can have both nodes and tokens as children.

Tokens
(SyntaxToken struct.) Represents the identifiers, keywords, operators, and punctuation
that make up your source code. The only kind of children that tokens can have is optional
leading and trailing trivia. A token’s parent is always a node.

Trivia
(SyntaxTrivia struct.) Trivia is for whitespace, comments, preprocessor directives, and
code that’s inactive due to conditional compilation. Trivia is always associated with the
token that’s immediately to its left or right, and is exposed via that token’s
TrailingTrivia and LeadingTrivia properties, respectively.

Figure 27-1 shows the structure of the following code, with nodes in black, tokens in gray, and
trivia in white:

Console.WriteLine ("Hello");



Figure 27-1. Syntax trees

SyntaxNode is abstract and has a C#-specific subclass for each kind of syntactic element, such
as VariableDeclarationSyntax or TryStatementSyntax.
SyntaxToken/SyntaxTrivia are structs, and so a single type represents every kind of
token/trivia. To distinguish different kinds of tokens or trivia, you must use the RawKind
property or Kind extension method (which we’ll explain in the following section).

NOTE
The best way to explore a syntax tree is with a visualizer. Visual Studio has a downloadable
visualizer for use with its debugger, and LINQPad has one built in. LINQPad displays the
visualizer automatically for the code in the text editor when you click the Tree button in the
output window. You can also ask LINQPad to display a visualizer for a syntax tree that
you’ve created programmatically by calling DumpSyntaxTree on the tree (or DumpSyntaxNode on
a node).

UNDERSTANDING NODE TYPES
The subclasses of SyntaxNode have been designed to reflect the result of syntactical parsing, and are
blind to semantic type/symbol information obtained from binding that occurs later. For example,



consider the result of parsing the following code:

using System;

class Foo : SomeBaseClass
{
  void Test() { Console.WriteLine(); }
}

You might expect Console.WriteLine to be represented by a class called
MethodCallExpressionSyntax, but no such class exists. Instead, it’s represented by an
InvocationExpressionSyntax, under which there’s a SimpleMemberAccessExpression. This is
because the parser is ignorant of types, so it cannot know that Console is a type, and WriteLine is a
method. There are many other possibilities: Console could be a property of SomeBaseClass, or
WriteLine could be an event, field, or property of a delegate type. All we can know from the syntax
is that we’re performing a member access (identifier.identifier), followed by some kind of
invocation with zero arguments.

Common properties and methods
Nodes, tokens, and trivia have a number of important common properties and methods:

SyntaxTree property
Returns the syntax tree to which the object belongs.

Span property
Returns the object’s position in source code (see “Finding a child by its offset”).

Kind extension method
Returns a SyntaxKind enum that classifies the node, token, or trivia into one of several
hundred values (e.g., IntKeyword, CommaToken, and WhitespaceTrivia). The same
SyntaxKind enum covers nodes, tokens, and trivia.

ToString method
Returns the text (source code) for the node, token, or trivia. For tokens, the Text property
is equivalent.

GetDiagnostics method
Returns errors or warnings generated during parsing.

IsEquivalentTo method
Returns true if the object is identical to another node, token, or trivia instance. Whitespace
differences are significant (to ignore whitespace, call NormalizeWhitespace before
comparing).

NOTE
Nodes and tokens also have a FullSpan property and ToFullString method. These take into
account trivia, whereas Span and ToString do not.

The Kind extension method is a shortcut for casting the RawKind property, which is of type
int, to Microsoft.CodeAnalysis.CSharp.SyntaxKind. The reason for not simply having a



Kind property of type SyntaxKind is that the token and trivia types are also used in VB syntax
trees, which has a different enum type for SyntaxKind.

Obtaining a Syntax Tree
The static ParseText method on CSharpSyntaxTree parses C# code into a SyntaxTree:

SyntaxTree tree = CSharpSyntaxTree.ParseText (@"class Test
{
  static void Main() => Console.WriteLine (""Hello"");
}");

Console.WriteLine (tree.ToString());

tree.DumpSyntaxTree();    // Displays Syntax Tree Visualizer in LINQPad

To run this in a Visual Studio project, install the Microsoft.CodeAnalysis.CSharp NuGet
package, and import the following namespaces:

using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;

You can optionally pass in a CSharpParseOptions object to specify a C# language version,
preprocessor symbols, and a DocumentationMode to indicate whether XML comments should
be parsed (see “Structured trivia”). There’s also an option to specify a SourceCodeKind.
Choosing Script instructs the parser to accept a single expression or statement(s) instead of
requiring an entire program (supported in Roslyn version 2 and later).
Another way to obtain a syntax tree is to call CSharpSyntaxTree.Create, passing in an
object graph of nodes and tokens. We describe how to create these objects in “Transforming a
Syntax Tree”.
After parsing a tree, you can obtain errors and warnings by calling GetDiagnostics. (You can
also call this method on a specific node or token.)

WARNING
If the parse resulted in unexpected errors, the tree’s structure may not be as you expect. For
this reason, it’s worth calling GetDiagnostics before proceeding further.

A nice feature is that a tree with errors will round-trip back to the original text (with the same
errors). In such cases, the parser does its best to provide a syntax tree that’s useful to the
semantic layer, creating “phantom nodes” if necessary. This allows tools such as code
completion to work with incomplete code. (You can determine if a node is phantom by
checking the IsMissing property.)
Calling GetDiagnostics on the syntax tree we created in the last section indicates no errors,
despite having called Console.WriteLine without importing the System namespace. This is a
good example of syntactic versus semantic parsing: our program is syntactically correct, and
our error will not manifest until we create a compilation, add assembly references, and query
the semantic model, where binding takes place.



Traversing and Searching a Tree
A SyntaxTree acts as a wrapper for the tree structure. It has a reference to a single root node,
which you obtain by calling GetRoot:

var tree = CSharpSyntaxTree.ParseText (@"class Test
{
  static void Main() => Console.WriteLine (""Hello"");
}");

SyntaxNode root = tree.GetRoot();

The root node of a C# program is a CompilationUnitSyntax:

Console.WriteLine (root.GetType().Name);   // CompilationUnitSyntax

Traversing children
SyntaxNode exposes LINQ-friendly methods to traverse its child nodes and tokens. The
simplest are:

IEnumerable<SyntaxNode> ChildNodes()
IEnumerable<SyntaxToken> ChildTokens()

Following on from our previous example, our root node has a single child node of type
ClassDeclarationSyntax:

var cds = (ClassDeclarationSyntax) root.ChildNodes().Single();

We can enumerate the members of cds via either its ChildNodes method or the Members
property of ClassDeclarationSyntax:

foreach (MemberDeclarationSyntax member in cds.Members)
  Console.WriteLine (member.ToString());

with the following result:

static void Main() => Console.WriteLine (""Hello"");

There are also Descendant* methods, which descend recursively into children. We can
enumerate the tokens that make up our program as follows:

foreach (var token in root.DescendantTokens())
  Console.WriteLine ($"{token.Kind(),-30} {token.Text}");

Here’s the result:

ClassKeyword                   class
IdentifierToken                Test
OpenBraceToken                 {
StaticKeyword                  static
VoidKeyword                    void
IdentifierToken                Main
OpenParenToken                 (
CloseParenToken                )
EqualsGreaterThanToken         =>
IdentifierToken                Console



DotToken                       .
IdentifierToken                WriteLine
OpenParenToken                 (
StringLiteralToken             "Hello"
CloseParenToken                )
SemicolonToken                 ;
CloseBraceToken                }
EndOfFileToken

Notice that there’s no whitespace in the result. Replacing token.Text with
token.ToFullString() would give us whitespace (and any other trivia).
The following uses the DescendantNodes method to locate the syntax node for our method
declaration:

var ourMethod = root.DescendantNodes()
                    .First (m => m.Kind() == SyntaxKind.MethodDeclaration);

Or alternatively:

var ourMethod = root.DescendantNodes()
                    .OfType<MethodDeclarationSyntax>()
                    .Single();

With the latter example, ourMethod is of type MethodDeclarationSyntax, which exposes
useful properties specific to method declarations. For instance, if our example contained more
than one method definition and we wanted to find just the method whose name is “Main”, we
could do this:

var mainMethod = root.DescendantNodes()
                     .OfType<MethodDeclarationSyntax>()                                    
                     .Single (m => m.Identifier.Text == "Main");

Identifier is a property on MethodDeclarationSyntax that returns the token corresponding
to the method’s identifier (i.e., its name). We could get the same result with more effort, as
follows:

root.DescendantNodes().First (m =>
  m.Kind() == SyntaxKind.MethodDeclaration &&
  m.ChildTokens().Any (t =>
    t.Kind() == SyntaxKind.IdentifierToken && t.Text == "Main"));

SyntaxNode also has GetFirstToken and GetLastToken methods, which are equivalent to
calling DescendantTokens().First() and DescendantTokens().Last().

NOTE
GetLastToken() is faster than DescendantTokens().Last() because it returns a direct link
rather than enumerating through all descendants.

As nodes can contain both child nodes and tokens whose relative order is significant, there are
also methods to enumerate both together:

ChildSyntaxList ChildNodesAndTokens()
IEnumerable<SyntaxNodeOrToken> DescendantNodesAndTokens()



IEnumerable<SyntaxNodeOrToken> DescendantNodesAndTokensAndSelf()

(ChildSyntaxList implements IEnumerable<SyntaxNodeOrToken>, while also exposing a
Count property and an indexer to access an element by position.)
You can traverse trivia directly from a node with the GetLeadingTrivia,
GetTrailingTrivia, and DescendantTrivia methods. More commonly, though, you’d
access trivia through the token to which it’s attached, via the token’s LeadingTrivia and
TrailingTrivia properties. Or to convert to text, you’d use the ToFullString method,
which includes trivia in the result.

Traversing parents
Nodes and tokens have a Parent property of type SyntaxNode.
For SyntaxTrivia, the “parent” is its token, accessible via the Token property.
Nodes also have methods that ascend back up the tree, which are prefixed with “Ancestor”.

Finding a child by its offset
All nodes, tokens, and trivia have a Span property of type TextSpan to indicate starting and
ending offsets in the source code. Nodes and tokens also have a FullSpan property, which
includes leading and trailing trivia (whereas Span does not). A node’s Span does, however,
include child nodes and tokens.

WORKING WITH TEXTSPAN
The TextSpan struct has Start, Length, and End integer properties, which indicate character offsets
in the source code. It also has methods such as Overlap, OverlapsWith, Intersection, and
IntersectsWith. The difference between overlapping and intersecting is a matter of one character:
two spans overlap if one starts before the other ends (<), whereas they intersect if they merely
touch (<=).
The SyntaxTree class exposes a GetLineSpan method that converts a TextSpan into a line and
character offset. This method ignores the effects of any #line directives present in the source code.
There’s also a GetMappedLineSpan method that takes these directives into account.

You can find a descendant object by position with the FindNode, FindToken, and FindTrivia
methods on SyntaxNode. These methods return the descendant object with the smallest span
that fully contains the span that you specify. There’s also a ChildThatContainsPosition
method, which searches both descendant nodes and tokens.
Should a search result in two nodes with an identical span (typically a child and grandchild),
the FindNode method will return the outer (parent) node. You can change this behavior by
passing true to the optional argument getInnermostNodeForTie.
The Find* methods also have an optional findInsideTrivia bool parameter. If true, this
also searches for nodes or tokens within structured trivia (see “Trivia”).

CSharpSyntaxWalker
Another way to traverse a tree is by subclassing CSharpSyntaxWalker, overriding one or
more of its hundreds of virtual methods. This following class counts the number of if
statements:



class IfCounter : CSharpSyntaxWalker
{
  public int IfCount { get; private set; }

  public override void VisitIfStatement (IfStatementSyntax node)
  {
    IfCount++;
    // Call the base method if you want to descend into children.
    base.VisitIfStatement (node);
  }
}

Here’s how to invoke it:

var ifCounter = new IfCounter ();
ifCounter.Visit (root);
Console.WriteLine ($"I found {ifCounter.IfCount} if statements");

The result is equivalent to:

root.DescendantNodes().OfType<IfStatementSyntax>().Count()

Writing a syntax walker can be easier than using the Descendant* methods in more complex
cases when you need to override multiple methods (in part, because C# has no F#-like pattern-
matching ability).
By default, CSharpSyntaxWalker visits just nodes. To visit tokens or trivia, you must call the
base constructor with a SyntaxWalkerDepth, indicating the desired depth
(node→token→trivia). Then you can override VisitToken and VisitTrivia:

class WhiteWalker : CSharpSyntaxWalker   // Counts space characters
{
  public int SpaceCount { get; private set; }
 
  public WhiteWalker() : base (SyntaxWalkerDepth.Trivia) { }

  public override void VisitTrivia (SyntaxTrivia trivia)
  {
    SpaceCount += trivia.ToString().Count (char.IsWhiteSpace);
    base.VisitTrivia (trivia);
  }
}

If you remove WhiteWalker’s call to the base constructor, VisitTrivia will not fire.

Trivia
Trivia is for code that, after parsing, the compiler can almost entirely ignore in terms of
producing an output assembly. This comprises whitespace, comments, XML documentation,
preprocessor directives, and code that’s inactive by virtue of conditional compilation.
The mandatory whitespace in your code is also considered trivia. Although essential for
parsing, it’s not needed once the syntax tree has been produced (at least by the compiler).
Trivia is still important for round-tripping back to the original source code.
Trivia belongs to the token to which it’s adjacent. By convention, the parser puts whitespace
and comments that follow a token, up to the end of the line, into the token’s trailing trivia.
Anything after that, it treats as leading trivia for the next token. (There are exceptions for the
very start/end of the file.) If you’re creating tokens programmatically (see “Transforming a



Syntax Tree”), you can put the whitespace in either place (or not at all, if you’re not going to
convert back to source code):

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
    static /*comment*/ void Main() {}
}");

SyntaxNode root = tree.GetRoot();

// Find the static keyword token:
var method = root.DescendantTokens().Single (t =>
  t.Kind() == SyntaxKind.StaticKeyword);

// Print out the trivia around the static keyword token:
foreach (SyntaxTrivia t in method.LeadingTrivia)
  Console.WriteLine (new { Kind = "Leading " + t.Kind(), t.Span.Length });

foreach (SyntaxTrivia t in method.TrailingTrivia)
  Console.WriteLine (new { Kind = "Trailing " + t.Kind(), t.Span.Length });

Here’s the output:

{ Kind = Leading WhitespaceTrivia, Length = 1 }
{ Kind = Trailing WhitespaceTrivia, Length = 1 }
{ Kind = Trailing MultiLineCommentTrivia, Length = 11 }
{ Kind = Trailing WhitespaceTrivia, Length = 1 }

Preprocessor directives
It might seem odd that preprocessor directives are considered trivia, given that some directives
(in particular, conditional compilation directives) have a nontrivial effect on the output.
The reason is that preprocessor directives are processed semantically by the parser itself, i.e.,
it’s the parser’s job to do the preprocessing. After which, there’s nothing left that the compiler
need explicitly consider (except for #pragma). To illustrate, let’s examine how the parser
handles conditional compilation directives:

#define FOO

#if FOO
    Console.WriteLine ("FOO is defined");
#else
    Console.WriteLine ("FOO is not defined");
#endif

Upon reading the #if FOO directive, the parser knows that FOO is defined, and so the line that
follows is parsed normally (as nodes and tokens), whereas the line of code following the
#else directive is parsed into DisabledTextTrivia.

NOTE
When calling CSharpSyntaxTree.Parse, you can supply additional preprocessor symbols by
constructing and passing in a CSharpParseOptions instance.

Hence, with conditional compilation, it is precisely the text that can be ignored that ends up in
trivia (i.e., the inactive code and the preprocessor directives themselves).



The #line directive is handled similarly, in that the parser reads and interprets the directive.
The information that it harvests is used when you call GetMappedLineSpan on the syntax tree.
The #region directive is semantically empty: the only role of the parser is to check that
#region directives are matched with #endregion directives. The #error and #warning
directives are also processed by the parser, which generates errors and warnings that you can
see by calling GetDiagnostics on the tree or node.
It can be still useful to examine the content of preprocessor directives for purposes other than
producing the output assembly (syntax highlighting, for instance). This is made easier through
structured trivia.

Structured trivia
There are two kinds of trivia:

Unstructured trivia
Comments, whitespace, and code that’s inactive due to conditional compilation.

Structured trivia
Preprocessor directives and XML documentation.

Unstructured trivia is treated purely as text, whereas structured trivia also has its content
parsed into a miniature syntax tree.
The HasStructure property on SyntaxTrivia indicates whether structured trivia is present,
and the GetStructure method returns the root node for the miniature syntax tree:

var tree = CSharpSyntaxTree.ParseText (@"#define FOO");

// In LINQPad:
tree.DumpSyntaxTree();  // LINQPad displays structured trivia in Visualizer

SyntaxNode root = tree.GetRoot();

var trivia = root.DescendantTrivia().First();
Console.WriteLine (trivia.HasStructure);           // True
Console.WriteLine (trivia.GetStructure().Kind());  // DefineDirectiveTrivia

In the case of preprocessor directives, you can navigate directly to the structured trivia by
calling GetFirstDirective on a SyntaxNode. There’s also a ContainsDirectives property
to indicate whether preprocessor trivia is present:

var tree = CSharpSyntaxTree.ParseText (@"#define FOO");
SyntaxNode root = tree.GetRoot();

Console.WriteLine (root.ContainsDirectives);      // True

// directive is the root node of the structured trivia:
var directive = root.GetFirstDirective();
Console.WriteLine (directive.Kind());             // DefineDirectiveTrivia
Console.WriteLine (directive.ToString());         // #define FOO

// If there were more directives, we could get to them as follows:
Console.WriteLine (directive.GetNextDirective());    // (null)

Once we’ve got a trivia node, we can cast it to a specific type and query its properties, just as
we would with any other node:



var hashDefine = (DefineDirectiveTriviaSyntax) root.GetFirstDirective();
Console.WriteLine (hashDefine.Name.Text);     // FOO

NOTE
All nodes, tokens, and trivia have the IsPartOfStructuredTrivia property to indicate whether
the object in question is part of a structured trivia tree (i.e., descends from a trivia object).

Transforming a Syntax Tree
You can “modify” nodes, tokens, and trivia via a set of methods with the following prefixes
(most of which are extension methods):

Add*
Insert*
Remove*
Replace*
With*
Without*

Because syntax trees are immutable, all of these methods return a new object with the desired
modifications, leaving the original untouched.

Handling changes to the source code
If you’re writing a C# editor, for instance, you’ll need to update a syntax tree based on changes
to the source code. The SyntaxTree class has a WithChangedText method that does exactly
this: it partially reparses the source code based on modifications that you describe with a
SourceText instance (in Microsoft.CodeAnalysis.Text).
To create a SourceText, use its static From method, giving it the complete source code. You
can then use this to create a syntax tree:

SourceText sourceText = SourceText.From ("class Program {}");
var tree = CSharpSyntaxTree.ParseText (sourceText);

Alternatively, you can obtain the SourceText for an existing tree by calling GetText.
You can now update sourceText by calling Replace or WithChanges. For example, we could
replace the first 5 characters (“class”) with “struct” as follows:

var newSource = sourceText.Replace (0, 5, "struct");

Finally, we can call WithChangedText on the tree to update it:

var newTree = tree.WithChangedText (newSource);
Console.WriteLine (newTree.ToString());         // struct Program {}

Creating new nodes, tokens, and trivia with SyntaxFactory
The static methods on SyntaxFactory programmatically create nodes, tokens, and trivia,
which you can use to “transform” existing syntax trees, or to create new trees from scratch.
The hardest part of doing this is figuring out exactly what kind of nodes and tokens to create.
The solution is to first parse a sample of the code you want, examining the result in a syntax



visualizer. For instance, suppose we want to create a syntax node for the following:

using System.Text;

We can visualize the syntax tree for this in LINQPad as follows:

CSharpSyntaxTree.ParseText ("using System.Text;").DumpSyntaxTree();

(We can parse “using System.Text;” without error because it’s valid as a complete program,
albeit a functionally empty one. For most other code snippets, you’ll need to wrap the snippet
in a method and/or type definition so that it will parse.)
The result has the following structure, of which we are interested in the second node, i.e.,
UsingDirective and its descendants:

Kind                               Token Text
=================================  ==========
CompilationUnit (node)
  UsingDirective (node)
    UsingKeyword (token)           using
      WhitespaceTrivia (trailing)
    QualifiedName (node)
      IdentifierName (node)
        IdentifierToken (token)    System
      DotToken (token)             .
      IdentifierName (node)
        IdentifierToken (token)    Text
    SemiColonToken (token)         ;
  EndOfFileToken (token)

Starting from the inside, we have two IdentifierName nodes, whose parent is a
QualifiedName. We can create that as follows:

QualifiedNameSyntax qualifiedName = SyntaxFactory.QualifiedName (
  SyntaxFactory.IdentifierName ("System"),
  SyntaxFactory.IdentifierName ("Text"));

We used the overload of QualifiedName that accepts two identifiers. This overload inserts the
dot token for us automatically.
We now need to wrap this in a UsingDirective:

UsingDirectiveSyntax usingDirective =
  SyntaxFactory.UsingDirective (qualifiedName);

Because we didn’t specify tokens for the “using” keyword or the trailing semicolon, tokens for
each were created and added automatically. However, the automatically created tokens don’t
include whitespace. This wouldn’t prevent compilation, but converting the tree to a string
would result in syntactically incorrect code:

Console.WriteLine (usingDirective.ToFullString());  // usingSystem.Text;

We can fix this by calling NormalizeWhitespace on the node (or one of its ancestors); doing
so automatically adds whitespace trivia (for both syntactic correctness and readability). Or for
more control, we could add whitespace explicitly:

usingDirective = usingDirective.WithUsingKeyword (



  usingDirective.UsingKeyword.WithTrailingTrivia (
    SyntaxFactory.Whitespace (" ")));

Console.WriteLine (usingDirective.ToFullString());  // using System.Text;

For brevity, we “harvested” the node’s existing UsingKeyword, to which we added trailing
trivia. We could have created an equivalent token with more effort by calling
SyntaxFactory.Token(SyntaxKind.UsingKeyword).
The final step is to add our UsingDirective node to an existing or new syntax tree (or more
precisely, the root node of a tree). To do the former, we cast the existing tree’s root to a
CompilationUnitSyntax, and call the AddUsings method. We can then create a new tree
from the transformed compilation unit:

var existingTree = CSharpSyntaxTree.ParseText ("class Program {}");
var existingUnit = (CompilationUnitSyntax) existingTree.GetRoot();

var unitWithUsing = existingUnit.AddUsings (usingDirective);

var treeWithUsing = CSharpSyntaxTree.Create (
  unitWithUsing.NormalizeWhitespace());

WARNING
Remember that all parts of a syntax tree are immutable. Calling AddUsings returns a new
node, leaving the original untouched. Ignoring the return value is an easy mistake to make!

We called NormalizeWhitespace on our compilation unit so that calling ToString on the tree
will yield syntactically correct and readable code. Alternatively, we could have added explicit
newline trivia to usingDirective as follows:

.WithTrailingTrivia (SyntaxFactory.EndOfLine("\r\n\r\n"))

Creating a compilation unit and syntax tree from scratch is a similar process. The easiest
approach is to start with an empty compilation unit and call AddUsings on the unit as we did
before:

var unit = SyntaxFactory.CompilationUnit().AddUsings (usingDirective);

We can add type definitions to our compilation unit by creating them in a similar fashion, and
then calling AddMembers:

// Create a simple empty class definition:
unit = unit.AddMembers (SyntaxFactory.ClassDeclaration ("Program"));

The final step is to create the tree:

var tree = CSharpSyntaxTree.Create (unit.NormalizeWhitespace());
Console.WriteLine (tree.ToString());

// Output:
using System.Text;

class Program
{



}

CSharpSyntaxRewriter
For more complex syntax tree transformations, you can subclass CSharpSyntax Rewriter.
CSharpSyntaxRewriter is similar to the CSharpSyntaxWalker class that we looked at
previously (see “CSharpSyntaxWalker”), except that each Visit* method accepts and returns a
syntax node. By returning something other than was passed in, you can “rewrite” the syntax
tree.
For instance, the following rewriter changes method declaration names to uppercase:

class MyRewriter : CSharpSyntaxRewriter
{
  public override SyntaxNode VisitMethodDeclaration
    (MethodDeclarationSyntax node)  
  {
    // "Replace" the method's identifier with an uppercase version:
    return node.WithIdentifier (
      SyntaxFactory.Identifier (
        node.Identifier.LeadingTrivia,            // Preserve old trivia
        node.Identifier.Text.ToUpperInvariant(),
        node.Identifier.TrailingTrivia));         // Preserve old trivia
  }
}

Here’s how to use it:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
  static void Main() { Test(); }
  static void Test() {         }
}");

var rewriter = new MyRewriter();
var newRoot = rewriter.Visit (tree.GetRoot());
Console.WriteLine (newRoot.ToFullString());

// Output:
class Program
{
  static void MAIN() { Test(); }
  static void TEST() {         }
}

Notice that our call to Test() in the main method did not get renamed, because we visited just
member declarations and ignored invocations. To reliably rename invocations, however, we
must be able to determine whether calls to Main() or Test() refer to the Program type, and
not some other type. To do this, a syntax tree is not enough on its own; we also need a semantic
model.

Compilations and Semantic Models
A compilation comprises syntax trees, references, and compilation options. It serves two
purposes:

Allows compilation to a library or executable (the emit phase)

Exposes a semantic model that provides symbol information (obtained from binding)



The semantic model is essential in implementing features such as symbol renaming, or offering
code completion listings in an editor.

Creating a Compilation
Whether you’re interested in querying the semantic model or performing a full compilation, the
first step is to create a CSharpCompilation, passing in the (simple) name of the assembly you
wish to create:

var compilation = CSharpCompilation.Create ("test");

An assembly’s simple name is important even if you don’t plan to emit an assembly, because it
forms part of the identity of the types inside the compilation.
By default, it assumes that you want to create a library. You can specify a different kind of
output (Windows executable, console executable, etc.) as follows:

compilation = compilation.WithOptions (
  new CSharpCompilationOptions (OutputKind.ConsoleApplication));

The CSharpCompilationOptions class has more than a dozen optional constructor
parameters that correspond to the command-line options of the csc.exe tool. So if you enable
compiler optimizations and give your assembly a strong name, for instance, you would do this:

compilation = compilation.WithOptions (
  new CSharpCompilationOptions (OutputKind.ConsoleApplication,
    cryptoKeyFile:"myKeyFile.snk",
    optimizationLevel:OptimizationLevel.Release));

Next, we’ll add syntax trees. Each syntax tree corresponds to a “file” to be included in the
compilation:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
  static void Main() => System.Console.WriteLine (""Hello"");
}");

compilation = compilation.AddSyntaxTrees (tree);

Finally, we need to add references. The simplest program will require a single reference to
mscorlib.dll, which we can add as follows:

compilation = compilation.AddReferences (
  MetadataReference.CreateFromFile (typeof (int).Assembly.Location));

The call to MetadataReference.CreateFromFile reads the content of an assembly into
memory, but not using ordinary reflection. Instead, it uses a high-performance portable
assembly reader (available on NuGet) called System.Reflection.Metadata. The reader is side-
effect free, and does not load the assembly into the current application domain.

WARNING
The PortableExecutableReference that you get back from
MetadataReference.CreateFromFile can have a significant memory footprint, so be careful



about holding onto references that you don’t need. Also, if you find yourself repeatedly
creating references to the same assembly, a cache is worth considering (one that holds weak
references is ideal).

You can do everything in a single step by calling the overload of CSharpCompilation.Create
that takes syntax trees, references, and options. Or you can do it fluently in a single expression,
too:

var compilation = CSharpCompilation.Create ("...")
  .WithOptions (...)
  .AddSyntaxTrees (...)
  .AddReferences (...);

Diagnostics
A compilation may generate errors and warnings, even if the syntax trees are error-free.
Examples include forgetting to import a namespace, a typo when referring to a type or member
name, and type parameter inference failing. You can get the errors and warnings by calling
GetDiagnostics on the compilation object. Any syntax errors will be included, too.

Emitting an Assembly
Creating an output assembly is simply a matter of calling Emit:

EmitResult result = compilation.Emit (@"c:\temp\test.exe");
Console.WriteLine (result.Success);

If result.Success is false, EmitResult also has a Diagnostics property to indicate the
errors that occurred during emission (this also includes diagnostics from the previous stages).
If Emit fails due to a file I/O error, it will throw an exception rather than generate error codes.
The Emit method also lets you specify a .pdb file path (for debug information), and an XML
documentation file path.

Querying the Semantic Model
Calling GetSemanticModel on a compilation returns the semantic model for a syntax tree:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
  static void Main() => System.Console.WriteLine (123);
}");

var compilation = CSharpCompilation.Create ("test")
  .AddReferences (
     MetadataReference.CreateFromFile (typeof(int).Assembly.Location))
  .AddSyntaxTrees (tree);

SemanticModel model = compilation.GetSemanticModel (tree);

(The reason for needing to specify a tree is that a compilation can contain multiple trees.)
You might expect a semantic model to be similar to syntax tree, but with more properties and
methods and a more detailed structure. This is not the case and there is no overarching DOM
associated with the semantic model. Instead, you’re given set of methods to call to obtain



semantic information about a particular position or node in the syntax tree.
This means that you can’t “explore” a semantic model like you would a syntax tree, and using it
is rather like playing “20 Questions”: the challenge is figuring out the right questions to ask.
There are nearly 50 methods and extension methods; in this section, we’ll cover some of the
most commonly used methods, in particular, those that demonstrate the principles of using the
semantic model.
Following on from our previous example, we could ask for symbol information on the
WriteLine identifier as follows:

var writeLineNode = tree.GetRoot().DescendantTokens().Single (
  t => t.Text == "WriteLine").Parent;

SymbolInfo symbolInfo = model.GetSymbolInfo (writeLineNode);
Console.WriteLine (symbolInfo.Symbol);   // System.Console.WriteLine(int)

SymbolInfo is a wrapper for symbols, whose nuances we’ll discuss shortly. We’ll start first
with symbols.

Symbols
In the syntax tree, names such as “System”, “Console,” and “WriteLine” are parsed as
identifiers (IdentifierNameSyntax node). Identifiers have little meaning, and the syntactic
parser does no work on “understanding” them other than to distinguish them from contextual
keywords.
The semantic model is able to transform identifiers into symbols, which have type information
(the output of the binding phase).
All symbols implement the ISymbol interface, although there are more specific interfaces for
each kind of symbol. In our example, “System,” “Console,” and “WriteLine” map to symbols of
the following types:

"System"      INamespaceSymbol
"Console"     INamedTypeSymbol
"WriteLine"   IMethodSymbol

Some symbol types, such as IMethodSymbol, have a conceptual analog in the
System.Reflection namespace (MethodInfo, in this case), whereas some other symbol
types, such as INamespaceSymbol, do not. This is because the Roslyn type system exists for
the benefit of the compiler, whereas the Reflection type system exists for the benefit of the CLR
(after the source code has melted away).
Nonetheless, working with ISymbol types is similar in many ways to using the Reflection API
we described in Chapter 19. Extending our previous example:

ISymbol symbol = model.GetSymbolInfo (writeLineNode).Symbol;

Console.WriteLine (symbol.Name);                   // WriteLine
Console.WriteLine (symbol.Kind);                   // Method
Console.WriteLine (symbol.IsStatic);               // True
Console.WriteLine (symbol.ContainingType.Name);    // Console

var method = (IMethodSymbol) symbol;
Console.WriteLine (method.ReturnType.ToString());  // void

The output of the last line illustrates a subtle difference with Reflection. Notice that “void” is



in lowercase, which is C# nomenclature (Reflection is language-agnostic). Similarly, calling
ToString() on the INamedTypeSymbol for System.Int32 returns “int”. Here’s something
else you can’t do with Reflection:

Console.WriteLine (symbol.Language);                // C#

NOTE
With the syntax trees API, the classes for syntax nodes differ for C# and VB (although they
share an abstract SyntaxNode base type). This makes sense because the languages have a
different lexical structure. In contrast, ISymbol and its derived interfaces are shared between
C# and VB. However, their internal concrete implementations are specific to each language,
and the output from their methods and properties reflects language-specific differences.

We can also ask the symbol where it came from:

var location = symbol.Locations.First();
Console.WriteLine (location.Kind);                     // MetadataFile

If the symbol was defined in our own source code (i.e., a syntax tree), the SourceTree
property will return that tree, and SourceSpan will return its location in the tree:

Console.WriteLine (location.SourceTree == null);    // True
Console.WriteLine (location.SourceSpan);            // [0..0)

A partial type may have multiple definitions, in which case it will have multiple Locations.
The following query returns all the overloads of WriteLine:

symbol.ContainingType.GetMembers ("WriteLine").OfType<IMethodSymbol>()

You can also call ToDisplayParts on a symbol. This returns a collection of “parts” that make
up the full name; in our case System.Console.WriteLine(int) is comprised of four symbols
interspersed with punctuation.

SymbolInfo
If you’re writing code completion for an editor, you’ll need to obtain symbols for code that’s
incomplete or incorrect. For instance, consider the following incomplete code:

System.Console.Writeline(

Because the WriteLine method is overloaded, it’s impossible to match to a single ISymbol.
Instead, we want to present options to the user. To deal with this, the semantic model’s
GetSymbolInfo method returns an ISymbolInfo struct, which has the following properties:

ISymbol Symbol
ImmutableArray<ISymbol> CandidateSymbols
CandidateReason CandidateReason

If there’s an error or ambiguity, the Symbol property returns null, and CandidateSymbols
returns a collection comprising the best matches. The CandidateReason property returns an



enum telling you what went wrong.

NOTE
To obtain error and warning information for a section of code, you can also call
GetDiagnostics on a semantic model, specifying a TextSpan. Calling GetDiagnostics with no
argument is equivalent to calling the same method on the CSharpCompilation object.

Symbol accessibility
ISymbol has a DeclaredAccessibility property, which indicates whether the symbol is
public, protected, internal, and so on. However, this isn’t sufficient to determine whether a
given symbol is accessible at a particular position in your source code. Local variables, for
instance, have a lexically limited scope, and a protected class member is accessible from
source code positions within its type or a derived type. To help with this, SemanticModel has
an IsAccessible method:

bool canAccess = model.IsAccessible (42, someSymbol);

This returns true if someSymbol can be accessed at offset 42 in the source code.

Declared symbols
If you call GetSymbolInfo on a type or member declaration, you’ll get no symbols back. For
instance, suppose we want the symbol for our Main method:

var mainMethod = tree.GetRoot().DescendantTokens().Single (
  t => t.Text == "Main").Parent;

SymbolInfo symbolInfo = model.GetSymbolInfo (mainMethod);
Console.WriteLine (symbolInfo.Symbol == null);              // True
Console.WriteLine (symbolInfo.CandidateSymbols.Length);     // 0

NOTE
This applies not just to type/member declarations, but any node where you’re introducing a
new symbol rather than consuming an existing symbol.

To obtain the symbol, we must instead call GetDeclaredSymbol:

ISymbol symbol = model.GetDeclaredSymbol (mainMethod);

Unlike GetSymbolInfo, GetDeclaredSymbol either succeeds or it doesn’t. (If it fails, it will
because it can’t find a valid declaration node.)
To give another example, suppose our Main method is as follows:

static void Main()
{
  int xyz = 123;
}



We can determine the type of xyz as follows:

SyntaxNode variableDecl = tree.GetRoot().DescendantTokens().Single (
  t => t.Text == "xyz").Parent;

var local = (ILocalSymbol) model.GetDeclaredSymbol (variableDecl);
Console.WriteLine (local.Type.ToString());             // int
Console.WriteLine (local.Type.BaseType.ToString());    // System.ValueType

TypeInfo
Sometimes you need type information about an expression or literal for which there’s no
explicit symbol. Consider the following:

var now = System.DateTime.Now;
System.Console.WriteLine (now - now);

To determine the type of now - now, we call GetTypeInfo on the semantic model:

SyntaxNode binaryExpr = tree.GetRoot().DescendantTokens().Single (
  t => t.Text == "-").Parent;

TypeInfo typeInfo = model.GetTypeInfo (binaryExpr);

TypeInfo has two properties, Type and ConvertedType. The latter indicates the type after any
implicit conversions:

Console.WriteLine (typeInfo.Type);             // System.TimeSpan
Console.WriteLine (typeInfo.ConvertedType);    // object

Because Console.WriteLine is overloaded to accept an object but not a TimeSpan, an
implicit conversion to object took place, which manifested in typeInfo.ConvertedType.

Looking up symbols
A powerful feature of the semantic model is the ability to ask for all symbols in scope at a
particular point in the source code. The result is the basis for IntelliSense listings, when the
user requests a list of available symbols.
To obtain the listing, simply call LookupSymbols, with the desired source code offset. To give
a complete example:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
  static void Main()
  {
    int x = 123, y = 234;

  }
}");

CSharpCompilation compilation = CSharpCompilation.Create ("test")
  .AddReferences (
    MetadataReference.CreateFromFile (typeof(int).Assembly.Location))
  .AddSyntaxTrees (tree);

SemanticModel model = compilation.GetSemanticModel (tree);

// Look for available symbols at start of 6th line:
int index = tree.GetText().Lines[5].Start;



foreach (ISymbol symbol in model.LookupSymbols (index))
  Console.WriteLine (symbol.ToString());

Here’s the result:

y
x
Program.Main()
object.ToString()
object.Equals(object)
object.Equals(object, object)
object.ReferenceEquals(object, object)
object.GetHashCode()
object.GetType()
object.~Object()
object.MemberwiseClone()
Program
Microsoft
System
Windows

(If we imported the System namespace, we’d see hundreds more symbols, for types in that
namespace.)

Example: Renaming a Symbol
To illustrate the features we’ve covered, we’ll write a method to rename a symbol, which is
robust to the most common use cases. In particular:

The symbol can be a type, member, local variable, range, or loop variable.

You can specify the symbol from either its use or declaration.

(In the case of a class or struct), it will rename the static and instance constructors.

(In the case of a class), it will rename the finalizer (destructor).

For brevity, we’ll omit some checks, such as ensuring that the new name is not already in use,
and that the symbol isn’t an edge-case for which the rename will fail. Our method will consider
just a single syntax tree, and so will have the following signature:

public SyntaxTree RenameSymbol (SemanticModel model, SyntaxToken token,
                                string newName)

One obvious way to implement this is to subclass CSharpSyntaxRewriter. However, a more
elegant and flexible approach is to have RenameSymbol call a lower-level method that returns
the text spans to be renamed:

public IEnumerable<TextSpan> GetRenameSpans (SemanticModel model,
                                             SyntaxToken token)

This allows an editor to call GetRenameSpans directly and apply just the changes (within an
Undo transaction), avoiding the loss of editor state that might otherwise result in replacing the
entire text.
This makes RenameSymbol a relatively simple wrapper around GetRenameSpans. We can use
SourceText’s WithChanges method to apply a sequence of text changes:



public SyntaxTree RenameSymbol (SemanticModel model, SyntaxToken token,
                                string newName)
{
  IEnumerable<TextSpan> renameSpans = GetRenameSpans (model, token);

  SourceText newSourceText = model.SyntaxTree.GetText().WithChanges (
    renameSpans.Select (span => new TextChange (span, newName))
               .OrderBy (tc => tc));

  return model.SyntaxTree.WithChangedText (newSourceText);
}

WithChanges throws an exception unless the changes are in order; this is why we called
OrderBy on the latter.
Now we must write GetRenameSpans. The first step is to find the symbol corresponding to the
token we want to rename. The token may be part of either a declaration or usage, so we’ll first
call GetSymbolInfo, and if the result is null, call GetDeclaredSymbol:

public IEnumerable<TextSpan> GetRenameSpans (SemanticModel model,
                                             SyntaxToken token)
{
  var node = token.Parent;
 
  ISymbol symbol = model.GetSymbolInfo (node).Symbol
                ?? model.GetDeclaredSymbol (node);
   
  if (symbol == null) return null;   // No symbol to rename.

Next, we need to find the symbol definitions. We can get this from the symbol’s Locations
property. (Our consideration of multiple locations makes us robust to the scenario of partial
classes and methods, although for the former to be useful, we would need to expand the
example to work with multiple syntax trees.)

  var definitions =
    from location in symbol.Locations
    where location.SourceTree == node.SyntaxTree
    select location.SourceSpan;

Now we need to find usages of the symbol. For this, we start by looking for descendant tokens
whose name matches the symbol’s name, as this is a fast way to weed out most tokens. Then we
can call GetSymbolInfo on the token’s parent node, and see whether it matches the symbol we
want to rename:

  var usages =
    from t in model.SyntaxTree.GetRoot().DescendantTokens()
    where t.Text == symbol.Name
    let s = model.GetSymbolInfo (t.Parent).Symbol
    where s == symbol
    select t.Span;

NOTE
Binding-related operations such as asking for symbol information have a tendency to be
slower than operations that consider just text or syntax trees. This is because the process of
binding may require searching for types in assemblies, applying type inference rules, and
checking for extensions methods.



If the symbol is something other than a named type (local variable, range variable, etc.), our
job is done and we can return the definitions plus usages:

  if (symbol.Kind != SymbolKind.NamedType)
    return definitions.Concat (usages);

If the symbol is a named type, we need to rename its constructors and destructor, if present. To
do so, we enumerate the descendant nodes, looking for type declarations whose names match
the one we want to rename. Then we get its declared symbol, and if it matches the one we’re
renaming, we locate its constructor and destructor methods, returning the spans of their
identifiers if present:

  var structors =
    from type in model.SyntaxTree.GetRoot().DescendantNodes()
                                           .OfType<TypeDeclarationSyntax>()
    where type.Identifier.Text == symbol.Name
    let declaredSymbol = model.GetDeclaredSymbol (type)
    where declaredSymbol == symbol
    from method in type.Members
    let constructor = method as ConstructorDeclarationSyntax
    let destructor = method as DestructorDeclarationSyntax
    where constructor != null || destructor != null
    let identifier = constructor?.Identifier ?? destructor.Identifier
    select identifier.Span;

  return definitions.Concat (usages).Concat (structors);
}

Here’s the complete listing, along with an example of how to use it:

void Demo()
{
  var tree = CSharpSyntaxTree.ParseText (@"class Program
{
  static Program() {}
  public Program() {}

  static void Main()
  {
    Program p = new Program();
    p.Foo();
  }

  void Foo() => Bar();
  void Bar() => Foo();   
}
");

  var compilation = CSharpCompilation.Create ("test")
    .AddReferences (
       MetadataReference.CreateFromFile (typeof(int).Assembly.Location))
    .AddSyntaxTrees (tree);
   
  var model = compilation.GetSemanticModel (tree);
 
  var tokens = tree.GetRoot().DescendantTokens();
   
  // Rename the Program class to Program2:
  SyntaxToken program = tokens.First (t => t.Text == "Program");   
  Console.WriteLine (RenameSymbol (model, program, "Program2").ToString());

  // Rename the Foo method to Foo2:
  SyntaxToken foo = tokens.Last (t => t.Text == "Foo");
  Console.WriteLine (RenameSymbol (model, foo, "Foo2").ToString());

  // Rename the p local variable to p2:



  SyntaxToken p = tokens.Last (t => t.Text == "p");
  Console.WriteLine (RenameSymbol (model, p, "p2").ToString());
}

public SyntaxTree RenameSymbol (SemanticModel model, SyntaxToken token,
                                string newName)
{
  IEnumerable<TextSpan> renameSpans =
    GetRenameSpans (model, token).OrderBy (s => s);

  SourceText newSourceText = model.SyntaxTree.GetText().WithChanges (
    renameSpans.Select (s => new TextChange (s, newName)));

  return model.SyntaxTree.WithChangedText (newSourceText);
}

public IEnumerable<TextSpan> GetRenameSpans (SemanticModel model,
                                             SyntaxToken token)
{
  var node = token.Parent;
 
  ISymbol symbol =
    model.GetSymbolInfo (node).Symbol ??
    model.GetDeclaredSymbol (node);

  if (symbol == null) return null;   // No symbol to rename.

  var definitions =
    from location in symbol.Locations
    where location.SourceTree == node.SyntaxTree
    select location.SourceSpan;

  var usages =
    from t in model.SyntaxTree.GetRoot().DescendantTokens ()
    where t.Text == symbol.Name
    let s = model.GetSymbolInfo (t.Parent).Symbol
    where s == symbol
    select t.Span;

  if (symbol.Kind != SymbolKind.NamedType)
    return definitions.Concat (usages);

  var structors =
    from type in model.SyntaxTree.GetRoot().DescendantNodes()
                                           .OfType<TypeDeclarationSyntax>()
    where type.Identifier.Text == symbol.Name
    let declaredSymbol = model.GetDeclaredSymbol (type)
    where declaredSymbol == symbol
    from method in type.Members
    let constructor = method as ConstructorDeclarationSyntax
    let destructor = method as DestructorDeclarationSyntax
    where constructor != null || destructor != null
    let identifier = constructor?.Identifier ?? destructor.Identifier
    select identifier.Span;

  return definitions.Concat (usages).Concat (structors);
}
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